
Impact Analysis and Change Management of UML Models

L. C. Briand, Y. Labiche, L. O’Sullivan
Software Quality Engineering Laboratory

Systems and Computer Engineering Department
Carleton University, Ottawa, Ontario, Canada

ABSTRACT

The use of Unified Model Language (UML) analysis/design models on large projects

leads to a large number of interdependent UML diagrams. As software systems evolve,

those diagrams undergo changes to, for instance, correct errors or address changes in the

requirements. Those changes can in turn lead to subsequent changes to other elements in

the UML diagrams. Impact analysis is then defined as the process of identifying the

potential consequences (side-effects) of a change, and estimating what needs to be

modified to accomplish a change. In this article, we propose a UML model-based

approach to impact analysis that can be applied before any implementation of the

changes, thus allowing an early decision-making and change planning process. We first

verify that the UML diagrams are consistent (consistency check). Then changes between

two different versions of a UML model are identified according to a change taxonomy,

and model elements that are directly or indirectly impacted by those changes (i.e., may

undergo changes) are determined using formally defined impact analysis rules (written

with Object Constraint Language). A measure of distance between a changed element

and potentially impacted elements is also proposed to prioritize the results of impact

analysis according to their likelihood of occurrence. We also present a prototype tool that

provides automated support for our impact analysis strategy, that we then apply on a case

study to validate both the implementation and methodology.

1

TABLE OF CONTENTS
Abstract .. 1
TABLE OF CONTENTS.. 2
1. Introduction.. 3
2. Related Works.. 5
3. Problem definition and objectives ... 6
4. Overview of the Approach... 7
5. Tool architecture and Overview... 9
6. Model changes ... 11
7. Impact Analysis rules... 15
8. Distance Measure... 18
9. Case study .. 19
10. Conclusions.. 21
Acknowledgements... 22
References .. 23
Appendix A System Model .. 24
Appendix B Change Detection... 41

B.1 Change Taxonomy.. 41
B.2 Change Detection Rules.. 51

Appendix C Consistency Verification.. 69
Appendix D Impact Analysis (Side Effect) Rules.. 75
Appendix E Case Study ... 110

E.1 Logical Changes.. 110
E.2 Change Distribution .. 113
E.3 Impacts Vs Distance Graphs... 113
E.4 UML Model (Original) ... 115

2

1. INTRODUCTION

The use of UML (Unified Model Language) analysis/design models [7] on large projects

leads to a large number of inter-dependent UML diagrams1. Those diagrams undergo

changes as the software systems are evolving. Such changes to a diagram may lead to

subsequent changes to other elements of the same diagram or in other related diagrams.

In this context, several issues require attention. The (potential) side effects of a change to

the unchanged diagrams should be automatically identified to help (1) keep those

diagrams up-to-date and consistent and (2) assess the potential impact of changes in the

system. This can in turn help predict the cost and complexity of changes and help decide

whether to implement them in a new release [2].

In the context of large software development teams, the above problems are even more

acute as diagrams may undergo changes in a concurrent manner and different people may

be involved in those changes. Support is therefore required to help a team assess the

complexity of changes, identify their side effects, and communicate that information to

each of the affected team members. In order to address the above issues, the work

presented here focuses on impact analysis of UML analysis or design models. Impact

analysis is defined as the process of identifying the potential consequences (side-effects)

of a change, and estimating what needs to be modified to accomplish a change [2].

Most of the research on impact analysis is based on the program code (implementation).

However, in the context of UML-based development, it becomes clear that the

complexity of changing Analysis and Design models is also very high. Therefore, we

seek to provide automated support to identify changes made to UML model elements and

the impact of these changes on other model elements.

While code-based impact analysis methods have the advantage of identifying impacts in

the final product – the code, they require the implementation of these changes (or a very

precise implementation plan) before the impact analysis can be performed. However, a

UML model-based approach to impact analysis looks at impacts to the system before the

1 That may also contain OCL [13] constraints, e.g., contracts, guard conditions.

3

implementation of such changes. Then a proper decision can be made earlierbefore any

change detailed implementation is consideredon whether to implement a particular (set

of) change(s) based on what design elements are likely to get impacted and thus on the

likely change cost. Earlier decision-making and change planning is clearly important in

the context of rigorous change management. On the other hand, since UML models

describe the system at a higher level of abstraction than the code, model-based

approaches may provide less precise results than code-based ones. For example, it may

be possible that new, unexpected impacts show up at implementation time. This is an

issue that requires further investigation but that will not be addressed in this report.

Another assumption made by any model-based impact analysis method is that the model

is consistent with the code and up-to-date. This is often an issue in many software

development organizations. However, the functionality to manage traceability and

consistency between design models and code is now available in many UML CASE

tools. For example, Together®, by TogetherSoft™ [11], updates the class diagram when

changes are made to the code and checks some consistency aspects of the updated class

diagram with other UML diagrams in the design model.

Our work contributes in several complementary ways to providing support for the impact

analysis of UML models:

It defines a methodological framework. −

−

−

−

It provides a set of change detection and impact analysis (side effect) rules, that

were derived by systematically analyzing components of UML models (including

constraints in the Object Constraint Language [13]) and analyzing changes in

actual case studies.

A prototype tool implements the above principles using a carefully thought-out

architecture and an extensible design.

Case studies have been performed to assess the feasibility and practical

challenges of our approach.

4

This report describes the methodological framework and the fundamental principles

underlying the change detection and impact analysis rules, presents our tool’s architecture

at a high level, and reports on a case study. Section 2 discusses related works. Section 3

provides a precise description of the problems we addressed and the objectives of our

research. An overview of the approach, along with some justifications, is given in Section

4. The next Sections, up to Section 9, which presents a case study, then details each of the

most important aspects of the approach and provides examples. Section 10 outlines our

main conclusions and future work.

2. RELATED WORKS

Bohner [1] examines the general issues involved in change impact analysis, and provides

structured guidelines to help find solutions to such issues. For instance, if one considers

both direct and indirect (transitive closure) impacts, the results of the impact analysis

shows an enormous number of impacts, thus (possibly) over-estimating the impact. This

advocates tool support, as well as the use of semantic (related to the impacts) and

structural (e.g., distance between a change and an impact) constraints to structure analysis

results.

A large portion of the change impact analysis strategies require source code analysis (see

for instance the strategies reported in [3]), where as a few of them are model-based. Kung

et al. [9] describes how change impact analysis can be performed from a class diagram,

introducing the notion of class firewall (i.e., classes that may be impacted by a change in

a given class), and discuss the impact of object-oriented characteristics (e.g.,

encapsulation, inheritance, polymorphism, dynamic binding) on such an analysis. In [12],

the authors use a functional model (referred to as "domain model") of the system under

consideration to generate test cases, and build a mapping between changes to the domain

model and the impact it has on test cases, to classify them. Another method for regression

test selection, based on UML models (class and sequence diagrams), is presented in [5].

In this method, a rough impact analysis is performed with the sole purpose of classifying

the regression test cases as obsolete, retestable, or reusable. The current work is a

significant extension and performs impact analysis at a much more refined level so that it

5

can be applied to a variety of problems, including change effort estimates and support to

identify ripple effects.

3. PROBLEM DEFINITION AND OBJECTIVES

The support of impact analysis of UML design models can be decomposed into several

sub-problems:

1. Automatically detect and classify changes across different versions of UML

models. Ideally, one modifies a UML model and then uses the impact analysis

tool to automatically identify all the changes performed since the last version. We

do not want software engineers to have to specify each and every change as we

want to avoid the overhead that would prevent the practice of impact analysis. As

seen below, changes have to be classified to be able to perform a precise impact

analysis.

2. Verify the consistency of changed diagrams. The modified model must be self-

consistent for any impact analysis algorithm to provide correct results. Since

consistency in complex UML models is not always easy to achieve, verifying

consistency must be supported by tools. Note that this is different from impact

analysis as it does not focus on finding (potentially) impacted elements (i.e.,

whose implementation may require change) but structural inconsistencies between

UML diagrams, e.g., a class instance (classifier role2) in a sequence diagram

whose class is not in the class diagram.

3. Perform an impact analysis to determine the potential side effects of changes in

the design. In most cases, for reasons described below, side effects cannot be

identified with certainty as there is no way to ascertain whether a change is really

necessary based on the UML analysis or design only. As a result, an impacted

element is a UML model element whose properties or implementation may

require modification as a result of changing another model element (i.e., one of its

2 In the UML standard terminology, a classifier role identifies an object in a sequence diagram, and the
base class of the classifier role is the class of this object (the term base does not relate to inheritance).

6

properties may change)3. To clarify the terminology we employ, changes to UML

diagrams are the result of logical changes corresponding to error corrections,

design improvements, or requirement changes. We refer to changes to model

elements when a property of an element has changed from one version of a

diagram to another, e.g., the visibility of an operation. A logical change usually

results in a set of changes to model elements. Impact analysis can be performed

for each logical change independently or for an entire, new UML model.

4. Prioritize the results of impact analysis according to the likelihood of occurrence

of predicted impacted elements. In object-oriented designs, when considering all

direct and indirect dependencies among model elements, impact analysis often

results in a large number of (potentially) impacted model elements, thus making

their verification impractical. Addressing this issue requires a way to order side

effects according to criteria that can be easily evaluated and which are good

indicators of the probability of a side effect, for a given change. For example,

Briand et al. [6] have explored the use of coupling measures and predictive

statistical model for that purpose.

4. OVERVIEW OF THE APPROACH

In this section, we do not present all the details of our change impact analysis strategy.

Further details are presented in the next sections. Rather we concentrate on the important

notions, providing excerpts for all the four steps that are involved in the strategy:

consistency checking, change impact analysis, prioritization of impacts.

As mentioned above, the identification of model inconsistencies is important to ensure

that the impact analysis algorithms we use yield correct results. Inconsistencies may be

automatically modeled and detected by a set of consistency rules. Each rule corresponds

to one type of inconsistency and must be implemented in any tool supporting impact

3 Even when no model property changes, the model element implementation may require change.

7

analysis on UML diagrams. We have identified 120 consistency rules4. For example, one

simple rule we use can be described informally5 as:

Each operation that is invoked in a sequence message must be defined in

the class diagram, in the specific class of the target object of the message.

