Aggregating Documents in SWiM

Zdravko Beykov

Computer Science
Jacobs University Bremen
Campus Ring 1

28759 Bremen

Germany

Type: Guided Research Thesis
Date: May 9, 2008
Supervisor: Prof. Michael Kohlhase

0. Executive Summary

Nowadays, we are living in a world where informatios all around us. The
internet is giving us the opportunity to explorgr@mendous amount of data. Much
of our difficulty lies in how to locate this datand with the advancement of
technology this proves no easy task. Even when déimels the place where the
information he searches for resides, he might netalble to narrow it down. Even if
he succeeds in narrowing it down, the problem ofdanstanding the idea closely
linked to this information could arise. If some bes used in the explanation of the
information are not present, then the user hasddhlyough the process of locating
each unknown node of this dependency separately thngl would cost him a lot of
time. The idea of the project is to ease the quefstinding the relevant data one
searches for and include all the dependencies & tlocument that the user is
unfamiliar with before the main idea. This wholdonwould be exported to a PDF file
that would be ready for printing. Thus, the end guat would be nothing more and

nothing less than what one needs for understandicgrtain topic.

1. Introduction and Motivation

The project would ease the extraction of printadleta from a mathematical
document collection in the semantic markup langua@®Doc (3). It will be
embedded into the SWIM wiki (4) as a Flash Appletdawould let the user choose the
dependencies that would have to be included in filmal PDF, which would result
from an XSL transformation (3). This project coulé belpful for students learning a
certain topic by filling gaps of their knowledge pferequisite information.

This guided research would answer the question ow o utilize extracted
mathematical information from the semantic wiki $¥by including all the needed
dependencies nodes into a single PDF file. Also, will address the logical
interconnection between semantic documents in orcemget only relevant to the
user data. This would be convenient, since in thed ethe user would have a
complete PDF with only the needed information. lillvbe of great help for the
learning of the material. The project would rely several outside resources. The
first one is the OMDoc-HTML XSL style sheet that wid be used for displaying the
selected nodes in HTML. Currently, this resourceaisilable. The next one would be
the OMDoc-TeX in the new XSL 2.0 format. It will beeeded for converting all the
dependencies into a simple TeX file that would ratee transformed into PDF via
LaTeX (3). The newest version of this file is noétyready and therefore it will be
worked on to the needed extent. The last neededuee would be the complete
OMDoc version of the General Computer Science leetinotes used in Jacobs
University for the course. Currently, their are daale for the first part of the

course, and soon the second part will be ready too.

2. Overview of technologies
2.1. XML

XML stands for Extensible Markup Language and igeneral markup language that
can be customized to serve a specific purpose. Sthecture of an XML document is
guite simple syntactically — it consists of stagimnd ending tags of an arbitrary
name that can surround other tags and text. Opfighaach tag can have certain
properties defined. The syntax is the following: agt,</tag>,<tag/> - for a
starting tag, ending tag and an empty tag respettivAdditionally, tags can have
several properties which are declared in the follogv manner <tag
propertyName="propertyValue”/>. The simplicity oh¢ XML syntax allows for a big
degree of freedom when declaring custom documenaking this one step further,
the Document Type Definition (DTD) text file formatas made. It has it's own syntax
to define a set of tags and their structure whicte allowed in a certain XML
document. In order to evaluate an XML document tocsmecific DTD, one should
include a reference in the beginning of the XMLtine <!DOCTYPE> tag which ideally
should be the beginning of the document. Also, DhHleD can define custom variables
which are called entities and give a special megnia their occurrence in an XML
document. Their syntax is “&entityName;”. Good explas are the “>” and “<”
entities in the context of HTML documents. They oegpond to the symbols “>” and
“<” which if included explicitly would break theatys syntax structure and therefore
are declared as entities. To facilitate the mangiwn of XML in a programming
language, standard API's have been developed. TheuBhent Object Model (DOM)
has the aim of representing an XML as a collectioh native objects of a data

structure of type Node. Each tag is such an objered has references to its parent

tag (if any), siblings, and attributes (1). Thusuycan navigate in native code through
the whole XML document. The easiness of dealinghwXML along with the degree of

freedom one has to customize his own XML documelmase made it one of the most
popular document formats nowadays. It is the basismany different files like

