Commits (3)
SRC = $(shell ls *.tex)
TARGET = paper.pdf #report.pdf
INSTALL = paper.pdf #report.pdf
INSTALLTO = cicm18-viewfinder.pdf #viewfinder-report.pdf
GITDIR = ~/vc/git/gl.kwarc.info/mkohlhase/www/submit
T1 = paper.pdf
I1 = cicm18-viewfinder.pdf
T2 = report.pdf
I2 = viewfinder-report.pdf
PI1 = papers/$(I1)
PI2 = submit/$(I2)
TARGET = $(T1) $(T2)
GITDIR = ~/vc/git/gl.kwarc.info/mkohlhase/www
C1 = $(T1) $(GITDIR)/$(PI1)
C2 = $(T2) $(GITDIR)/$(PI2)
INSTALL = $(PI1) $(PI2)
all: $(TARGET)
......@@ -12,11 +19,8 @@ $(TARGET): %.pdf: %.tex $(SRC)
pdflatex $(basename $<)
pdflatex $(basename $<)
$(INSTALLTO): paper.pdf
cp paper.pdf $(INSTALL)
install: $(INSTALL)
install: $(TARGET)
mkdir -p $(GITDIR)
cd $(GITDIR); git pull; cd -
cd $(GITDIR); git add --force $(INSTALLTO);git commit -m're-generated'; git push; cd -
cp $(C1); cp $(C2)
cd $(GITDIR); git add --force $(INSTALL);git commit -m're-generated'; git push; cd -
% Florian's macros
\usepackage{url, multirow}
{}%froms.filterNot(t => commons.exists(_.path == t.path))
\setlength{\hfuzz}{3pt} \hbadness=10001
\setcounter{tocdepth}{2} % for pdf bookmarks
% local macros and configurations
% \usepackage[llncs]{../../fr-macros/theorems}
% \input{macros}
\pagestyle{plain} % remove for final version
\author{Dennis Müller\inst{1} \and Michael Kohlhase\inst{1}\and Florian Rabe\inst{1,2}\orcidID{0000-0003-3040-3655}}
\institute{Computer Science, FAU Erlangen-N\"urnberg\and LRI, Universit\'e Paris Sud}
\title{Automatically Finding Theory Morphisms for Knowledge Management}
We present a method for finding morphisms between formal theories, both within as well
as across libraries based on different logical foundations.
% These morphisms can yield both (more or less formal) \emph{alignments} between individual symbols as well as truth-preserving morphisms between whole theories.
As they induce new theorems in the target theory for any of the source theory, theory morphisms are high-value elements of
a modular formal library. Usually, theory morphisms are manually encoded, but this
practice requires authors who are familiar with source and target theories at the same
time, which limits the scalability of the manual approach.
To remedy this problem, we have developed a morphism finder algorithm that automates theory
morphism discovery. In this paper we present an implementation in the MMT system and
show specific use cases. We focus on an application of \emph{theory discovery}, where a user can
check whether a (part of a) formal theory already exists in some library, potentially
avoiding duplication of work or suggesting an opportunity for refactoring.
\section{Preliminaries: MMT and Views}\label{sec:prelim}
\section{Intra-Library View Finding}\label{sec:viewfinder}
\section{Inter-Library View Finding}\label{sec:across}
%\section{Low-Hanging Fruit: Other Applications}\label{sec:appl}
%%% Local Variables:
%%% mode: latex
%%% eval: (set-fill-column 5000)
%%% eval: (visual-line-mode)
%%% TeX-master: t
%%% End:
% LocalWords: inst maketitle formalization defs well-formedness textsf sec:impl impl
% LocalWords: sec:conc conc Universit printbibliography ednote Internalizing newpage
% LocalWords: ifshort sec:relwork relwork renewcommand bibfont tbw setcounter tocdepth
% LocalWords: tableofcontents defemph compactenum emptyset newpart compactitem lstset
% LocalWords: centering aboveskip 0pt,belowskip hline lstlisting mathescape rightarrow
% LocalWords: vdash baseset sec:concl subsubsection Formalizations emph sec:usecase
% LocalWords: usecase Unrealized sec:appl