Each model element in a UML design is defined by a set of properties, e.g., a class has

attributes. Thus, the identification of a change to a model element requires checking if

any of its properties has changed. Each model element change is classified according to a

change taxonomy in order to associate impact analysis rules with each type of change.

The change taxonomy reflects changes to class diagrams, sequence diagrams, and

statecharts. More details are provided, for some examples, in Section 6, and the complete

change taxonomy contains 97 change categories4 (leaf nodes).

Once we have verified that the diagrams of a UML design model are consistent, and

model element changes have been detected, the next step is to automatically perform

impact analysis using impact analysis rules, that is, rules that determine what model

elements could be directly or indirectly (through transitive closure) impacted by each

model element change (Section 7). As rules tend to depend on the type of change for

which we perform impact analysis, we define one such rule for each change category in

the change taxonomy, thus resulting in 97 rules4.

In order for impact analysis to be useful and practical, we need to find ways to indicate

what model elements should be checked first as they, and their code counterpart, are

more likely to require change. To do so, we define measures of distance between the

changed elements and potentially impacted elements (Section 8) where the assumption is

that the larger the distance, the less likely is the model element to be impacted.

Figure 1 is a conceptual model (using a class diagram) that provides a useful overview of

all the concepts presented above.

4 Though we made a conscious effort to be as exhaustive as possible, this number may change as we gain
more experience, especially by applying our change impact analysis strategy to different case studies.
5 It can also be expressed using OCL on the meta-model

8

Figure 1 – Conceptual Model

5. TOOL ARCHITECTURE AND OVERVIEW

Our impact analysis tool (iACMTool) reads two versions of a UML model (composed of

a number of diagrams and associated OCL constraints) and produces an impact analysis

report as well as a consistency verification report. After each version of the model is read,

its consistency is first verified. When both versions have been read and checked for

internal consistency, change detection is done to identify all the changes between the two

versions of the model, and classify them according to the taxonomy we defined

(Section 6). These changes are then used to perform impact analysis on the model using

the impact analysis rules relevant to each change type.

There are seven main packages in the system, namely: parser, model, modelChanges,

consistencyVerification, impactAnalysis, reportGeneration, and control. The

subsystem decomposition is shown in Figure 2 with packages and dependencies among

them. More architectural details can be found in Appendix A. In particular, the packages

contain 99 classes, 69 of which are in the model package (the UML meta-model), and the

current implementation consists of 9064 lines of Java source code, excluding comments.

The parser subsystem has two main functions: (1) parsing XMI (XML Metadata

Interchange [8]) files that describe the UML models, (2) parsing OCL expressions

associated with the models. Parsed model information is then stored in the model

subsystem, which also handles persistency. The model subsystem is a UML meta-model

adapted to our requirements (e.g., it has been modified to improve information retrieval

9

efficiency). This meta-model is based on the official UML meta-model [10] and supports

features related to three views of the meta-model: static (class diagram) view, interaction

(sequence diagram) view, and the statechart diagram view. This includes classes,

interfaces, sequence messages, state machines, but also class invariants, state invariants

as well as pre- and post-conditions. It is designed so that it can later be upgraded to

include other features of UML such as use case and activity diagrams. The modified

UML meta-model is presented in Appendix A and an excerpt is presented in Section 7.

The modelChanges subsystem is responsible for change detection by analyzing the two

versions of a UML design model. The main class in this package, ChangeDetector,

implements the change detection rules corresponding to the change taxonomy introduced

previously and further detailed in Section 6. The consistencyVerification subsystem

is responsible for checking consistency in each version of the model, using the set of

rules discussed above. The control subsystem is responsible for the overall control flow

of the application. The impactAnalysis subsystem is responsible for performing the

impact analysis related to a set of model element changes. This subsystem implements

the impact analysis rules discussed above and further detailed in Section 7. The

reportGeneration subsystem is responsible for generating the different types of reports

required by the system, including a consistency verification report, and an impact

analysis report. Different flavors of the reports may be generated to meet the

requirements of the user.

Figure 2 – Impact Analysis Tool Subsystems

10

6. MODEL CHANGES

To derive the change taxonomy, we analyzed each property of each model element (in

the UML meta-model) to determine the possible changes that can occur. An element

property is modeled as an attribute or an aggregation link to another element. In the latter

case, linked elements are termed impact related elements since a change to one of these

component elements affects the composite element to which it belongs. For example, if

an attribute is changed then the class to which it belongs is considered impacted. A

changed element property is defined as a changed attribute of the element, or an added or

deleted link to an impact related element in the meta-model. For example, using an

excerpt of the meta-model in Figure 3, we see that an association end has several

properties, some modeled as a link to model elements (qualifier modeled as a link to zero

or several attributes) and others as attributes (e.g., isNavigable to model whether an

association end is navigable).

Figure 3 – Example of impact related element from the meta-model

Some element properties uniquely identify the element among the set of all elements

instantiating a meta-model class. These properties are not included in the change

taxonomy but the element is considered deleted and a new element added if a change to

such a property occurs. For example, a class is uniquely identified by its name within its

package’s namespace, and thus a changed class name is regarded as the deletion of the

original class and the addition of a new class. Using such key attributes is the way any

impact analysis system can keep track of the identity of model elements across design

versions.

We provide below a set of definitions regarding the basic terminology and concepts used

throughout the report.

11

Definition 1: Model element changes

Let e ∈ E, where E is the set of all model elements (i.e., meta-model

instances) in the UML design model. Let P be the set of all the properties

of e. Let PU ⊂ P be the set of properties that uniquely identify e. If any one

p ∈ (P – PU) is changed, then e is changed.

Definition 2: Impact related elements

Given two different model elements e1 and e2 (e1 ∈ E and e2 ∈ E such that

e1 ≠ e2), e2 is said to be an impact related element of e1 if when e2 is

changed then e1 is considered changed.

Using definitions above, a change taxonomy is provided in Appendix B. The UML class

diagram notation is used to describe the taxonomy, as illustrated in Figure 5. Each non-

terminal node in the taxonomy represents an abstract change category of a model

element. The leaf nodes correspond to one changed element property.

For example, let us look at a simple change example: Adding a message in a sequence

diagram. We provide in Figure 4 a description of the change. Each change category has

an acronym, a short textual description, and an OCL expression that shows how, based on

the model subsystem class diagram (which is instantiated by the parser subsystem),

such changes can be automatically detected. In our example, the OCL expression returns

a collection of added messages in a given Sequence Diagram View (we always assume

the context of the OCL expression is the modified view). Such OCL expressions are

logical specifications that ensure our meta-model (in model), and the modelChange class

diagram, are appropriate to implement a workable change retrieval algorithm.

Figure 6 shows an excerpt of the model subsystem class diagram (with a link to the

Change class in modelChange) that is navigated by the OCL expression of our example in

Figure 4. Since the OCL expression does produce the added messages we wish to obtain

and is consistent with the class diagram, we know that the meta-model is sufficient for

this particular change detection rule.

12

Figure 5 shows an excerpt of the change taxonomy where our example change type

(added message) is located. We see it is in the changed Sequence Diagram View, which

may itself be composed (note the composition) of added messages but also added

classifier roles, changed message actions, among others. Changed Classifier Role and

Changed Message Action are further decomposed into subcategories that are not shown

here and are available in Appendix B. The taxonomy has been designed so that we could

define precise impact analysis rules for every leaf change category.

Changed Sequence Diagram View – Added Message
Change Code: CSDVAM

Description: In the modified model version there exists a message that does not exist in the original
version.

OCL Expression:
context model::behaviouralElements::collaborations::SequenceDiagramView
self.message->select(

exists(
mNew:Message | not self.model.application.originalModel.
sequenceDiagramView.message->exists(

mOld:Message | mNew.getIDStr() = mOld.getIDStr()
)

)
)

Figure 4 – Example Change Type

13

Changed Model

Changed Class Diagram View

Changed Sequence Diagram View

Added Classifier Role

Changed Classifier Role

Deleted Classifier Role

Added Message

Changed Message Action

Deleted Message

Changed Statechart Diagram View

Figure 5 – Excerpt of Change Taxonomy

Figure 6 – Excerpt from the iACMTool Class diagram

14

7. IMPACT ANALYSIS RULES

Each impact analysis rule is a specification (using OCL) of how to derive several

collections (i.e., OCL bags6) of elements, corresponding to elements of different types

(e.g., classes, operations), that are potentially impacted by a particular change (e.g., added

message). A model element is considered impacted by a change if a modification to that

element or its implementation may be needed to accomplish a change (this cannot always

be decided with certainty). There is one impact analysis rule for each type of change in

the taxonomy.

Definition 3: Bag of impacted elements

Let E and E’ be the set of all model elements in the original and modified

model version, respectively. Then I is the bag of impacted elements (in the

modified model version) resulting from that change such that ∀i ∈ I, ∃

e∈E∩E’ such that e ≠ i and there is a navigation path from e to i in the

object diagram corresponding to the modified model version.

Though this is rare, note that the bag of impacted elements I may be empty, i.e., it is

certain that no resulting changes are necessary to accomplish the change that caused the

impact. The resulting changes to be made to an impacted model element must be of a

type defined in the change taxonomy for the impacted element type.

Impact analysis rules are described in a structured and precise manner so that it is easy to

review, refine, and change them, for example as the UML standard is evolving. A sample

impact analysis rule is presented in Figure 7 by elaborating on our change detection rule

example above (adding a message to a sequence diagram). The change title is presented

first, followed by the corresponding change code (CSDVAM7), after which the pathname of

the changed/added/deleted model element class is presented, followed by the property

that has changed. In this case an instance of SequenceDiagramView (located inside the

model subsystem) has been changed and one of its property has been changed: an

6 A collection with possibly several occurrences of an element [13]. Bags are derived because it is possible
that an element is impacted in several ways by a particular change.
7 See example of change detection rule in Figure 4.

15

instance of Message has been added and linked to it. After the property is listed, the

pathname of the impacted element class(es) is stated (ClassClassifier, Operation, and

Postcondition in this case). A brief discussion follows that states the elements

impacted, and under what conditions. The rationale for the change then states the reasons

for the impacts. The changes potentially resulting from the impacts are then described

and they translate into additional impact analysis rules being invoked. This is the way the

transitive closure of impacts is explicitly modeled here: some rules invoke others as

direct impacts lead to indirect ones [1]. These descriptions are followed by the OCL

expression(s) describing the formal derivation of the impacted elements based on our

meta-model (for the rule example in Figure 7, see meta-model excerpt in Figure 6). The

first expression in our example (each expression being expressed in a context) uses the

let operator to define two placeholders (variables) for navigation expressions capturing

the added message and the sending operation in the class diagram, respectively. The

added message is identified as the message having the IDStr (string uniquely identifying

each model element and returned by the getIDStr() operation) corresponding to the

changed property of the view associated with the change (propertyID in Change).