XHTML, SVG, RSS, MathML and others (2). On the otheand, XML does have some
disadvantages to other binary coded formats likewsprocessing speed and large
file size. However, binary coded formats cannotdxdted as easy as by opening any
text editor. In conclusion, XML's advantages outgfeiits disadvantages and for a

reason itis recommended by the World Wide Web Gonisim (2).

2.2. HTML /ISP

HyperText Markup Language (HTML) is a language thatused to format web pages.
It is a variant of XML, and has predefined tags thi@mn't need a DTD, as web browser
directly recognize them. Each page starts with thdTML> tag, which should
contain a <HEAD> and a <BODY> tag. The first acilsela header for references and
definitions, whereas the second contains the contdrat is displayed. The tags
inside <body> are used for formatting purposes. renss also a special type of an
HTML page that does not have this tag, that allomue usage of so called “frames”
which can subdivide one page into several pages. HN¥L is only a markup
language, there are no dynamic capabilities withtinin order to add some simple
interactivity, the script language JavaScript car bsed. However, it is client-
executed and limited in functionality. Thus, if omeeds to add a complex server
side application, like connecting to a databaseobefoutputting an HTML page, a
technology like JSP should be used. JSP standsldoan Server Pages and it uses the

popular multi-platform language Java inside XML sagnside HTML pages. Those

tags are compiled and executed from the server leethe page is sent to the user
reguesting it. Java is associated as slow and mpllatform code is not something of
great significance to a server program as it is poged to run only on that server.
Still, JSP is free, it offers a small learning cervo users familiar with Java, and the
Just In Time (JIT) compiler speeds up the executiora great extent. Thus, JSP is one
of the popular technologies in its field along wiPltHP and ASP.NET.
2.3. OMDoc
OMDoc is an XML based open markup format for mathetimal documents. It
is developed with the goal of web managing the hugaount of mathematical
knowledge available nowadays. Unlike other documdontmats that store only
representation of a mathematical object, OMDoc stoits semantic meaning and its
relation to other OMDoc documents. Its <ref> elerhas used for reference. Its
attribute “type” can have two values (OMDoc v1.2}irclude”, which means that an
occurrence should be replaced with the one staaadl, “cite” which states a relation
to another element and is application specific (Bhis tag is of key significance
when determining the logical interconnection amo@iDoc documents and will be
focused on when dealing with finding dependencieshe project applet.
2.4. SWiM
SWiM is a semantic wiki for mathematical knowledgenagement. It is located

at http://swim.kwarc.info/and uses a collection OMDoc's in its internal dzaae (4).

As a wiki, users can add and modify existing docurteethrough its interface. It is
developed in JSP to provide the rich functionality. also allows mathematical
representation of OMDoc documents via XSLT (Extdiisi Stylesheet Language

Transformations). This is an XML format that speed how to transform XML

documents into other XML documents or even othexttdocuments in general.
Although modern browsers allow XSLT transformatiombeir support is not perfect,
and you rarely get identical results on all commbrowsers (5). Thus, SWiM does
these transformations on the server. Another feataf the wiki is that it provides
the context applet lke Wiki that shows the dependes of different documents
among each other. It uses Flash for graphics, aetd ghe needed dependencies in an
XML format processed by a JSP page.
2.5. Adobe Flash

