Analytic Proof Calculi

for the Notion of Failure
Joint Logic Workshop: Logic in Computer Science and Deduction Systems

Dov M. Gabbay and Ross Horne
Computer Science, University of Luxembourg

26 March 2021

Aim
We show how to add negation as failure

P

to (a fragment of)

intuitionistic logic

in a methodological generic way.

Aim
We show how to add negation as failure

P

to (a fragment of)
intuitionistic logic
in a methodological generic way.
Short-term aim: Tame the failure of deduction (cut elimination) in

N-prolog: we design an analytic proof calculus.

N-prolog = Intuitionistic implication truth, falsity and negation as failure,
computed like prolog.

Long-term aim: Propose a method that can be applied to other logics,
such as linear logics useful for internalising resources and-processes.

Semantic point of view

Consider intuitionistic proposition logic, with distinct atoms Q, and
connectives

{—, L, T}

1 Observation adapted by Schroeder-Heister to handle inequality.

Semantic point of view
Consider intuitionistic proposition logic, with distinct atoms Q, and
connectives

{—=,L1,T}
This logic has a canonical Kripke model (S, <) where:

> S is all wifs of the language.

> A<BIiff Brp A.

>» Aebiff A+ b, where b € Q is atomic.

» A By —» Byiffforany A’ > A, if A’ £ By then A’ £ Bs.
» AT

> Ag L.

1 Observation adapted by Schroeder-Heister to handle inequality.

Semantic point of view

Consider intuitionistic proposition logic, with distinct atoms Q, and
connectives

{—=,L1,T}
This logic has a canonical Kripke model (S, <) where:

> S is all wifs of the language.

> A<BIiff Brp A.

>» Aebiff A+ b, where b € Q is atomic.

» A By —» Byiffforany A’ > A, if A’ £ By then A’ £ Bs.
» AT

> Ag L.

In the cannonical model we have: A £ B iff A vy B, for any A, B.

So, A Fint By —» B> onIy if
for some A’, A’ ki A and A’ ks By and A’ ¥y B!

Not analytic since A’ need not be a subformula of A or B; — Bs.

1 Observation adapted by Schroeder-Heister to handle inequality.

Our idea . . -
we add GOdel-Tarski provability constants:

For any A, A add the constant Pr(A, A), where A is a finite set of wifs
and A is a wif.

We let:

o | T D b A
L Ak A

Let X be a variable ranging over finite sets of wifs. Then Pr(X, A) does
not have a value unless X is instantiated.

By playing with how we instantiate X we can capture a variety of problems (answer set
programming, abduction problems, preferred extensions, etc.). E.g., scoped negation as
failure, i.e., failure from a specific database X becomes

Pr(X,A) - L
For example the following holds, if X + b.

E(Pr(X,b) > 1) > a

First design step: a proof calculus of success ...and failure

Calculus of success

(atom) — (1)

i ™
,qrFq A, LFA ArT

ArA X=qorx=.1 AArQ
(elim) ~ ———— (intro)
AA->XEQ ArA=q

First design step: a proof calculus of success ...and failure

Calculus of success

(atom) — (1)

i ™
,qrFq A, LFA ArT

ArA X=qorx=.1 AArQ
(elim) ~ ———— (intro)
AA->XEQ ArA=q

Calculus of failure

AA¥q
—— (~intro)
ArA=q

{Ay 4. forany A such that

(A=x)e A, wherex=qorx= L1 } geA L¢A

—-atom
A¥rq ()

{AFA: for Asuchthat (A= 1)e A } 1¢A

A¥ L

(=1)

A digression: naively adding NAF means deduction fails

First attempt: Following N-Prolog directly we could try the following naive
rules for fibering the systems of success and failure together using NAF.

a
(to fail)
A+ -a Ay -a

(to succ)

A digression: naively adding NAF means deduction fails

First attempt: Following N-Prolog directly we could try the following naive
rules for fibering the systems of success and failure together using NAF.

a
(to fail) (to succ)

Ar-a Ay -a
An issue: it fails cut elimination (hence modus ponens)

“There are reasons to think that the addition of negation-as-failure to intuitionistic
logic programming will lead to serious semantic diffculties. Gabbay studied the
problem in [N-Prolog 1985], and concluded that the entire idea was logically in-
coherent, since modus ponens would no longer be valid.” Boner and McCarty
1990

Their example: The following hold.

-C—-B,(C—»B)-»D+B and B,~-C—B,(C—»B)—-D+D

but
-C—->B,(C—»B)—-D¥¢D

A digression: naively adding NAF means deduction fails

First attempt: Following N-Prolog directly we could try the following naive
rules for fibering the systems of success and failure together using NAF.

a
(to fail)

(to succ)
Ar-a Ay -a

An issue: it fails cut elimination (hence modus ponens)

“There are reasons to think that the addition of negation-as-failure to intuitionistic
logic programming will lead to serious semantic diffculties. Gabbay studied the
problem in [N-Prolog 1985], and concluded that the entire idea was logically in-
coherent, since modus ponens would no longer be valid.” Boner and McCarty
1990

Their example: The following hold.