16

Change Title: Changed Sequence Diagram – Added Message
Change Code: CSDVAM
Changed Element: model::behaviouralElements::collaborations::

SequenceDiagramView

Added Property: model::behaviouralElements::collaborations::Message

Impacted Elements: model::foundation::core::ClassClassifier
model::foundation::core::Operation
model::foundation::core::Postcondition

Description: The base class of the classifier role that sends the added message is impacted. The operation
that sends the added message is impacted and its postcondition is also impacted.

Rationale: The sending/source class now sends a new message and one of its operations, actually
sending the added message, is impacted. This operation is known or not, depending on whether the
message triggering the added message corresponds to an invoked operation. If, for example, it is a
signal then we may not know the operation, just by looking at the sequence diagram. The impacted
postcondition may now not represent the effect (what is true on completion) of its operation.

Resulting Changes: The implementation of the base class may have to be modified. The method of the
impacted operation may have to be modified. The impacted postcondition should be checked to
ensure that it is still valid.

Invoked Rule: Changed Class Operation – Changed Postcondition (CCOCPst)
OCL Expressions:
context modelChanges::Change def:

let addedMessage:Message = self.changedElement.oclAsType(SequenceDiagramView).
Message->select(m:Message | m.getIDStr()=self.propertyID)

let sendingOperation:Operation = (
if addedMessage.activator.action.oclIsTypeOf(CallAction) then

addedMessage.sender.base.operation->select(o:Operation |
o.equals(addedMessage.activator.callAction.operation))

else
null

endif)

context modelChanges::Change – class

addedMessage.sender.base

context modelChanges::Change – operation

sendingOperation

context modelChanges::Change – postcondition

sendingOperation.postcondition

Figure 7 – Impact Analysis Rule Example

In our example, the changed property is an added message in the SequenceDiagramView.

Then, the operation that possibly sends the added message is identified. Note that the

navigation expression first identifies the base class of the classifier role2 that sends the

added messages, as we want to identify the operation as described in the class diagram,

and not the operation as it is used in the sequence diagram8. This identification involves

selecting (the select operator) the method declaration in the class that corresponds to the

8 In this case, the navigation is simply: addedMessage.activator.callAction.operation. As in the
official UML meta-model, operation invocations and declarations are modeled by the same Operation
class.

17

invoked method in the sequence diagram, and is realized by the equals() operation in

the OCL expression. This operation’s complexity stems from overloaded methods, as

described in [4, 5], since UML sequence diagrams do not show parameter (and return)

types. Once the added message and the sending operation have been identified, the

propagation of the impact, to the sending class, the sending operation, and the

postcondition of the sending operation, is described in three OCL expressions, each of

them starting with the context keyword. Though they only return one element each in

this example, those expressions return bags in the general case.

8. DISTANCE MEASURE

When impacts between model elements are indirect, following the general guidelines in

[1], we suggest using a distance measure between the changed model elements and the

impacted elements. In [1], it is stated that a common assumption9 is that “If direct

impacts have a high potential for being true, then those farther away will be less likely.”

Even with a carefully designed set of impact analysis rules and change taxonomies, the

number of impacts may be very large. Using a distance measure to filter/order impacts is

therefore often necessary in practice. The main related question then becomes how to

define such a distance measure.

Recall that impact analysis rules determine impacted elements and then, in some cases, a

number of impact analysis rules are invoked again on some of the directly impacted

elements. We define the distance between a changed element and a given impacted

element to be the number of impact analysis rules that had to be invoked to identify this

impacted element. If we use Figure 8 as an example, we can see that the sets of impacted

elements can be represented as the nodes of a tree whose arcs are impact analysis

invocation rules. We reuse here the rule example in Figure 7 when a message is added to

a sequence diagram. This rule triggers, for the impacted postcondition (p1), the changed

postcondition rule (CCOCPst), thus leading to the identification of other impacted

postconditions and operations. Only the first two depth levels of the tree are shown. The

level in the tree of a given impacted element is the distance associated with this element,

9 This fundamental assumption seems reasonable, but empirical investigations are warranted to validate it.

18

e.g., distance(p2) = 2. Such a distance measure could then be used to either sort impacts

according to their distance from a given changed element or even to exclude impacted

elements further than a certain distance set by the tool’s user. If a model element is

impacted several times, then the minimum distance can be used (i.e., the strongest

impact).

{s1}

{c1} {o1} {p1}

{p2, p3, …, pn} {o2, o3, …, on}

Level 1

Level 2

CSDVAM
(Added message)

CCOCPst
(Changed postcondition)

… … …

Nodes: model elements
Edges: invocation of rules
si∈S, where S is the set of sequence

diagram views
cj∈C, where C is the set of class classifiers
ok∈O, where O is the set of operations
pl∈P, where P is the set of postconditions

{s1}

{c1} {o1} {p1}

{p2, p3, …, pn} {o2, o3, …, on}

Level 1

Level 2

CSDVAM
(Added message)

CCOCPst
(Changed postcondition)

… … …

Nodes: model elements
Edges: invocation of rules
si∈S, where S is the set of sequence

diagram views
cj∈C, where C is the set of class classifiers
ok∈O, where O is the set of operations
pl∈P, where P is the set of postconditions

Figure 8 – Example distance between a changed element and an impacted element

9. CASE STUDY

We have selected an Automated Teller Machine (ATM) as a case study: The customer

inserts his/her card, enters a PIN and then can performs transactions such as withdrawal

and deposit before a receipt is issued by the ATM at the end of all the transactions. The

first version of UML documents contains a class diagram (19 classes such as ATM, Bank,

Withdrawal) and a use case diagram (15 use cases such as Transaction, Withdrawal,

GetPIN, CardNotReadable) – each use case being associated with a sequence diagram.

Most of the sequence diagrams contain from 3 to 7 messages (e.g., sequence diagrams for

use cases ATMStartUp and ATMShutOff contain 7 and 3 messages respectively), the

sequence diagram for use case Transaction being the most complicated one with 22

messages. 15 attributes and 18 operations appear in the class diagram, and classes are

related by inheritance (4), association (11) and dependency (3) relationships.

We made 10 realistic, logical changes to the original version of the UML diagrams.

These logical changes are of three types: requirements changes (5), design improvements

(2), and error corrections (3). They result in 70 model element changes10 (described in

Appendix E), out of which 54 have shown impacted elements. Let us take a few

examples of logical changes and describe them. One logical change stems from our need

10 The distribution of these changes for the elements in the taxonomy can be found in Appendix E.

19

to be able to keep track of how many times per session a user attempts to enter the PIN –

after 3 invalid PIN’s the card will be retained. This logical change translates into 11

model element changes. Another logical change is to change the ATM state’s

representation from an integer to an enumeration class, and results into 34 model element

changes. Two other logical changes concern changes in the legal states of the system and

translate into new association end multiplicities in the class diagram: (1) An account can

be owned by at most two customers and at least one customer (a multiplicity is changed

from 1..* to 1,2); (2) A customer must belong to a bank and a customer can only belong

to one bank (a multiplicity is changed from 0..* to 1). A last logical change example

(design) consists in making class Account abstract since only its subclasses are

instantiated (e.g., Saving). A complete description of all logical changes can be found in

Appendix E.

Let us consider the impacted operations, when accounting for all changed model

elements taken together, and their distance to the changed model elements. Figure 9 plots,

for each of the 54 model element changes, a curve/point representing the cumulative

number of impacted operations (y-axis) for each distance value (x-axis). A first, clearly

visible result is that only four curves are visible as only four changes propagate impacts

further than a distance of 2. The reason is that the impacted elements at distance one and

two that do not propagate are classes, and the class is not an impact related element of

any other element in a class diagram (see Definition 2). The rationale is that the

propagation of impacts from class to class is already addressed since operations and

attributes are impact related elements of the operations that call/use them.

More importantly, when there is propagation of impacts, Figure 9 clearly shows that the

curves are not exponential, as suggested in [1], but rather linear. This is important as it

suggests that our impact analysis rules rather precise. Also, the maximum distance for

impacted elements is limited to six. Though more case studies are necessary to draw

definitive conclusions, we can state that these results are probably due to our use of

semantic-based impact rules, instead of connectivity graphs (see [1]), that allow a more

refined identification of impacted elements and reduce false-positives.

20

0

5

10

15

20

1 2 3 4 5 6

Distance

C
um

ul
at

iv
e

nu
m

be
r o

f
im

pa
ct

ed
 o

pe
ra

tio
ns

Figure 9 – Cumulative number of impacted operations vs. distance

In the analysis above we perform an overall impact analysis for all logical changes but, if

we were in a situation where we would have to decide on which logical changes to

implement in a next release, we might want to perform the same analysis for each logical

change in isolation to evaluate its individual cost. Also, we only looked at the cumulative

number of operations but the same graph could be plotted for classes or even for all

model elements impacted together. We provide such diagrams in Appendix E and the

results clearly show that the curves are very similar to the one in Figure 9 (though with

significantly different scales on the Y-axis).

10. CONCLUSIONS

We present in this report a methodology supported by a prototype tool (iACMTool) to

tackle the impact analysis and change management of analysis/design documents in the

context of UML-based development. Consistency rules between UML diagrams,

automated change identification and classification between two versions of a UML

model, as well as impact analysis rules have been formally defined by means of OCL

constraints on an adaptation of the UML meta-model.

Our impact analysis methodology and tool are assessed through a case study, thus

providing an initial demonstration of its feasibility and practicality. Results are

encouraging as it is shown that, with impact rules based carefully on UML diagram

21

semantics and assumptions on the way the notation is used, the number of elements

impacted by changes grows linearly (and not exponentially) when accounting for indirect

impacts. This suggests that the impact analysis rules are rather precise, an important

result given that a refined identification of impacted elements and the reduction of false-

positives is known to be a major challenge when automating impact analysis.