Adobe Flash (previously Macromedia Flash) is a coemanal software product
that is used to create dynamic and interactive ee@nimations. You can produce
SWEF files which are relatively small in size dueitdernal compression and ready to
be integrated in a web page due to the freely amd, small in size and now
available for many platforms Flash Player. InitiallFlash was more aimed at
designers as it provided very limited scripting amény animation tools. However, it
quickly became very popular due to a lack of compeh on interactive vector
animations for web pages. Developers were intereste a more feature rich
scripting language, so after two revisions, Actienpt 3.0 is now available.
Moreover, Adobe Flex SDK 2.0 allows to fully crea®VF files from a command line
compiler. Adobe still manages its commercial gragshilDE and doing complex
animations is very hard to do only from source cpHdat for less graphical applets
the Flex compiler is more convenient than the IDBrh a developer's point of view.
It even has the Flex component library which congn library for GUl components.
This compiler is developed in Java and is thereftrieely available to for download

to many platforms. Still, Flash has some disadvgetaas an applet is very easy to

download and decompile directly into ActionScrippde and graphics. Thus, big
commercial products won't exist in Flash due toiitsecurity. Also, the performance
is slow due to the needed decompression of the atpptiomputation of vector
graphics, and execution of the script via a virtmahchine. However, Flash is yet to
find a competition for making free, small and nod mtensive graphically applets,

due to the ease of creation and wide browser amsdesy support.

3. Contextual Modeling
One of the most important parts of the applet thvais to be implemented was
the representation of the documents and the depeaciéde graphically. Intuitively, it
can be done by the most common method of illustrgta graph — nodes would be
documents and would be 2D geometrical shapes likdes and dependencies would
be arrows pointing from node to node. Another apgole thought of initially was to
use the common Tree View control representationttwauld have documents that a

node depends on as children and could be expangedidking on the “+” symbol.

A +A
- sc 2

Figure 1: Graph Representation Ideas

However, it is clear from Figure 1, that if severaddes depend on a common other

node, like in the example case where both “B” ar@ depend on “D”, the graph is

more suitable since the Tree View would contain ‘@ice. As Flash is a web based
technology that is suitable for such simple intetgrh graphics, it was chosen for the
development of the applet.

The lke Wiki that is hosted on SWIM makes a similagpresentation of
dependencies. However, it is not suitable for kewptrack of several nodes that are
to be aggregated, because visually it spreads adles in order to optimize the space
provided. For a better logical representation, aetrlike graphic would be more
suitable — the root is the main document, and as ygo down you Vvisit it's
dependencies. That way, when you are given the aptio include a node in the
aggregated document, all the options would be lsavkthis tree. Once, you choose
a leaf, it goes up one level, and its children @ispendencies) are now leaves and are
available for optional inclusion. Unfortunately, &gure 1. showed, the dependency

graph might not be a tree, so a compromise betwéra two ideas should be

o E
-
A

Figure 2: Representation Graph Structure of Aggresdh
Documents

reached.

®-0-6-0

A somewhat greedy approach of representing the Qrewpuld seem good in most
cases. It goes as follows — the root is the lowestle, and and as you go up, you
traverse the dependence tree depth-first. Thus, getuthe level at which each node
is. For example, in Figure 2, the left case shows ds root at level 1, “B” and “C” -
its direct dependencies at level 2, etc. Once, hawve distributed the nodes equally
vertically according to level, you equally distritmthem equally horizontally — the
more nodes at a certain level, the more crowdedséh@odes are. As the right
example of Figure 2 shows, such a greedy distribntmight not be very optimal in
cases where each node has only one dependencythenthorizontal space is made
minimal use of. However, the logical leveling of d®s similar to a tree
representation is kept, keeping the conveniencelhofosing nodes to aggregate from
the leaves of the tree only (which would be situhit the last level). So initially one
would start only with the root and its dependencess leaves and as one chooses
one of the leaves their dependencies are now takthgir place. Possible
overcrowding both horizontally and vertically aregsible, but as Flash has direct
zoom in/out option, at any time, all nodes wouldrneadable by using it.

Another advantage of choosing Flash for developmemthe applet is the ease
of the integration of 1I/O functions from code. Inppthandlers can be directly
associated with any graphical object, so selectangode via the mouse is almost a
trivial task to implement. The idea is that the useould be able to also remove
nodes from an expanded tree (if he added them kyidant). At first glance, two
types of input would be needed for addition and oa:m of nodes. This would be
some inconvenience if all input would be based & tmouse as the right click is

reserved for the Flash built-in menu, and not alcemnhave more than two buttons.