-C—-B,(C—»B)-»D+B and B,~-C—B,(C—»B)—-D+D

but
-C—->B,(C—»B)—-D¥¢D

The issue: The two instances of =C refer to different databases.

Back to our resolution

Don’t use these rules.

A¥a

(to fail)

(to succ)
A+ -a A ¥ -a

Use Godel-Tarski constants to record the database
used for by each occurence of negation

...duplicating clauses if used in different contexts (to be explained later).

The system fibering, presented next, becomes richer.

Second design step: add rules replacing T, L with Gédel-Tarski constants

Rules added to calculus of success:

L
A,uA() -
T
AI—T() -
A+A
—— (elim) —
AA—> LEQ

A AP B)rq

r¢¥B
— (L
APr(lL,B)FA

B

A+ Pr(l,B) ™

ArA r«B
(elim)

Remark: First and third rules fiber the calculus of failure into the calculus

of success.

Second design step: add rules replacing T, L with Gédel-Tarski constants

Rules added to calculus of failure:

Old rule:
for A such that
{AFA' (A:x)eA,wherex:qorx:J_} qEA LA
(—atom)
A¥q
l
New Rule:
for A such that
{AFA (A:x)eAwherex:qorx:L} qEn LA
for A such that)
{AonrFrB. (A:Pr(F.B))eA} {F'+B:Pr(l,B) € A}
(—~atom)
Arq

Remark: Fibers the calculus of success into the calculus of failure.

Note: The new rule replaces the old rule (in contrast to the system for
success).

The rules with conclusions A ¥ L or A ¥ Pr(I, B) are similar to the above.

Bonner & McCarty’s example in this setting

We had:

-C—->B,(C—»>B)-»D+B and B,~-C—-B,(C—»B)->D+D

Now we have for some X:

(Pr(X,C) »1)—-»B,(C—»B)—»D+rB and B,(Pr(X,C)—>1)—>B,(C—»B)-D+D

To preserve intuitionistic logic + NAF, we could set:
X= (C-B)-D
...or more generally X ¥ C.
Applying cut we obtain:
(Pr(X,C) > 1)—>B,(C—»B)—->D+D

Observation: This is now beyond N-Prolog, due to the jump to database X. We have moved
to a richer logic to admit deduction.

Examples showing — changes meaning.

Consider program consisting of (1) and (2):
1. -c— a
2. (c—a)—-c

Ask if a succeeds using NAF: (1), (2) + a.

(1), (2),crc
(1).(2),c ¥ -c
(1),(2),cra
(1).,(2)kc—a
(1).(2)¥c
(1).(2) r —c
(1).(2ra

Examples showing — changes meaning.

Consider program consisting of (1) and (2):
1. -c— a
2. (c—a)—-c

Ask if a succeeds using NAF: (1), (2) + a.

(1), (2),ct+c
(1),(2),c¥ -c
(1),(2),cra
1).,(2)kc—a
1).(2)kc
(1),(2) r =c
(1).(2)+a

clause (1)

Examples showing — changes meaning.

Consider program consisting of (1) and (2):
1. -c— a
2. (c—a)—-c

Ask if a succeeds using NAF: (1), (2) + a.

(1).(2),c+c
(1), (2),c¥ —c
(1),(2),cra
(1).,(@rc—a
(1).(2)¥c
m -¢ =Pr({(1),(2)},¢c) - L
clause (1)

(1).(2)ra

Examples showing — changes meaning.

Consider program consisting of (1) and (2):
1. -c— a
2. (c—a)—-c

Ask if a succeeds using NAF: (1), (2) + a.

((11))((22)% new instance of clause (1)
% -c =Pr({(1).(2)}.c) > L

clause (1)

(1).(2)ra

Examples showing — changes meaning.

Consider program consisting of (1) and (2):
1. -c— a
2. (c—a)—-c

Ask if a succeeds using NAF: (1), (2) + a.

M.@.0r e ¢~ PO @1cl0) s

W new instance of clause (1)
,(2),cra

(1).@)kc—a

S ().()Fc

-c =Pr({(1),(2)},¢c) > L

clause (1)

(1),(2) F =c
(1).(2)+a

Examples showing — changes meaning.
More explicit program replaces (1) with (1.1) and (1.2):
1. -c— a
1.1 (Pr({(1.2),(2)}.¢) > 1) > a
1.2 (Pr({c},c) » L) > a
2. (c—a)—-c
Ask if a succeeds using NAF: (1.1),(1.2),(2) + a.

cre
¢,Pr({c},c) ¥ L
c¥Pr({c},c) - L
(1.2),cra
(12)rkc—a
(1.2),(2)¥c
(1.2),(2),Pr({(1.2),(2)},c) F L
(1.2),(2) - Pr({(1.2), (2)},¢) — L

(1.1),(1.2),(2)r a

Remark: Consuming (2) avoids a cycle at the last step. In fact, to avoid cycles we can use
as many copies of each clause as needed and then let our computation consume any
clause it uses. So consuming resources acts as a loop checker, and adding resources acts
as separating different occurences of —.