We also define a distance measure to be able to sort impacts, according to their likelihood

of occurrence, based on the distance between changed model elements and impacted

elements. Whether this measure is a good heuristic will have to be empirically validated.

Though we made a conscious effort to be as exhaustive as possible when identifying

consistency rules, possible changes to UML models, and impact analysis rules, the

strategy may be refined as we gain more experience, especially by applying our change

impact analysis strategy to additional case studies. All three types of rules have been

defined using OCL on the UML metamodel and we expect that such precise and formal

definitions will help refine and evolve our methodology.

ACKNOWLEDGEMENTS

This work was partly supported by Telcordia Technologies. Lionel Briand and Yvan

Labiche were further supported by NSERC operational grants. This work is part of a

larger project (TOTEM) on testing object-oriented systems with the UML (TOTEM:

www.sce.carleton.ca/Squall/Totem). We would like to thank Karin Buist for her help in

defining and implementing (in the UML diagrams) the logical changes.

22

REFERENCES
[1] S. A. Bohner, “Software Change Impacts - An Evolving Perspective,” Proc. IEEE

International Conference on Software Maintenance, Montreal, Canada, pp. 263-
272, 3-6 October, 2002.

[2] S. A. Bohner and R. S. Arnold, “An Introduction to Software Change Impact
Analysis,” in S. A. Bohner and R. S. Arnold, Eds., Software Change Impact
Analysis, IEEE Computer Society, 1996, pp. 1-25.

[3] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis, IEEE Computer
Society Press, 1996.

[4] L. Briand, Y. Labiche and G. Soccar, “Automating Impact Analysis and Regression
Test Selection Based on UML Designs,” Carleton University, Technical Report
SCE-02-04, http://www.sce.carleton.ca/Squall/Articles/TR_SCE-02-04.pdf, March,
2002, a short version appeared in the proceedings of ICSM 2002.

[5] L. C. Briand, Y. Labiche and G. Soccar, “Automating Impact Analysis and
Regression Test Selection Base on UML Designs,” Proc. IEEE International
Conference on Software Maintenance (ICSM), Montreal (Canada), IEEE Computer
Society, pp. 252-261, October 3-6, 2002.

[6] L. C. Briand, J. Wust and H. Lounis, “Using Coupling Measurement for Impact
Analysis in Object-Oriented Systems,” Proc. IEEE International Conference on
Software Maintenance, Oxford, England, pp. 475-482, September, 1999.

[7] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering - Conquering
Complex and Chalenging Systems, Prentice Hall, 2000.

[8] T. J. Grose, S. A. Brodsky and G. C. Doney, Mastering XMI: Java Programming
with XMI, XML, and UML, John Wiley & Sons, 2002.

[9] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima and C. Chen, “Change Impact
Identification in Object Oriented Software Maintenance,” Proc. IEEE International
Conference on Software Maintenance, IEEE, pp. 202-211, 1994.

[10] OMG, “Unified Modeling Language (UML),” Object Management Group V1.4,
www.omg.org/technology/uml/, 2001.

[11] TogetherSoftTM, “Together”, www.togethersoft.com.
[12] A. Von Mayrhauser and N. Zhang, “Automated Regression Testing using DBT and

Sleuth,” Journal of Software Maintenance, vol. 11 (2), pp. 93-116, 1999.

[13] J. Warmer and A. Kleppe, The Object Constraint Language, Addison-Wesley,
1999.

23

Appendix A System Model
The system models are presented in Figure A1 to Figure A22 below.

«subsystem»
model

«subsystem»
parser

«subsystem»
consistencyVerification

«subsystem»
impactAnalysis

iACMTool

«subsystem»
modelChanges

«subsystem»
control

«subsystem»
reportGeneration

Figure A1: iACMTool – Main packages.

24

ApplicationInterface

ApplicationController

IACMTool

ApplicationControllerState

LoadingOriginalModelStateLoadingModelState

DetectingChangesState AnalyzingImpactState

#application1

-controller1

#application

1

-userInterface

1

1

-currentState

1

control

InitialState

Figure A2: iACMTool::control package.

25

«subsystem»
behaviouralElements

«subsystem»
modelManagement

«subsystem»
foundation

Model
+model

1

+element

*

model

#name : String
#id : String

ModelElement

IACMTool
(from control)

+application1application+

1 +originalModelchangedModel+

1

1

Figure A3: iACMTool::model package.

26

«subsystem»
core

«subsystem»
extensionMechanisms

«subsystem»
dataTypes

foundation

Figure A4: iACMTool::model::foundation package.

27

#ownerScope : ScopeKind
#visibility : VisibilityKind

Feature

NamespaceOwnee

-isAbstract : boolean
-isLeaf : boolean
-isRoot : boolean

GeneralizableElement

-defaultValue : Expression
-direction : ParameterDirectionKind

Parameter

-body : BooleanExpression
ConstraintClassifier

#multiplicity : Multiplicity
#changeability : ChangeableKind
#targetScope : ScopeKind
#ordering : OrderingKind

StructuralFeature

-initialValue : Expression
Attribute

#isQuery : boolean
BehaviouralFeature

-concurrency : CallConcurrencyKind
-isPolymorphic : boolean

Operation

+constrainedElement

* {ordered}

+constraint*

+type1

*

+feature*

+classifier

1 +type

1

* +parameter*
{ordered}

1

+owner1*
ModelElement
(from model)

Figure A5: iACMTool::model::foundation::core – main.

28

OperationContract Precondition Postcondition

-isActive : boolean
-visibility : VisibilityKind
-multiplicity : Multiplicity

ClassClassifier

Interface
-expression : BooleanExpression

Invariant

+classClassifier
1 +invariant
1

+operation1

+precondition 1

DataType

+parameter *

0..2

1
+attribute *

ModelElement
(from model)

+postcondition1

-concurrency : CallConcurrencyKind
-isPolymorphic : boolean

Operation

Classifier

-initialValue : Expression
Attribute

-defaultValue : Expression
-direction : ParameterDirectionKind

Parameter

Figure A6: iACMTool::model::foundation::core – classifiers.

29

-isAbstract : boolean
-isLeaf : boolean
-isRoot : boolean

GeneralizableElement

-isActive : boolean
-visibility : VisibilityKind
-multiplicity : Multiplicity

ClassClassifier

Relationship

-discriminator : String
Generalization

AssociationClassAssociation

Dependency

-aggregation : AggregationKind
-changeability : ChangeableKind
-isNavigable : boolean
-multiplicity : Multiplicity
-ordering : OrderingKind
-targetScope : ScopeKind
-visibility : VisibilityKind

AssociationEnd

Realization

+supplier 1

+clientDependency *

+client1

+supplierDependency*

+generalization

*

+child

1
+specialization

*

+parent

1

+implementationRealization 1..*

+specification
*

+specificationRealization
*+implementation

*

0..1
+association

1

1

+end 2 +participant

1

+associationEnd

*

+interfaceSpecifier

*
+specifiedEnd

*

1

+qualifier *

ModelElement
(from model)

-initialValue : Expression
Attribute

Classifier

Interface

Figure A7: iACMTool::model::foundation::core – relationships.

30

ClassDiagramView

+view1

**** * *

ModelView
(from model)

-isActive : boolean
-visibility : VisibilityKind
-multiplicity : Multiplicity

ClassClassifierAssociation Dependency Generalization Interface Realization

Figure A8: iACMTool::model::foundation::core – class digram view.

-none : int = 0
-aggregate : int = 1
-composite : int = 2

«enumeration»
AggregationKind

-sequential : int = 0
-guarded : int = 1
-concurrent : int = 2

«enumeration»
CallConcurrencyKind

-changeable : int = 0
-frozen : int = 1
-addOnly : int = 2

«enumeration»
ChangeableKind

-unordered : int = 0
-ordered : int = 1

«enumeration»
OrderingKind

-in : int = 0
-out : int = 1
-inout : int = 2
-return : int = 3

«enumeration»
ParameterDirectionKind

-instance : int = 0
-classifier : int = 1

«enumeration»
ScopeKind

-public : int = 0
-protected : int = 1
-package : int = 2
-private : int = 3

«enumeration»
VisibilityKind

-lowerRange : String
-upperRange : String

Multiplicity

-language : String
-body : String

Expression

BooleanExpressionIterationExpressionActionExpression

Figure A9: iACMTool::model::foundation::dataTypes package.

31

-baseClass : String
Stereotype

-tagType : String
-multiplicity : Multiplicity

TagDefinition

-dataValue : String
TaggedValue

1

+taggedValue*

+referenceValue
*

+referenceTag
*

+type

1

+typedValue *

+owner
1

+defindedTag

*

+constrainedElement
*{ordered}

+constraint*

+stereotype
*

+extendedElement

*

+stereotypeConstraint*

+constrainedStereotype0..1

{xor} Constraint
(from core)

GeneralizableElement
(from core)

ModelElement
(from model)

Figure A10: iACMTool::model::foundation::extensionMechanism package.

«subsystem»
collaborations

«subsystem»
stateMachines

«subsystem»
commonBehaviour

behaviouralElements

Figure A11: iACMTool::model::behaviouralElements package.

32

-value : Expression
Argument

-recurrence : IterationExpression
-script : ActionExpression

ActionActionSequence

CallAction

1

+actualArgument *
{ordered}

1
+action

*{ordered}

*

+operation1

ModelElement
(from model)

Operation
(from core)

UndefinedAction

Figure A12: iACMTool::model::behaviouralElements::
commonBehaviour package.

33

Collaboration

Message

-multiplicity : Multiplicity
ClassifierRole

1

+ownedElement

1..*

+action1

*
+predecessor

*
+successor

*
+activator

0..1

*

+sentMessage *

+sender 1

+receivedMessage*

+receiver1

+base 1

*

+availableOperation*

*

Action
(from commonBehaviour)

ClassClassifier
(from core)

Operation
(from core)

Figure A13: iACMTool::model::behaviouralElements::
collaborations - roles.

34

Collaboration

MessageInteraction

*

+representedOperation

0..1

*

+representedClassifier

0..1

+interaction
1

+message

1..*

+context1

*

+usedCollaboration

*

*

ModelElement
(from model)

NamespaceOwnee
(from core)

Classifier
(from core)

Operation
(from core)

{xor}

Figure A14: iACMTool::model::behaviouralElements::
collaborations - interactions.