However, if one can add nodes that are only leawethe graph, so it is logical that if
the remove is like an undo operation, one can reenowvdes that are not leaves.
Thus, you only need to left click, and whether yowould select or remove a certain
node depends on the position of the node. To avbe mistake of removing a large
amount of nodes just by one click to a node near tbot, a restriction can be made
to be able to click only on leaves (for additioa))d nodes one level before the leaves
(for removing). To help identify the leaves, thel@oof the last level nodes will be of

different from the rest.

-~ -
Left Click On "B” A

Figure 3: Selecting Nodes

Figure 3 illustrates this idea. On the left, “A” t® be included in the aggregated
document whereas “B” is a leaf, so it is not, batncbe chosen if left-clicked. If it is
chosen, the user gets to the right diagram, whe&'eand “D” are the dependencies
of “B”, which are not included as they are leav@$ie red background distinguishes
the nodes which can be included. If the user desile made a mistake by including
“B”, he can click it again to remove it and get lkato the left side of Figure 3.

After the user is done selecting the nodes, he thaen choose to aggregate

them. To keep the input only mouse based for comweoe, a clickable button
“Aggregate” would be added. Another addition wik the ability to view the clicked
document, as SWiM can XSLT transform an OMDoc toMLT The applet can be in a
window with two frames. The left frame would conmaihe applet, whereas the right
frame will contain the translated document that wast selected. Also, as there are
different types of dependencies, the user will ngecknow which dependency is of
which type, so rectangular labels will be addedcdtly, to avoid “jumpy” animation,
there will be a short motion tween each time thesea change in the state of the

graph. Summing it all up, the final decided inteséas look is the following:

Aggregate

«

explained example Content of document B. This
is the XSLT transformed

A OMDoc2HTML content of

@ document B ...

Figure 4: Final Interface Design

B

The “Aggregate Button” action will linearly combinall of the nodes in the tree,
starting from the last level. The idea is to firsiclude the non-dependent nodes,
and gradually all of the others to reach the roodnm at the end. Thus, if the user is
to read the document from beginning to end, he walhch the root node only after
he has read all of its dependencies (and the depraig@s of their dependencies, etc.)

The server will then XSLT transform this aggregaté&MDoc to TeX, which is a

markup language which can easily be translated D&.FAfter that, the user gets the
result — one PDF document, containing all the degpemcies needed to be familiar
with the root document, including the root, readyle printed and read.
4. Implementation

The implementation of the approach requires codingActionScript 3.0 and JSP.
Following the structure of SWiM, an additional tab added, which opens a two-
frame window, which will contain the applet on theft and the XSLT-ed document
on the right. Due to the internal workings of SWiNhe applet cannot directly access
the OMDoc sources, so the dependencies of the nthd@lsto be passed to the applet
via a JSP XML request. Finding all the dependenm@&ge a node is given is a trivial
Depth First Search (DFS) via keeping track of abblgavisited nodes (7). In short, the
algorithm is a recursive function with a global lhamap indicating whether a node
(represented as its URI string) was already visited not. If it was visited, the
function returns. If it wasn't, it is appended tlmet XML response string just like all
its dependencies. Next, the function is called oacle of its dependent nodes.
Another graph algorithm will be used when aggreggtihe documents into a single
OMDoc — Breadth First Search (BFS) (7). This alghnt traverses the visited nodes
level by level, and we want to include the nodesléyels in decreasing order in the
aggregated document. Thus, we include them in reeetraversal of the BFS and
send the URI sequence as an XML message to a JSrspage to get the aggregated
document. The same technique of XML communicatiostween JSP and Flash is
used in the Ike Wiki. As both Java and ActionScri0 have internal handling of XML
via libraries, sending and receiving messages athbends is not difficult to

implement. Not going into detail, the communicatios just two messages: one

contains all nodes and their dependencies and guested by Flash from JSP on
creation of the applet. The other message is frdaslr to JSP, sending the sequence
of OMDoc URI's to be combined. The OMDoc-to-HTML doment will be generated
by modifying the already existent JSP page confeptto allow not only current but
also custom context OMDoc to be displayed, and fdre OMDoc-to-PDF
transformation, a new JSP page will be added.

