diff --git a/Assets/StreamingAssets/ScrollView_Server/scrollView.html b/Assets/StreamingAssets/ScrollView_Server/scrollView.html index 6be7f8bfdc37ba16bcf70c4837bd95da0dbd33d0..3139c46b9506186b5b6c6d191a8b5e80f011c02b 100644 --- a/Assets/StreamingAssets/ScrollView_Server/scrollView.html +++ b/Assets/StreamingAssets/ScrollView_Server/scrollView.html @@ -150,7 +150,340 @@ <script src="./scroll_interaction/Math_Mind.js" type="module"></script> <data id="Unity-Data-Interface" hidden data-assignments='{"http://mathhub.info/FrameIT/frameworld?TriangleProblem?A":{"Item1":"(C)","Item2":"http://mathhub.info/FrameIT/frameworld?DefaultSituationSpace/SituationTheory1?fact310"},"http://mathhub.info/FrameIT/frameworld?TriangleProblem?B":{"Item1":"(B)","Item2":"http://mathhub.info/FrameIT/frameworld?DefaultSituationSpace/SituationTheory1?fact309"},"http://mathhub.info/FrameIT/frameworld?TriangleProblem?C":{"Item1":"C","Item2":""},"http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC":{"Item1":"⊾C","Item2":""},"http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC":{"Item1":"BC","Item2":""},"http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB":{"Item1":"∠ABC","Item2":""},"http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA":{"Item1":"CA","Item2":""}}' - data-scroll-dynamic='{"ref":"http://mathhub.info/FrameIT/frameworld?OppositeLen","label":"OppositeLen","description":"<scroll-description title='OppositeLenScroll' alt='Given a triangle △ABC right-angled at ⊾C, the opposite side has length CA = tan(∠ABC) ⋅ BC.'> <span>Given a triangle</span> <math> <mi>△<!-- △ --></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?A'></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?B'></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?C'></mi> </math> <span>right-angled at</span> <math> <!--<mi>⦝</mi>--><!-- ⦝ --> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC'></mi> </math>,<br /> <span>the opposite side has length</span> <math> <mi data-solution-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA'></mi> <mo>=</mo> <mrow> <mi>tan</mi> <!--<mo>⁡</mo>--> <mo>(</mo> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB'></mi> <mo>)</mo> </mrow> <mo>⁢</mo> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC'></mi> </math> <span>.</span> <div> <svg width='50mm' height='45mm' viewBox='35 0 90 70' version='1.1' id='triangle' xmlns='http://www.w3.org/2000/svg' xmlns:svg='http://www.w3.org/2000/svg'> <g id='shape'> <path style='fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1' d='M 42.871972,64.67128 H 84.290656 V 7.6297578 Z' id='triangle' /> <path id='angleABC' style='fill:none;stroke:#000000;stroke-width:0.265;stroke-dasharray:none;stroke-opacity:1' d='m 46.024276,60.304806 a 5.3589964,5.3589964 0 0 1 2.252109,4.366474 h -5.358996 z' /> <g id='angleBCA'> <path style='fill:none;stroke:#000000;stroke-width:0.264999;stroke-dasharray:none;stroke-opacity:1' id='rightAngle' d='m 78.972396,64.665062 a 5.3308268,5.3308268 0 0 1 5.330827,-5.330827 v 5.330827 z' /> <circle style='fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.264999;stroke-dasharray:none;stroke-opacity:1' id='rightAngleDot' cx='82.081886' cy='62.813831' r='0.32113415' /> </g> </g> <g id='labels' style='font-size:4.23333px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;stroke-width:0.264583' > <text xml:space='preserve' x='39.242592' y='67.117035' id='pointB' style='fill:#0000ff' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?B'>B</text> <text xml:space='preserve' x='85.100548' y='68.080437' id='pointC' style='fill:#0000ff' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?C'>C</text> <text xml:space='preserve' x='84.650963' y='6.551136' id='pointA' style='fill:#0000ff' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?A'>A</text> <text xml:space='preserve' x='48.234348' y='62.492699' id='angleAtB' style='fill:#ffcc00' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB'>∠ABC</text> <text xml:space='preserve' x='71.548683' y='60.951256' id='rightAngleAtC' style='fill:#ffcc00' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC'>⊾C</text> <text xml:space='preserve' x='59.409813' y='68.273117' id='distanceBC' style='fill:#008000' data-slot-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC'>BC</text> <text xml:space='preserve' x='84.972092' y='35.260529' id='solutionCA' style='fill:#008000' data-solution-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA'>CA</text> </g> </svg> </div> </scroll-description>","requiredFacts":[{"tp":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/geometry?3DGeometry?point"},"df":null,"ref":{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"},"kind":"general","label":"A"},{"tp":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/geometry?3DGeometry?point"},"df":null,"ref":{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?B"},"kind":"general","label":"B"},{"tp":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/geometry?3DGeometry?point"},"df":null,"ref":{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"},"kind":"general","label":"C"},{"tp":{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?Logic?ded"},"arguments":[{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?Logic?eq"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"},{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/geometry?Geometry/Common?angle_between"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?B"},{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"},{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"}]},{"kind":"OMLIT<Double>","type":"http://mathhub.info/MitM/Foundation?RealLiterals?real_lit","value":90.0}]}]},"df":null,"ref":{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC"},"kind":"general","label":"⊾C"},{"lhs":{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/geometry?Geometry/Common?metric"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?B"},{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"}]},"valueTp":{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"},"value":null,"proof":null,"ref":{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC"},"kind":"veq","label":"BC"},{"lhs":{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/geometry?Geometry/Common?angle_between"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"},{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?B"},{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"}]},"valueTp":{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"},"value":null,"proof":null,"ref":{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB"},"kind":"veq","label":"∠ABC"}],"acquiredFacts":[{"lhs":{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/geometry?Geometry/Common?metric"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"},{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"}]},"valueTp":{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"},"value":{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/arithmetics?RealArithmetics?multiplication"},"arguments":[{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?Trigonometry?tan"},"arguments":[{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB"}]}]},{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC"}]}]},"proof":{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?InformalProofs?proofsketch"},"arguments":[{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?Logic?eq"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"},{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/geometry?Geometry/Common?metric"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"},{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"}]},{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/core/arithmetics?RealArithmetics?multiplication"},"arguments":[{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://mathhub.info/MitM/Foundation?Trigonometry?tan"},"arguments":[{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB"}]}]},{"kind":"OMA","applicant":{"kind":"OMS","uri":"http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl"},"arguments":[{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC"}]}]}]},{"kind":"OMLIT<String>","type":"http://cds.omdoc.org/urtheories?Strings?string","value":"OppositeLen Scroll"}]},"ref":{"kind":"OMS","uri":"http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA"},"kind":"veq","label":"CA"}],"name":"http://mathhub.info/FrameIT/frameworld?OppositeLen","path":null}'>hi</data> + data-scroll-dynamic='{ + "ref": "http://mathhub.info/FrameIT/frameworld?OppositeLen", + "label": "OppositeLen", + "description": "<scroll-description title='OppositeLenScroll' alt='Given a triangle △ABC right-angled at ⊾C, the opposite side has length CA = tan(∠ABC) ⋅ BC.'> <span>Given a triangle</span> <math> <mi>△<!-- △ --></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?A'></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?B'></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?C'></mi> </math> <span>right-angled at</span> <math> <!--<mi>⦝</mi>--><!-- ⦝ --> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC'></mi> </math>,<br /> <span>the opposite side has length</span> <math> <mi data-solution-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA'></mi> <mo>=</mo> <mrow> <mi>tan</mi> <!--<mo>⁡</mo>--> <mo>(</mo> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB'></mi> <mo>)</mo> </mrow> <mo>⁢</mo> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC'></mi> </math> <span>.</span> <div> <svg width='50mm' height='45mm' viewBox='35 0 90 70' version='1.1' id='triangle' xmlns='http://www.w3.org/2000/svg' xmlns:svg='http://www.w3.org/2000/svg'> <g id='shape'> <path style='fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1' d='M 42.871972,64.67128 H 84.290656 V 7.6297578 Z' id='triangle' /> <path id='angleABC' style='fill:none;stroke:#000000;stroke-width:0.265;stroke-dasharray:none;stroke-opacity:1' d='m 46.024276,60.304806 a 5.3589964,5.3589964 0 0 1 2.252109,4.366474 h -5.358996 z' /> <g id='angleBCA'> <path style='fill:none;stroke:#000000;stroke-width:0.264999;stroke-dasharray:none;stroke-opacity:1' id='rightAngle' d='m 78.972396,64.665062 a 5.3308268,5.3308268 0 0 1 5.330827,-5.330827 v 5.330827 z' /> <circle style='fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.264999;stroke-dasharray:none;stroke-opacity:1' id='rightAngleDot' cx='82.081886' cy='62.813831' r='0.32113415' /> </g> </g> <g id='labels' style='font-size:4.23333px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;stroke-width:0.264583' > <text xml:space='preserve' x='39.242592' y='67.117035' id='pointB' style='fill:#0000ff' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?B'>B</text> <text xml:space='preserve' x='85.100548' y='68.080437' id='pointC' style='fill:#0000ff' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?C'>C</text> <text xml:space='preserve' x='84.650963' y='6.551136' id='pointA' style='fill:#0000ff' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?A'>A</text> <text xml:space='preserve' x='48.234348' y='62.492699' id='angleAtB' style='fill:#ffcc00' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB'>∠ABC</text> <text xml:space='preserve' x='71.548683' y='60.951256' id='rightAngleAtC' style='fill:#ffcc00' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC'>⊾C</text> <text xml:space='preserve' x='59.409813' y='68.273117' id='distanceBC' style='fill:#008000' data-slot-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC'>BC</text> <text xml:space='preserve' x='84.972092' y='35.260529' id='solutionCA' style='fill:#008000' data-solution-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA'>CA</text> </g> </svg> </div> </scroll-description>", + "requiredFacts": [ + { + "tp": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/geometry?3DGeometry?point" + }, + "df": null, + "ref": { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A" + }, + "kind": "general", + "label": "A" + }, + { + "tp": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/geometry?3DGeometry?point" + }, + "df": null, + "ref": { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?B" + }, + "kind": "general", + "label": "B" + }, + { + "tp": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/geometry?3DGeometry?point" + }, + "df": null, + "ref": { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C" + }, + "kind": "general", + "label": "C" + }, + { + "tp": { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?Logic?ded" + }, + "arguments": [ + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?Logic?eq" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit" + }, + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?angle_between" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?B" + }, + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C" + }, + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A" + } + ] + }, + { + "kind": "OMLIT<Double>", + "type": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit", + "value": 90.0 + } + ] + } + ] + }, + "df": null, + "ref": { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC" + }, + "kind": "general", + "label": "⊾C" + }, + { + "lhs": { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?metric" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?B" + }, + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C" + } + ] + }, + "valueTp": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit" + }, + "value": null, + "proof": null, + "ref": { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC" + }, + "kind": "veq", + "label": "BC" + }, + { + "lhs": { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?angle_between" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A" + }, + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?B" + }, + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C" + } + ] + }, + "valueTp": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit" + }, + "value": null, + "proof": null, + "ref": { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB" + }, + "kind": "veq", + "label": "∠ABC" + } + ], + "acquiredFacts": [ + { + "lhs": { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?metric" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C" + }, + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A" + } + ] + }, + "valueTp": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit" + }, + "value": { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/arithmetics?RealArithmetics?multiplication" + }, + "arguments": [ + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?Trigonometry?tan" + }, + "arguments": [ + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB" + } + ] + } + ] + }, + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC" + } + ] + } + ] + }, + "proof": { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?InformalProofs?proofsketch" + }, + "arguments": [ + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?Logic?eq" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit" + }, + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?metric" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C" + }, + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A" + } + ] + }, + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/core/arithmetics?RealArithmetics?multiplication" + }, + "arguments": [ + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://mathhub.info/MitM/Foundation?Trigonometry?tan" + }, + "arguments": [ + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB" + } + ] + } + ] + }, + { + "kind": "OMA", + "applicant": { + "kind": "OMS", + "uri": "http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl" + }, + "arguments": [ + { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC" + } + ] + } + ] + } + ] + }, + { + "kind": "OMLIT<String>", + "type": "http://cds.omdoc.org/urtheories?Strings?string", + "value": "OppositeLen Scroll" + } + ] + }, + "ref": { + "kind": "OMS", + "uri": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA" + }, + "kind": "veq", + "label": "CA" + } + ], + "name": "http://mathhub.info/FrameIT/frameworld?OppositeLen", + "path": null + }'>hi</data> <!--<script src="visualiseCursor.mjs" defer type="module"></script>--> <!--<script>