Message
-multiplicity : Multiplicity

ClassifierRole

SequenceDiagramView

+view1

* *

ModelView
(from model)

Figure A15: iACMTool::model::behaviouralElements::
collaborations - sequence diagram view.

35

StateMachine

-expression : BooleanExpression
Guard

StateVertex Transition

State

Event

+context0..1

+behaviour
*

+transition
1

+guard 0..11

+transition *

1

+top1 1

-internalTransition *
1

+effect0..1

+source
1

+outgoing
*

+target
1

+incoming
*

1
+entry

0..1
1 +exit 0..1
1

+doActivity
0..1

+transition
*

+trigger0..1StateInvariant

+state
1

+invariant*

Invariant
(from core)

ModelElement
(from model)

Action
(from commonBehaviour)

FinalStateSimpleStateCompositeState

+container
1

+subvertex

*

ClassClassifier
(from core)

Figure A16: iACMTool::model::behaviouralElements::
stateMachines - main.

36

Event

CallEvent

1
{ordered}

+parameter
*

+occurrence*

+operation1

ModelElement
(from model)

Operation
(from core)

Parameter
(from core)

UndefinedEvent

Figure A17: iACMTool::model::behaviouralElements::
stateMachines - events.

ModelView
(from model)

StatechartDiagramView

+view1

** * *
TransitionCompositeState FinalState SimpleState

Figure A18: iACMTool::model::behaviouralElements::
stateMachines – statechart diagram view.

37

Figure A19: iACMTool::model::modelManagement package.

PackageElementImport

+elementImport 1

+importedElement

*

+elementImport

1 *

ModelElement
(from model)

NamespaceOwnee
(from core)

38

ChangeDetector

1

+change*

determines

modelChanges

-code : String
-propertyID : String

Change

+changedElement 1

*

ModelElement
(from model)

LogicalChange

+logicalChange 1

+change

*

IACMTool
(from control)

+application
1

+changeDetector
1

DefinedChanges -elementDesc[1] : String
-propertyDesc[1] : String
-propertyChangeType[1] : ChangeType
-impactElementsType[*] : String

ChangeDescription

-added : int = 0
-changed : int = 1
-deleted : int = 2

«enumeration»
ChangeType

1
+description

1

ChangeTaxonomy ElementChangeTaxonomy

1
+subTaxonomy

*

Figure A20: iACMTool::modelChanges package.

39

ImpactAnalyzer Impact

*

+change

1

*

+impactedElement*

1

+impact

*

impactAnalysis

Change
(from modelChanges)

*
+propagator*

ModelElement
(from model)

ImpactConfiguration

1

+configuration1

IACMTool
(from control)

+application1

+impactAnalyzer1

Figure A21: iACMTool::impactAnalysis package.

«subsystem»
xmiParser

«subsystem»
oclParser

parser

Figure A22: iACMTool::parser package.

40

Appendix B Change Detection

B.1 Change Taxonomy
A conceptual model of the change taxonomy is presented in Figure B1 to Figure B12

below. This is followed by the description of the changes (leaf nodes in the conceptual

model).

Changed Model

1

Changed Sequence Diagram View

Changed Class Diagram View

Changed Statechart Diagram View

0..1

0..1

0..1

Figure B1: Changed Model.

41

Changed Class Diagram View

1
Added Association

Changed Association

Deleted Association

Added Dependency

Changed Dependency

Added Generalization

Changed Generalization

Deleted Generalization

Added Interface

Changed Interface

Deleted Interface

Added Realization

Deleted Realization

Deleted Dependency

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Added Class

Changed Class

Deleted Class

*

*

*

Figure B2: Changed Class Diagram View.

42

Changed Sequence Diagram View

1

Added Message

Changed Message Action

Deleted Message

*

*

*

Added Classifier Role*

Changed Classifier Role*

Deleted Classifier Role*

Changed Base Class Classifier

Added Available Operation*

* Deleted Available Operation

Changed Class

Changed Multiplicity0..1

Changed Recurrence0..1

0..1

Figure B3: Changed Sequence Diagram View.

43

Changed Statechart Diagram View

1

Added Transition

Changed Transition

Deleted Transition

*

*

*

Changed Guard

0..1

0..1

Added Composite State

Changed Composite State

Deleted Composite State

Added Subvertex

Changed Subvertex

Deleted Subvertex

Changed Final State

Added Simple State

Changed Simple State

Deleted Simple State

*

*

*

*

*

*

Changed State

* Changed State

*

*

*

Changed State

Changed Effect Changed State Machine Action

Changed State

Figure B4: Changed Statechart Diagram View.

44

Changed Association

1

Changed Constraint

Changed Stereotype

0..1

0..1

Changed Association End

Changed Association Class0..1 Changed Class

Changed Aggregation0..1

Changed Changeability0..1

Added Interface Specifier*

Deleted Interface Specifier*

Changed isNavigable0..1

Changed Multiplicity0..1

Changed Ordering0..1

Added Qualifier*

Deleted Qualifier*

Changed Stereotype0..1

Changed Target Scope0..1

Changed Visibility0..1

Changed Interface Specifier*

Changed Qualifier*

Changed Class

Changed Interface

Changed Type0..1

0..2

Figure B5: Changed Association.

45

Changed Class

Added Attribute

Changed Attribute

Deleted Attribute

1

Changed Invariant0..1

Changed isAbstract0..1

Changed isLeaf0..1

Changed isRoot0..1

Changed Multiplicity0..1

Added Operation

Changed Stereotype0..1

Changed isActive0..1

Changed Operation

Deleted Operation

Changed Visibility0..1

*

*

*

*

*

*

Figure B6: Changed Class.

46

Changed Changeability

Changed Initial Value

Changed Multiplicity

Changed Owner Scope

Changed Target Scope

Changed Type

Changed Visibility

0..1

0..1

0..1

0..1

0..1

0..1

0..1

1

Changed Attribute

Changed Ordering0..1

Figure B7: Changed Attribute.

Changed Visibility

Changed Postcondition

Changed Precondition

Changed Operation

Changed Concurrency

Changed isAbstract

Changed isPolymorphic

Changed isQuery

Changed Parameter

1 0..1

0..1

0..1

0..1

*

0..1

0..1

0..1

Changed Owner Scope0..1

Figure B8: Changed Operation.

47

Added Operation*

Changed Interface

1

Changed Operation*

Changed Postcondition

Changed Precondition

Changed Concurrency

Changed isQuery

Changed Parameter

1 0..1

0..1

*

0..1

0..1

Changed Owner Scope0..1

Deleted Operation*

Figure B9: Changed Interface.

48

Changed State Invariant0..1

Changed State

Added Activity

Added Entry Action

Added Exit Action

0..1

0..1

0..1

Added Internal Transition

Changed Internal Transition

Deleted Internal Transition

*

*

*

Changed Transition

Deleted Activity0..1

Changed Activity0..1

Changed Entry Action0..1

Deleted Entry Action0..1

Changed Exit Action0..1

Deleted Exit Action0..1

Changed State Machine Action

Changed State Machine Action

Changed State Machine Action

Figure B10: Changed State.

Changed Name

Changed Parameter

0..1

1
Changed Default Value

Changed Direction

0..1

0..1

Figure B11: Changed Parameter.

49

Changed State Machine Action

Added Discrete Action

Deleted Discrete Action

Changed Recurrence0..1

*

*

Changed Discrete Action*

Changed Recurrence0..1

Changed Script0..1

Figure B12: Changed State Machine Action.

50

B.2 Change Detection Rules
Here a brief discussion for each change is provided, followed by an OCL expression that

defines the change. The modified version of the model is the version context for the rules

below.

1. Changed Class Diagram View – Added Association
Change Code: CCDVAA
Description: In the modified model version there exists an association relationship that does

not exist in the original version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.association->exists(a1:Association|not self.model.
 application.originalModel.classDiagramView.
 association->exists(a2:Association|
 a1.getIDStr() = a2.getIDStr()))

2. Changed Class Diagram View – Deleted Association
Change Code: CCDVDA
Description: In the original model version there exists an association relationship that does

not exist in the modified version.
OCL Expression: context model::foundation::core:ClassDiagramView

 self.model.application.originalModel.classDiagramView.
 association->exists(a1:Association|not
 self.association->exists(a2:Association|
 a1.getIDStr() = a2.getIDStr()))

3. Changed Class Diagram View – Added Class
Change Code: CCDVAC
Description: In the modified model version there exists a class that does not exist in the

original version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.classClassifier->exists(c1:ClassClassifier|not self.model.
 application.originalModel.classDiagramView.
 classClassifier->exists(c2:ClassClassifier|
 c1.getPathname() = c2.getPathname()))

4. Changed Class Diagram View – Deleted Class
Change Code: CCDVDC
Description: In the original model version there exists a class that does not exist in the

modified version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.model.application.originalModel.classDiagramView.
 classClassifier->exists(c1:ClassClassifier|not
 self.classClassifier->exists(c2:ClassClassifier|
 c1.getPathname() = c2.getPathname()))

5. Changed Class Diagram View – Added Dependency
Change Code: CCDVAD
Description: In the modified model version there exists a dependency relationship that does

not exist in the original version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.dependency->exists(d1:Dependency|not
 self.model.application.originalModel.classDiagramView.
 dependency->exists(d2:Dependency|
 d1.getIDStr() = d2.getIDStr()))

51

6. Changed Class Diagram View – Deleted Dependency
Change Code: CCDVDD
Description: In the original model version there exists a dependency relationship that does

not exist in the modified version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.model.application.originalModel.classDiagramView.
 dependency->exists(d1:Dependency|not self.
 dependency->exists(d2:Dependency|
 d1.getIDStr() = d2.getIDStr()))

7. Changed Class Diagram View – Added Generalization
Change Code: CCDVAG
Description: In the modified model version there exists a generalization relationship that does

not exist in the original version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.generalization->exists(g1:Generalization|not
 self.model.application.originalModel.classDiagramView.
 generalization->exists(g2:Generalization|
 g1.getIDStr() = g2.getIDStr()))

8. Changed Class Diagram View – Deleted Generalization
Change Code: CCDVDG
Description: In the original model version there exists a generalization relationship that does

not exist in the modified version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.model.application.originalModel.classDiagramView.
 generalization->exists(g1:Generalization|not
 self.generalization->exists(g2:Generalization|
 g1.getIDStr() = g2.getIDStr()))