The majority of implementation is required for tla@plet. In order to aid its

development, several Unified Modeling Language (Jdiagrams have been created.

Choose Document

Select/Deselect
Needed Dependencies

User \
Get Aggregated PDF File

Figure 5: Applet Use Case Diagram

This represents the use case diagram and is segitamatory. What follows is the

more complicated class diagram:

AppletMain Node

+parents: Dictionary<Node>

+rootURL: strin
s L___. +dependencies: Dictionary<Node,string>

+root: Node e
-XmLBFS (node:Node): void 1 +expanded: boo
+SetRoot(): void ! +url: String

+GetPDF(): void +state:I1nt .
+Draw(): void +stateTime: int

) +X: Number
- +Y: Number
v +Node(url:String)
+Update(): bool
<<static>> +Expand(): bool
PDFConverter +Remove(): void

+0mdoc2PDF (aggregatedOmDoc:string): void
Figure 6: Applet Class Diagram

The PDFConverter is a static class that has onlg orethod that takes the XML
aggregated message to be sent to the JSP, whichbiained from AppletMain's
XmIBFS function, called when the “Aggregate” buttos pressed and GetPDF is
called. The graph is represented by a collectionNofde objects. Its properties X, Y
show their graphical coordinates in the applet, ahd state and stateTime variables
are needed to keep track of the transition statethed graph. Last, but not least,

there's a UML sequence diagram:

AppletMain nodes:Node | PDFConverter

]
|
User |
> |
<<create>> = |
s |
o |
S‘F;t_Roet(’rootURL) o newNode(rootURL) > BI
———— - - - — - - - - For each dependent node

e root p

Called once the JSP .- !

response is received. o '

TOOL.EXPandNOde() Teb - cemcmmm e e eee e ee e -

H GetDependencies() H

newNode(dependant_N)

' '
' '

Sequence of user actions ' - '

until he has included ' '
' '
L

all needed dependencies.

Depending on whether

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

o i [P S H current node is H
‘s; H B I U DI I unexpanded or expanded. '
' f - .’ For the expanding of an '
H H focused.UnexpandNode() H unexpanded node procedure V
' |- =-=-=-=-=-==-=-4 ' see sequence above. '
: H O : :
|| -----—---=--= H
Lickeccccccccenecnencncncnnendedeccccccccncncnenennchaiccccccccccccccccccenenecncnennnnnans !
GetPDF() o
XmIBFS(root) —>
< “aggregatedxML™ ~
| »
OmbDoc2PDF(aggregatedOmDoc) =
- - - — - [~~~ --- 1T T TrestitPbF T T T T T T T T T T
resultPDF |

Figure 7: Applet Séquence Diagram
The sequence diagram traces how a typical appledceton will proceed. The
system ActionScript 3.0 calls are not included. @Wimag of shapes is handled via the
Sprite class and is done each time an EnterFramentus issued. Hierarchical
organization of drawn objects are handled usingpDagObjectContainers, and input
is handled via MouseClick events.
5. Critical Evaluation

Initially, the design of the applet was differerBefore getting to know the

internal workings of SWiM, it was planned that arabsolute URL of an OMDoc

document can be obtained, and the Flash appletcadculate its dependencies on its

own through simple XML tag/attribute checks. Howeyas it turned out, the OMDoc
collection is only internally visible, and the dempeency calculation had to be done
via a SWiM's JSP. Additionally, it was expected thsince most common browsers
support client side XSL transformations the serweyuldn't have to bother with it.

However, the browser's support for that isn't petfeso the server does it. Ideally, it
was thought that the server wouldn't have to do mugust pass the XML link, and

the applet/browser would handle almost everythigus, if in the future SWiM's

internal structure changes to expose the OMDoc sesirand the browsers have
standard and identical support for XSL to HTML tisformation, almost all of the

work can be done client side, so the wiki serverulbget minimal load. This is very

much needed in case the wiki gets a high amountaffic, something that, as one of
its developers, | am hoping for.

Over the process of designing and implementing alp@let, I've learned many
things about the new internet technologies, esdbci@ash and JSP. Flash and JSP
can seamlessly work together using XML messagesoAboth are free and multi-
platform. However, during my research | found twechnologies that might be more
suitable for the job in the future— Microsoft's .NRASP and Silverlight. The first is a
substitute for JSP, whereas the second is thoughddme as the next Flash, as it has
the same functionality, but better programming soptpand faster execution. The
surprising thing is that both of these technologiesn be developed in a single
programming language — C#. This is Microsoft's aeswo Java, and claims to be a
better version of Sun's language. Thus, nothing dae sure except the web

technologies are to undergo the biggest developmemthe near future.

6. Future Work

As the aggregation applet is done, the PDF conwarstill needs development
along with integration with the applet. In the nexéek most probably it will be done
to finalize the implementation part of the projeEtowever, if tweaking is needed for
one reason or another later on, be it user prefeesnor change of the SWiM's
internals, | am willing to modify the applet for ¢hbetter development of the
semantic wiki. Moreover, | am keeping the sourcetht applet open, and anyone
would be able to take a look at it for educatiopalrposes or even modify it, as long
as he gives me the proper credit.

7. Conclusion

Being at the end of a creation of the applet, | amoking forward to the
practical usage of it by the future wiki users. Theplementation process was an
educational journey for me and | am hoping thawill inspire further extending of

its ideas by other developers. For now, the appdestayinghttp://swim.kwarc.info/

and probably will undergo minor changes in the éaling weeks.

As for the future of semantic wikis, it looks brighWikipedia, the worlds
largest wiki is the site that is globally rankedrmimber 7 by amount of traffic it gets
(8). If it had all its mathematical knowledge in semantic format it could only
further benefit. Learning from that site would based a lot. Combining that with an
applet to extract and aggregate dependencies, om@dvbother only with material
he needs in order to understand a given topic, eind it very fast and easy. Thus, a
semantic web would ease assimilating informationotihgh such wikis and applets to
a great extent. Therefore, | am expecting the tcafd SWiM to increase significantly,

once it has enough content.

8. References:

(1) Refsnes Data (2008XML DOM — Node ObjectRetrieved 9 May 2008 from
http://www.w3schools.com/dom/dom_node.asp

(2) Wikipedia (2008)XML. Retrieved 9 May 2008 from
http://en.wikipedia.org/w/index.php?title=XML&oldirl210753931

(3) Michael KohlhaseOMDoc — An open markup
format for mathematical document®ersion 1.2]. Number 4180 in
LNAI. Springer Verlag, 2006

(4) Christoph LangeSWIM A Semantic Wiki for Mathematical Knowledge
ManagementTechnical Report. Jacobs University.
http://kwarc.info/projects/swim/pubs/tr-swim.p@007

(5) Wikipedia (2008)XSL TransformationsRetrieved 9 May 2008 from
http://en.wikipedia.org/w/index.php?
title=XSL Transformations&oldid=208205834

(6) Wikipedia (2008)Adobe Flash Retrieved 9 May 2008 from
http://en.wikipedia.org/w/index.php?
title=Adobe Flash&oldid=211278344

(7) Preslav NakovProgramirane=++Algoritmi; 3" Edition.
ISBN 954-8905-06-X. Sofia 2005

(8) Alexa Internet (2008)Global Top 500 Retrieved 9 May 2008 from
http://www.alexa.com/site/ds/top sites?ts mode=@l&bang=none