Example of resolving inconsistency

Consider a 2-cycle.

a b
Model using the logic program with clauses:

> (Pr(X,a) > L) —>b
> (Pr(X,b) > L) > a

Step 1: Pick a goal we want to hold, say a.

Step 2: Unfold the rules of our analytic proof calculus.
X¥b
(Pr(X,a) » L) —» b, (Pr(X,b) » L) » a,Pr(X.b) + L
(Pr(X,a) —» L) » b, (Pr(X,b) > L) - arPr(X,b) » L
(Pr(X,a) —» L) - b, (Pr(X,b) » L) > at+a

Remark: This is consistent with argumentation theory: if b is “out” then a is “in”.

An inconsistency that cannot be resolved.

e

Model using the logic program with clauses:
> (Pr(X,a) > 1) > a

Consider a self loop.

Step 1: Pick a goal we want to hold, say a.

Step 2: Unfold the rules of our analytic proof calculus.
X¥a
(Pr(X,a) » 1) - a,Pr(X,a) + L
(Pr(X,a) » 1) —» a,+Pr(X,a) - L

(Pr(X,a) > L) > atra

Remark: For goal a to be “in”, a must not be given resources. We loop if we try to make X
consistent with the program, so cannot collapse between the goal and action levels.

Example of Inferring actions to take for a goal to succeed

Consider a chain.
a—->>b——>c¢

Model using the logic program with clauses:
> (Pr(X,b) > L) > ¢
> (Pr(X,a) > L) —>b
Step 1: Pick a goal we want to hold, say c.
Step 2: Unfold the rules of our analytic proof calculus.

X¥b
(Pr(X,b) » L) — c,(Pr(X,a) » L) = b,Pr(X,b) F L
(Pr(X,b) —» L) - c,(Pr(X,a) » L) » brPr(X,b) > L
(Pr(X,b) —» 1) - c,(Pr(X,a) > L) > btrc

Step 3: Force X to be consistent with our initial program.

Xtra
(Pr(X,b) —» L) » c,(Pr(X,a) > L) -» b,Pr(X,a) ¥ L
(Pr(X,b) —» L) - c,(Pr(X,a) » L) » b¥Pr(X,a) > L
(Pr(X,b) » 1) - c,(Pr(X,a) > L) > b¥b

Minimal solution: X = a — give a resources and goal ¢ will succeed.

Example, back to intuitionistic logic + — with multiple contexts
Consider program:
> ((-a—b) > =b) > c
» (b>c)—a
Problem: Need two copies of first clause used to prove c fails in different contexts.

Find contexts X1, Y3, X2, and Yz in the following program.
1. (((Pr(Y1,a) » L) = b) » (Pr(X1,b) » 1)) > ¢
2. (((Pr(Yz,a) » L) > b) = (Pr(X2,b) » 1)) > ¢
3. (b—oc)—>a
Taking X1 + b we have a proof
X1+ b
(2),(3), (Pr(Y1,a) = L) = b, Pr(Xy,b) r— L
(2).(3), (Pr(Y1,a) > L) = b+ Pr(Xy,b) —> L
(2),(3) F ((Pr(Y1,8) > L) > b) = (Pr(Xy,b) —> L)
(1).(2).(38) ¥
Refining to X; = (2), (3) (Pr(Y1,a) — L) — b, we can restart the proof.

Yi¥a
(2),(8),Pr(Yq,a) - L
(2),(8) K Pr(Yy,a) > L
(2),(3),(Pr(Y1,a) > L) > bt b

Which is a proof if Yy ¥ a.

Example, back to intuitionistic logic + — with multiple contexts
We have X7 = (2), (3), (Pr(Y1,a) » L) —» b,and Y; ¥ a.
Let Y1 = (2),(3), so we can restart the proof:

Xo kb
b, (Pr(Yz,a) > L) — b,Pr(Xa,b) ¥ L
b, (Pr(Y2,a) > L) > b¥ Pr(Xz,b) > L
b ¥ ((Pr(Yz,a) » L) = b) — (Pr(Xz2,b) - 1)
(2).,b¥c
(2kb—c
(2).(3)xa

Thus Xz + b.
Restarting with X2 = b, (Pr(Y2,a) — L) — b we conclude the proof.

b, (Pr(Yz,a) > L) > bt b

Thus there are no constraints on Y
Final solution, making proof analytic:

Xi = (2).(3).(Pr(Y1.a) = L) > b
Yi= (2).(3)

Xo= b, (Pl‘(Yg,a) - _L) —b

Yo = T

Conclusion

KR

proof t.heory _ Negation as failure is
Analytic proof calculi are useful for knowledge
designed for algorithmic representation.

proof search and Common-sense problems can be

deduction (cut elimination). addressed by making the context of
different assertions explicit.

It is possible to have the best of both these worlds

together in one system: alogic with - in which the effect of cut
is respected by cut elimination.

The system remembers from which database a query failed.

Future direction: this methodology will extend to any logic with
well-founded proof system and constants for truth and falsity. Generating
the rules for the system of failure should be achieved by systematically
pushing — to the atoms in deductions of the form I + —=A.