9. Changed Class Diagram View – Added Interface
Change Code: CCDVAI
Description: In the modified model version there exists an interface that does not exist in the

original version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.interface->exists(i1:Interface|not self.model.application.
 originalModel.classDiagramView.interface->exists(i2:Interface|
 i1.getPathname() = i2.getPathname()))

10. Changed Class Diagram View – Deleted Interface
Change Code: CCDVDI
Description: In the orginal model version there exists an interface that does not exist in the

modified version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.model.application.originalModel.classDiagramView.
 interface->exists(i1:Interface|not self.
 interface->exists(i2:Interface|
 i1.getPathname() = i2.getPathname()))

11. Changed Class Diagram View – Added Realization
Change Code: CCDVAR
Description: In the modified model version there exists a realization relationship that does not

exist in the original version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.realization->exists(r1:Realization|not self.model.
 application.originalModel.classDiagramView.
 realization->exists(r2:Realization|
 r1.getIDStr() = r2.getIDStr()))

52

12. Changed Class Diagram View – Deleted Realization
Change Code: CCDVDR
Description: In the original model version there exists a realization relationship that does not

exist in the modified version.
OCL Expression: context model::foundation::core::ClassDiagramView

 self.model.application.originalModel.classDiagramView.
 realization->exists(r1:Realization|not
 self.realization->exists(r2:Realization|
 r1.getIDStr() = r2.getIDStr()))

13. Changed Sequence Diagram View – Added Classifier Role
Change Code: CSDVACR
Description: In the modified model version there exists a classifier role that does not exist in

the original version.
OCL Expression: context model::behaviouralElements::collaborations::

 SequenceDiagramView
 self.classifierRole->exists(cr1:ClassifierRole|not self.model.
 application.originalModel.sequenceDiagramView.
 classifierRoler->exists(cr2:ClassifierRole|
 cr1.getIDStr() = cr2.getIDStr()))

14. Changed Sequence Diagram View – Deleted Classifier Role
Change Code: CSDVDCR
Description: In the original model version there exists a classifier role that does not exist in

the modified version.
OCL Expression: context model::behaviouralElements::collaborations::

 SequenceDiagramView
 self.model.application.originalModel.sequenceDiagramView.
 classifierRole->exists(cr1:ClassifierRole|not self.
 classifierRole->exists(cr2:ClassifierRole|
 cr1.getIDStr() = cr2.getIDStr()))

15. Changed Sequence Diagram View – Added Message
Change Code: CSDVAM
Description: In the modified model version there exists a message that does not exist in the

original version.
OCL Expression: context model::behaviouralElements::collaborations::

 SequenceDiagramView
 self.message->exists(m1:Message|not self.model.application.
 originalModel.sequenceDiagramView.message->exists(m2:Message|
 m1.getIDStr() = m2.getIDStr()))

16. Changed Sequence Diagram View – Deleted Message
Change Code: CSDVDM
Description: In the original model version there exists a message that does not exist in the

modified version.
OCL Expression: context model::behaviouralElements::collaborations::

 SequenceDiagramView
 self.model.application.originalModel.sequenceDiagramView.
 message->exists(m1:Message|not self.message->exists(m2:Message|
 m1.getIDStr() = m2.getIDStr()))

53

17. Changed Statechart Diagram View – Added Composite State
Change Code: CStDVACS
Description: In the modified model version there exists a composite state that does not exist

in the original version.
OCL Expression: context model::behaviouralElements::stateMachines::

 StatechartDiagramView
 self.compositeState->exists(cs1:CompositeState|not self.model.
 application.originalModel.statechartDiagramView.
 compositeState->exists(cs2:CompositeState|
 cs1.getName() = cs2.getName()))

18. Changed Statechart Diagram View – Deleted Composite State
Change Code: CStDVDCS
Description: In the original model version there exists a composite state that does not exist in

the modified version.
OCL Expression: context model::behaviouralElements::stateMachines::

 StatechartDiagramView
 self.model.application.originalModel.statechartDiagramView.
 compositeState->exists(cs1:CompositeState|not self.
 compositeState->exists(cs2:CompositeState|
 cs1.getName() = cs2.getName()))

19. Changed Statechart Diagram View – Added Simple State
Change Code: CStDVASS
Description: In the modified model version there exists a simple state that does not exist in

the original version.
OCL Expression: context model::behaviouralElements::stateMachines::

 StatechartDiagramView
 self.simpleState->exists(ss1:SimpleState|not self.model.
 application.originalModel.statechartDiagramView.
 simpleState->exists(ss2:SimpleState|
 ss1.getName() = ss2.getName()))

20. Changed Statechart Diagram View – Deleted Simple State
Change Code: CStDVDSS
Description: In the original model version there exists a simple state that does not exist in the

modified version.
OCL Expression: context model::behaviouralElements::stateMachines::

 StatechartDiagramView
 self.model.application.originalModel.statechartDiagramView.
 simpleState->exists(ss1:SimpleState|not self.
 simpleState->exists(ss2:SimpleState|
 ss1.getName() = ss2.getName()))

21. Changed Statechart Diagram View – Added Transition
Change Code: CStDVAT
Description: In the modified model version there exists a transition that does not exist in the

original version.
OCL Expression: context model::behaviouralElements::stateMachines::

 StatechartDiagramView
 self.transition->exists(t1:Transition|not self.model.
 application.originalModel.statechartDiagramView.
 transition->exists(t2:Transition|
 t1.getIDStr() = t2.getIDStr()))

54

22. Changed Statechart Diagram View – Deleted Transition
Change Code: CStDVDT
Description: In the original model version there exists a transition that does not exist in the

modified version.
OCL Expression: context model::behaviouralElements::stateMachines::

 StatechartDiagramView
 self.model.application.originalModel.statechartDiagramView.
 transition->exists(t1:Transition|not self.
 transition->exists(t2:Transition|
 t1.getIDStr() = t2.getIDStr()))

23. Changed Association End – Changed Aggregation
Change Code: CAECA
Description: There exists an association end in the model such that its aggregation

property is not the same in the two model versions.
OCL Expression: context model::foundation::core::AssociationEnd

 self.aggregation <> self.association.view.model.application.
 originalModel.classDiagramView.getAssociation(self.association.
 getIDStr()).getEnd(self.getIDStr()).aggregation

24. Changed Association End – Changed Changeability
Change Code: CAECC
Description: There exists an association end in the model such that its changeability

property is not the same in the two model versions.
OCL Expression: context model::foundation::core::AssociationEnd

 self.changeability <> self.association.view.model.application.
 originalModel.classDiagramView.getAssociation(self.association.
 getIDStr()).getEnd(self.getIDStr()).changeability

25. Changed Association End – Added Interface Specifier
Change Code: CAEAIS
Description: There exists an association end in the model such that in the modified version it

has an interfaceSpecifier that it doesn’t have in the original version.
OCL Expression: context model::foundation::core::AssociationEnd

 self.interfaceSspecifier->exists(s1:Classifier|
 not self.association.view.model.application.
 originalModel.classDiagramView.
 getAssociation(self.association.getIDStr()).
 getEnd(self.getIDStr()).
 interfaceSpecifier->exists(s2:Classifier|
 s1.getPathname() = s2.getPathname()))

26. Changed Association End – Changed Interface Specifier
Change Code: CAECIS
Description: There exists an association end in the model such that it has an

interfaceSpecifier (interface or class) that is not the same in the two
model versions. Note that the implementation of this rule assumes that all the
changed interface and class classifiers in the model have been previously
identified.

OCL Expression: context model::foundation::core::AssociationEnd
 self.interfaceSpecifier->exists(s1:Classifier|
 self.association.view.model.application.changeDetector.
 change.changedElement->exists(s2:Classifier|
 s1.getPathname() = s2.getPathname()))

55

27. Changed Association End – Deleted Interface Specifier
Change Code: CAEDIS
Description: There exists an association end in the model such that in the original version it

has an interfaceSpecifier that it doesn’t have in the modified version.
OCL Expression: context model::foundation::core::AssociationEnd

 self.association.view.model.application.originalModel.
 classDiagramView.getAssociation(self.association.
 getIDStr()).getEnd(self.getIDStr()).
 interfaceSpecifier->exists(s1:Classifier|not
 self.interfaceSpecifier->exist(s2:Classifier|
 s1.getPathname() = s2.getPathname()))

28. Changed Association End – Changed isNavigable
Change Code: CAECiN
Description: There exists an association end in the model such that its isNavigable

property is not the same in the two model versions.
OCL Expression: context model::foundation::core:AssociationEnd

 self.isNavigable <> self.association.view.model.application.
 originalModel.classDiagramView.getAssociation(self.association.
 getIDStr()).getEnd(self.getIDStr()).isNavigable

29. Changed Association End – Changed Multiplicity
Change Code: CAECM
Description: There exists an association end in the model such that its multiplicity is

not the same in the two model versions.
OCL Expression: context model::foundation::core::AssociationEnd

 not self.multiplicity.equals(self.association.view.model.
 application.originalModel.classDiagramView.getAssociation(self.
 association.getIDStr()).getEnd(self.getIDStr()).multiplicity)

30. Changed Association End – Changed Ordering
Change Code: CAECO
Description: There exists an association end in the model such that its ordering property is

not the same in the two model versions.
OCL Expression: context model::foundation::core::AssociationEnd

 self.ordering <> self.association.view.model.application.
 originalModel.classDiagramView.getAssociation(self.association.
 getIDStr()).getEnd(self.getIDStr()).ordering

31. Changed Association End – Added Qualifier
Change Code: CAEAQ
Description: There exists an association end in the model such that in the modified version it

has a qualifier that it doesn’t have in the original version.
OCL Expression: context model::foundation::core::AssociationEnd

 self.qualifier->exists(q1:Attribute|not self.association.view.
 model.application.originalModel.classDiagramView.
 getAssociation(self.association.getIDStr()).getEnd(self.
 getIDStr()).qualifier->exists(q2:Attribute|
 q1.getName() = q2.getName()))

32. Changed Association End – Changed Qualifier Type
Change Code: CAECQT
Description: There exists an association end in the model such that the type property of one

of its qualifiers is not the same in the two model versions.
OCL Expression: context model::foundation::core::AssociationEnd

 self.qualifier->exists(q:Attribute|not q.type.equals(self.
 association.view.model.application.originalModel.
 classDiagramView.getAssociation(self.association.getIDStr()).
 getEnd(self.getIDStr()).qualifier->asSequence->at(self.
 getQualifierPosition(q)).type))

56

33. Changed Association End – Deleted Qualifier
Change Code: CAEDQ
Description: There exists an association end in the model such that in the original version it

has a qualifier that it doesn’t have in the modified version.
OCL Expression: context model::foundation::core:AssociationEnd

 self.association.view.model.application.originalModel.
 classDiagramView.getAssociation(self.association.getIDStr()).
 getEnd(self.getIDStr()).qualifier->exists(q1:Attribute|not
 self.qualifier->exists(q2:Attribute|
 q1.getName() = q2.getName()))

34. Changed Association End – Changed Target Scope
Change Code: CAECTS
Description: There exists an association end in the model such that its targetScope is not

the same in the two model versions.
OCL Expression: context model::foundation::core:AssociationEnd

 self.targetScope <> self.association.view.model.application.
 originalModel.classDiagramView.getAssociation(self.association.
 getIDStr()).getEnd(self.getIDStr()).targetScope

35. Changed Association End – Changed Visibility
Change Code: CAECV
Description: There exists an association end in the model such that its visibility is not

the same in the two model versions.
OCL Expression: context model::foundation::core:AssociationEnd

 self.visibility <> self.association.view.model.application.
 originalModel.classDiagramView.getAssociation(self.association.
 getIDStr()).getEnd(self.getIDStr()).visibility

36. Changed Class – Added Attribute
Change Code: CCAA
Description: There exists a class in the model such that in the modified version it has an

attribute that it doesn’t have in the original version.
OCL Expression: context model::foundation::core::ClassClassifier

 self.getAttributes()->exists(a1:Attribute|not self.view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getPathname()).
 getAttributes()->exists(a2:Attribute|
 a1.getIDStr() = a2.getIDStr()))

37. Changed Class – Deleted Attribute
Change Code: CCDA
Description: There exists a class in the model such that in the original version it has an

attribute that it doesn’t have in the modified version.
OCL Expression: context model::foundation::core::ClassClassifier

 self.view.model.application.originalModel.classDiagramView.
 getClassClassifier(self.getPathname()).
 getAttributes()->exists(a1:Attribute|not self.
 getAttributes()->exists(a2:Attribute|
 a1.getIDStr() = a2.getIDStr()))

38. Changed Class – Changed Invariant
Change Code: CCCI
Description: There exists a class in the model such that its invariant is not the same in the two

model versions.
OCL Expression: context model::foundation::core::ClassClassifier

 not self.invariant.equals(self.view.model.application.
 originalModel.classDiagramView.getClassClassifier(self.
 getPathname()).invariant)

57

39. Changed Class – Changed isAbstract
Change Code: CCCiAbs
Description: There exists a class in the model such that its isAbstract property is not the

same in the two model versions.
OCL Expression: context model::foundation::core::ClassClassifier

 self.isAbstract <> self.view.model.application.originalModel.
 classDiagramView.getClassClassifier(self.getPathname()).
 isAbstract

40. Changed Class – Changed isActive
Change Code: CCCiA
Description: There exists a class in the model such that its isActive property is not the

same in the two model versions.
OCL Expression: context model::foundation::core::ClassClassifier

 self.isActive <> self.view.model.application.originalModel.
 classDiagramView.getClassClassifier(self.getPathname()).
 isActive

41. Changed Class – Changed isLeaf
Change Code: CCCiL
Description: There exists a class in the model such that its isLeaf property is not the same

in the two model versions.
OCL Expression: context model::foundation::core::ClassClassifier

 self.isLeaf <> self.view.model.application.originalModel.
 classDiagramView.getClassClassifier(self.getPathname()).isLeaf

42. Changed Class – Changed isRoot
Change Code: CCCiR
Description: There exists a class in the model such that its isRoot property is not the same

in the two model versions.
OCL Expression: context model::foundation::core::ClassClassifier

 self.isRoot <> self.view.model.application.originalModel.
 classDiagramView.getClassClassifier(self.getPathname()).isRoot

43. Changed Class – Changed Multiplicity
Change Code: CCCM
Description: There exists a class in the model such that its multiplicity property is not

the same in the two model versions.
OCL Expression: context model::foundation::core::ClassClassifier

 not self.multiplicity.equals(self.view.model.application.
 originalModel.classDiagramView.getClassClassifier(self.
 getPathname()).multiplicity)

44. Changed Class – Added Operation
Change Code: CCAO
Description: There exists a class in the model such that in the modified version it has an

operation that it doesn’t have in the original version.
OCL Expression: context model::foundation::core::ClassClassifier

 self.getOperations()->exists(o1:Operation|not self.view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getPathname()).
 getOperations()->exists(o2:Operation|
 o1.getSignature() = o2.getSignature()))

58

45. Changed Class – Deleted Operation
Change Code: CCDO
Description: There exists a class in the model such that in the original version it has an

operation that it doesn’t have in the modified version.
OCL Expression: context model::foundation::core::ClassClassifier

 self.view.model.application.originalModel.classDiagramView.
 getClassClassifier(self.getPathname()).
 getOperations()->exists(o1:Operation|not self.
 getOperations()->exists(o2:Operation|
 o1.getSignature() = o2.getSignature()))

46. Changed Class – Changed Visibility
Change Code: CCCV
Description: There exists a class in the model such that its visibility property is not the

same in the two model versions.
OCL Expression: context model::foundation::core::ClassClassifier

 self.visibility <> self.view.model.application.originalModel.
 classDiagramView.getClassClassifier(self.getPathname()).
 visibility

47. Changed Interface – Added Operation
Change Code: CIAO
Description: There exists an interface in the model such that in the modified version it has an

operation that it doesn’t have in the original version.
OCL Expression: context model::foundation::core::Interface

 self.getOperations()->exists(o1:Operation|not self.view.model.
 application.originalModel.classDiagramView.getInterface(self.
 getPathname()).getOperations()->exists(o2:Operation|
 o1.getSignature() = o2.getSignature()))

48. Changed Interface – Deleted Operation
Change Code: CIDO
Description: There exists an interface in the model such that in the original version it has an

operation that it doesn’t have in the modified version.
OCL Expression: context model::foundation::core::Interface

 self.view.model.application.originalModel.classDiagramView.
 getInterface(self.getPathname()).
 getOperations()->exists(o1:Operation|not self.
 getOperations()->exists(o2:Operation|
 o1.getSignature() = o2.getSignature()))

49. Changed Classifier Role – Added Available Operation
Change Code: CCRAAO
Description: There exists a classifier role in the model such that in the modified version it has

an available operation that it doesn’t have in the original version.
OCL Expression: context model::behaviouralElements::collaborations::ClassifierRole

 self.availableOperation->exists(ao1:Operation|not
 self.view.model.application.originalModel.sequenceDiagramView.
 getClassifierRole(self.getIDStr()).
 availableOperation->exists(ao2:Operation|
 ao1.getSignature() = ao2.getSignature()))

59

50. Changed Classifier Role – Deleted Available Operation
Change Code: CCRDAO
Description: There exists a classifier role in the model such that in the original version it has

an available operation that it doesn’t have in the modified version.
OCL Expression: context model::behaviouralElements::collaborations::ClassifierRole

 self.view.model.application.originalModel.sequenceDiagramView.
 getClassifierRole(self.getIDStr()).
 availableOperation->exists(ao1:Operation|not self.
 availableOperation->exists(ao2:Operation|
 ao1.getSignature() = ao2.getSignature()))

51. Changed Classifier Role – Changed Base Class Classifier
Change Code: CCRCBCC
Description: There exists a classifier role in the model such that its base class classifier is

not the same in the two model versions. Note that the implementation of this
rule assumes that all the changed class classifiers in the model have been
previously identified.

OCL Expression: context model::behaviouralElements::collaborations::ClassifierRole
 self.base->exists(b1:ClassClassifier|self.view.model.
 application.changeDetector.change.
 changedElement->exists(b2:ClassClassifier|
 b1.getPathname() = b2.getPathname()))

52. Changed Classifier Role – Changed Multiplicity
Change Code: CCRCM
Description: There exists a classifier role in the model such that its multiplicity

property is not the same in the two model versions.
OCL Expression: context model::behaviouralElements::collaborations::ClassifierRole

 not self.multiplicity.equals(self.view.model.application.
 originalModel.sequenceDiagramView.getClassifierRole(self.
 getIDStr()).multiplicity)

The following definition is used in rule 53 below:
context model::behaviouralElements::collaborations::Message def:
 let originalMessageAction:Action = self.view.model.application.originalModel.
 sequenceDiagramView.getMessage(self.getIDStr()).action

53. Changed Message Action – Changed Recurrence
Change Code: CMACR
Description: There exists a message in the model such that the recurrence property of its

action is not the same in the two model versions.
OCL Expression: context model::behaviouralElements::collaborations::Message

 not self.action.oclIsTypeOf(ActionSequence) and
 not originalMessageAction.oclIsTypeOf(ActionSequence) and
 not self.action.recurrence.equals(originalMessageAction.
 recurrence)

54. Changed Composite State – Added Subvertex
Change Code: CCSAS
Description: There exists a composite state in the model such that in the modified version it

has a subvertex that it doesn’t have in the original version.
OCL Expression: context model::behaviouralElements::stateMachines::CompositeState

 self.subvertex->exists(sv1:StateVertex|not self.view.model.
 application.originalModel.statechartDiagramView.
 getState(self.getPathname()).subvertex->exists(sv2:StateVertex|
 sv1.getName() = sv2.getName()))

60

55. Changed Composite State – Deleted Subvertex
Change Code: CCSDS
Description: There exists a composite state in the model such that in the original version it

has a subvertex that it doesn’t have in the modified version.
OCL Expression: context model::behaviouralElements::stateMachines::CompositeState

 self.view.model.application.originalModel.
 statechartDiagramView.getState(self.getPathname()).
 subvertex->exists(sv1:StateVertex|not self.
 subvertex->exists(sv2:StateVertex|
 sv1.getName() = sv2.getName()))

56. Changed Transition – Changed Guard
Change Code: CTCG
Description: There exists a transition in the model such that its guard condition is not the

same in the two model versions.
OCL Expression: context model::behaviouralElements::stateMachines::Transition

 not self.guard.equals(self.view.model.originalModel.
 statechartDiagramView.getTransition(self.getIDStr()).guard)

57. Changed Attribute – Changed Changeability
Change Code: CACC
Description: There exists an attribute in the model such that its changeability property

is not the same in the two model versions.
OCL Expression: context model::foundation::core::Attribute

 self.changeability <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getAttribute(self.name).changeability

58. Changed Attribute – Changed Initial Value
Change Code: CACIV
Description: There exists an attribute in the model such that its initialValue property is

not the same in the two model versions.
OCL Expression: context model::foundation::core::Attribute

 not self.initialValue.equals(self.getClassClassifier().view.
 model.application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getAttribute(self.name).initialValue)

59. Changed Attribute – Changed Multiplicity
Change Code: CACM
Description: There exists an attribute in the model such that its multiplicity property is

not the same in the two model versions.
OCL Expression: context model::foundation::core::Attribute

 not self.multiplicity.equals(self.getClassClassifier().view.
 model.application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getAttribute(self.name).multiplicity)

60. Changed Attribute – Changed Ordering
Change Code: CACO
Description: There exists an attribute in the model such that its ordering property is not

the same in the two model versions.
OCL Expression: context model::foundation::core::Attribute

 self.ordering <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getAttribute(self.name).ordering

61

61. Changed Attribute – Changed Owner Scope
Change Code: CACOS
Description: There exists an attribute in the model such that its ownerScope is not the same

in the two model versions.
OCL Expression: context model::foundation::core::Attribute

 self.ownerScope <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getAttribute(self.name).ownerScope

62. Changed Attribute – Changed Target Scope
Change Code: CACTS
Description: There exists an attribute in the model such that its targetScope is not the

same in the two model versions.
OCL Expression: context model::foundation::core::Attribute

 self.targetScope <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getAttribute(self.name).targetScope

63. Changed Attribute – Changed Type
Change Code: CACT
Description: There exists an attribute in the model such that its type is not the same in the

two model versions.
OCL Expression: context model::foundation::core::Attribute

 self.type.getPathname() <> self.getClassClassifier().view.
 model.application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getAttribute(self.name).type.getPathname()

64. Changed Attribute – Changed Visibility
Change Code: CACV
Description: There exists an attribute in the model such that its visibility is not the same

in the two model versions.
OCL Expression: context model::foundation::core::Attribute

 self.visibility <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getAttribute(self.name).visibility

65. Changed Class Operation – Changed Concurrency
Change Code: CCOCC
Description: There exists a class operation in the model such that its concurrency

property is not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.concurrency <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getOperation(self.getSignature()).concurrency

66. Changed Class Operation – Changed isAbstract
Change Code: CCOCiAbs
Description: There exists a class operation in the model such that its isAbstract property

is not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.isAbstract <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getOperation(self.getSignature()).isAbstract

62

67. Changed Class Operation – Changed isPolymorphic
Change Code: CCOCiP
Description: There exists a class operation in the model such that its isPolymorphic

property is not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.isPolymorphic <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getOperation(self.getSignature()).isPolymorphic

68. Changed Class Operation – Changed isQuery
Change Code: CCOCiQ
Description: There exists a class operation in the model such that its isQuery property is

not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.isQuery <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getOperation(self.getSignature()).isQuery

69. Changed Class Operation – Changed Owner Scope
Change Code: CCOCOS
Description: There exists a class operation in the model such that its ownerScope is not the

same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.ownerScope <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getOperation(self.getSignature()).ownerScope

70. Changed Class Operation – Changed Precondition
Change Code: CCOCPre
Description: There exists a class operation in the model such that its precondition is not

the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 not self.precondition.equals(self.getClassClassifier().view.
 model.application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getOperation(self.getSignature()).precondition)

71. Changed Class Operation – Changed Postcondition
Change Code: CCOCPst
Description: There exists a class operation in the model such that its postcondition is

not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 not self.postcondition.equals(self.getClassClassifier().view.
 model.application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getOperation(self.getSignature()).postcondition)

72. Changed Class Operation – Changed Visibility
Change Code: CCOCV
Description: There exists a class operation in the model such that its visibility is not the

same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.visibility <> self.getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.getClassClassifier().getPathname()).
 getOperation(self.getSignature()).visibility

63

73. Changed Interface Operation – Changed Concurrency
Change Code: CIOCC
Description: There exists an interface operation in the model such that its concurrency is

not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.concurrency <> self.getInterface().view.model.application.
 originalModel.classDiagramView.getInterface(self.
 getInterface().getPathname()).getOperation(self.
 getSignature()).concurrency

74. Changed Interface Operation – Changed isPolymorphic
Change Code: CIOCiP
Description: There exists an interface operation in the model such that its isPolymorphic

property is not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.isPolymorphic <> self.getInterface().view.model.
 application.originalModel.classDiagramView.getInterface(self.
 getInterface().getPathname()).getOperation(self.
 getSignature()).isPolymorphic

75. Changed Interface Operation – Changed isQuery
Change Code: CIOCiQ
Description: There exists an interface operation in the model such that its isQuery property

is not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.isQuery <> self.getInterface().view.model.application.
 originalModel.classDiagramView.getInterface(self.
 getInterface().getPathname()).getOperation(self.
 getSignature()).isQuery

76. Changed Interface Operation – Changed Owner Scope
Change Code: CIOCOS
Description: There exists an interface operation in the model such that its ownerScope is

not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 self.ownerScope <> self.getInterface().view.model.application.
 originalModel.classDiagramView.getInterface(self.
 getInterface().getPathname()).getOperation(self.
 getSignature()).ownerScope

77. Changed Interface Operation – Changed Precondition
Change Code: CIOCPre
Description: There exists an interface operation in the model such that its precondition

is not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 not self.precondition.equals(self.getInterface().view.model.
 application.originalModel.classDiagramView.getInterface(self.
 getInterface().getPathname()).getOperation(self.
 getSignature()).precondition)

78. Changed Interface Operation – Changed Postcondition
Change Code: CIOCPst
Description: There exists an interface operation in the model such that its postcondition

is not the same in the two model versions.
OCL Expression: context model::foundation::core::Operation

 not self.postcondition.equals(self.getInterface().view.model.
 application.originalModel.classDiagramView.getInterface(self.
 getInterface().getPathname()).getOperation(self.
 getSignature()).postcondition)

64

79. Changed Class Operation Parameter – Changed Default Value
Change Code: CCOPCDV
Description: There exists a class operation parameter in the model such that its

defaultValue is not the same in the two model versions.
OCL Expression: context model::foundation::core::Parameter

 not self.defaultValue.equals(self.getOperation().
 getClassClassifier().view.model.application.originalModel.
 classDiagramView.getClassClassifier(self.getOperation().
 getClassClassifier().getPathname()).getOperation(self.
 getOperation().getSignature()).
 parameter->asSequence->at(self.getOperation().
 getParameterPosition(self)).defaultValue)

80. Changed Class Operation Parameter – Changed Direction
Change Code: CCOPCD
Description: There exists a class operation parameter in the model such that its direction

is not the same in the two model versions.
OCL Expression: context model::foundation::core::Parameter

 self.direction <> self.getOperation().getClassClassifier().
 view.model.application.originalModel.classDiagramView.
 getClassClassifier(self.getOperation().getClassClassifier().
 getPathname()).getOperation(self.getOperation().
 getSignature()).parameter->asSequence->at(self.getOperation().
 getParameterPosition(self)).direction

81. Changed Class Operation Parameter – Changed Name
Change Code: CCOPCN
Description: There exists a class operation parameter in the model such that its name is not

the same in the two model versions.
OCL Expression: context model::foundation::core::Parameter

 self.name <> self.getOperation().getClassClassifier().view.
 model.application.originalModel.classDiagramView.
 getClassClassifier(self.getOperation().getClassClassifier().
 getPathname()).getOperation(self.getOperation().
 getSignature()).parameter->asSequence->at(self.getOperation().
 getParameterPosition(self)).name

82. Changed Interface Operation Parameter – Changed Default Value
Change Code: CIOPCDV
Description: There exists an interface operation parameter in the model such that its

defaultValue is not the same in the two model versions.
OCL Expression: context model::foundation::core::Parameter

 not self.defaultValue.equals(self.getOperation().
 getInterface().view.model.application.originalModel.
 classDiagramView.getInterface(self.getOperation().
 getInterface().getPathname()).getOperation(self.
 getOperation().getSignature()).
 parameter->asSequence->at(self.getOperation().
 getParameterPosition(self)).defaultValue)

83. Changed Interface Operation Parameter – Changed Direction
Change Code: CIOPCD
Description: There exists an interface operation parameter in the model such that its

direction is not the same in the two model versions.
OCL Expression: context model::foundation::core::Parameter

 self.direction <> self.getOperation().getInterface().view.
 model.application.originalModel.classDiagramView.
 getInterface(self.getOperation().getInterface().
 getPathname()).getOperation(self.getOperation().
 getSignature()).parameter->asSequence->at(self.getOperation().
 getParameterPosition(self)).direction

65

84. Changed Interface Operation Parameter – Changed Name
Change Code: CIOPCN
Description: There exists an interface operation parameter in the model such that its name is

not the same in the two model versions.
OCL Expression: context model::foundation::core::Parameter

 self.name <> self.getOperation().getInterface().view.
 model.application.originalModel.classDiagramView.
 getInterface(self.getOperation().getInterface().
 getPathname()).getOperation(self.getOperation().
 getSignature()).parameter->asSequence->at(self.getOperation().
 getParameterPosition(self)).name

85. Changed State – Added Activity
Change Code: CSAA
Description: There exists a state in the model such that in the modified version it has a

doActivity property and it doesn’t have this property in the original version.
OCL Expression: context model::behaviouralElements::stateMachines::State

 self.doActivity->size = 1 and self.view.model.application.
 originalModel.statechartDiagramView.getState(self.
 getPathname()).doActivity->size = 0

86. Changed State – Deleted Activity
Change Code: CSDA
Description: There exists a state in the model such that in the original version it has a

doActivity property and it doesn’t have this property in the modified
version.

OCL Expression: context model::behaviouralElements::stateMachines::State
 self.doActivity->size = 0 and self.view.model.application.
 originalModel.statechartDiagramView.getState(self.
 getPathname()).doActivity->size = 1

87. Changed State – