--- layout: page title: arXMLiv 08.2018 - Word Embeddings; Token Model --- Part of the [arXMLiv](https://kwarc.info/projects/arXMLiv/) project at the [KWARC](https://kwarc.info/) research group ### Author - Deyan Ginev ### Current release - 08.2018 ### Accessibility and License The content of this Dataset is licensed to [SIGMathLing members](/member/) for research and tool development purposes. Access is restricted to [SIGMathLing members](/member/) under the [SIGMathLing Non-Disclosure-Agreement](/nda/) as for most [arXiv](http://arxiv.org) articles, the right of distribution was only given (or assumed) to arXiv itself. ### Contents - An 11.5 billion token model for the arXMLiv 08.2018 dataset, including subformula lexemes - `token_model.zip` - 300 dimensional GloVe word embeddings for the arXMLiv 08.2018 dataset - `glove.arxmliv.11B.300d.zip` and `vocab.arxmliv.zip` - 300d GloVe word embeddings for individual subsets - `glove.subsets.zip` - Embeddings and vocabulary with math lexemes omitted - `glove.arxmliv.nomath.11B.300d.zip` and `vocab.arxmliv.nomath.zip` - added on July 20, 2019 - used as a control when evaluating the contribution of formula lexemes - the main arXMLiv dataset is available separately [here](/resources/arxmliv-dataset-082018/) #### Token Model Statistics | subset | documents | paragraphs | sentences | | ---------- | --------: | ---------: | ----------: | | no_problem | 137,864 | 4,646,203 | 21,533,963 | | warning | 705,095 | 45,797,794 | 183,246,777 | | error | 389,225 | 26,759,524 | 99,641,978 | | complete | 1,232,184 | 77,203,521 | 304,422,718 | | subset | words | formulas | inline cite | numeric literals | | ---------- | ------------: | ----------: | ----------: | ---------------: | | no_problem | 430,217,995 | 20,910,732 | 3,709,520 | 11,177,753 | | warning | 3,175,663,430 | 281,832,412 | 25,337,574 | 83,606,897 | | error | 1,731,971,035 | 153,186,264 | 13,145,561 | 43,399,720 | | complete | 5,337,852,460 | 455,929,408 | 42,192,655 | 138,184,370 | #### GloVe Model Statistics | subset | tokens | unique words | unique words (freq 5+ ) | | ---------- | -------------: | -----------: | ----------------------: | | no_problem | 622,968,267 | 715,433 | 219,304 | | warning | 7,203,536,205 | 3,478,235 | 666,317 | | error | 3,691,805,321 | 2,444,532 | 574,467 | | complete | 11,518,309,793 | 5,285,379 | 1,000,295 | ### Citing this Resource Please cite the main dataset when using the word embeddings, as they are generated and distributed jointly. [Instructions here](/resources/arxmliv-dataset-082018/#citing-this-resource) ### Download [Download link](https://gl.kwarc.info/SIGMathLing/embeddings-arXMLiv-08-2018) ([SIGMathLing members](/member/) only) ### Generated via - [llamapun 0.2.0](https://github.com/KWARC/llamapun/releases/tag/0.2.0), - [GloVe 1.2, 2018](https://github.com/stanfordnlp/GloVe/tree/07d59d5e6584e27ec758080bba8b51fce30f69d8) ### Generation Parameters * token model distributed as 3 subsets - no_problem, warning and error. complete model is derived via: ``` cat token_model_no_problem.txt \ token_model_warning.txt \ token_model_error.txt > token_model_complete.txt ``` * [llamapun v0.2](https://github.com/KWARC/llamapun/releases/tag/0.2), `corpus_token_model` example used for token model extraction * processed logical paragraphs only (excluded non-textual modalities, e.g. tables, figures and their captions, bibliographies, as well as abstracts) * excluded paragraphs containing latexml errors (marked via a `ltx_ERROR` HTML class) * used llamapun math-aware sentence and word tokenization, with subformula math lexemes * marked up inline citations replaced with `citationelement` token * numeric literals replaced with `NUM` token (both in text and formulas) * ignored sentences with unnaturally long words (>25 characters) - almost always due to latexml conversion errors * [GloVe repository at sha 07d59d](https://github.com/stanfordnlp/GloVe/tree/07d59d5e6584e27ec758080bba8b51fce30f69d8) * build/vocab_count -min-count 5 * build/cooccur -memory 32.0 -window-size 15 * build/shuffle -memory 32.0 * build/glove -threads 16 -x-max 100 -iter 25 -vector-size 300 -binary 2 ### Examples and baselines #### GloVe in-built evaluation (non-expert tasks e.g. language, relationships, geography) 1. no_problem * Total accuracy: 27.47% (4028/14663) * Highest score: "gram3-comparative.txt", 75.30% (1003/1332) 2. warning * Total accuracy: 31.97% (5351/16736) * Highest score: "gram3-comparative.txt", 77.40% (1031/1332) 3. error * Total accuracy: 29.67% (4910/16549) * Highest score: "gram3-comparative.txt", 72.75% (969/1332) 4. complete * Total accuracy: 35.48% (6298/17750) * Highest score: "gram3-comparative.txt", 76.65% (1021/1332) 5. demo baseline: text8 demo (first 100M characters of Wikipedia) * Total accuracy: 23.62% (4211/17827) * Highest score: "gram6-nationality-adjective.txt", 58.65% (892/1521) **Evaluation note:** These in-built evlauation runs are provided as a sanity check that the generated GloVe models pass a basic baseline against the non-expert tasks in the default GloVe suite. One would need a scienctific discourse tailored set of test cases to evaluate the arXiv-based models competitively. #### Measuring word analogy In a cloned GloVe repository, start via: ``` python2 eval/python/word_analogy.py --vocab_file vocab.arxmliv.txt --vectors_file glove.arxmliv.11B.300d.txt ``` 1. `abelian` is to `group` as `disjoint` is to `?` * Top hit: `union`, cosine distance `0.653377` 2. `convex` is to `concave` as `positive` is to `?` * Top hit: `negative`, cosine distance `0.786877` 3. `finite` is to `infinte` as `abelian` is to `?` * Top hit: `nonabelian`, cosine distance `0.676042` 4. `quantum` is to `classical` as `bottom` is to `?` * Top hit: `top`, cosine distance `0.734896` 5. `eq` is to `proves` as `figure` is to `?` * Top hit: `showing`, cosine distance `0.668502` 6. `italic_x` is to `italic_y` as `italic_a` is to `?` * Top hit: `italic_b`, cosine distance `0.902608` #### Nearest word vectors In a cloned GloVe repository, start via: ``` python2 eval/python/distance.py --vocab_file vocab.arxmliv.txt --vectors_file glove.arxmliv.11B.300d.txt ``` 1. **lattice** ``` Word: lattice Position in vocabulary: 488 Word Cosine distance --------------------------------------------------------- lattices 0.853103 triangular 0.637767 honeycomb 0.626426 crystal 0.624397 finite 0.614720 spacing 0.603067 ``` 2. **entanglement** ``` Word: entanglement Position in vocabulary: 1568 Word Cosine distance --------------------------------------------------------- entangled 0.780425 multipartite 0.730968 concurrence 0.691708 negativity 0.649595 tripartite 0.647623 quantum 0.640395 fidelity 0.640285 teleportation 0.616797 discord 0.613752 entropy 0.612341 bipartite 0.608034 coherence 0.606859 nonlocality 0.601337 ``` 3. **forgetful** ``` Word: forgetful Position in vocabulary: 11740 Word Cosine distance --------------------------------------------------------- functor 0.723472 functors 0.656184 morphism 0.598965 ``` 4. **eigenvalue** ``` Word: eigenvalue Position in vocabulary: 1448 Word Cosine distance --------------------------------------------------------- eigenvalues 0.893073 eigenvector 0.768380 eigenvectors 0.765241 eigenfunction 0.754222 eigenfunctions 0.686141 eigenspace 0.666098 eigen 0.641422 matrix 0.616723 eigenmode 0.613117 eigenstate 0.612188 laplacian 0.611396 largest 0.606122 smallest 0.605342 eigenmodes 0.604839 ``` 5. **riemannian** ``` Word: riemannian Position in vocabulary: 2285 Word Cosine distance --------------------------------------------------------- manifolds 0.765827 manifold 0.760806 metric 0.719817 finsler 0.687826 curvature 0.676100 ricci 0.664770 metrics 0.660804 riemmanian 0.651666 euclidean 0.644686 noncompact 0.643878 conformally 0.638984 riemanian 0.633814 kahler 0.632680 endowed 0.622035 submanifold 0.613868 submanifolds 0.612716 geodesic 0.604488 ```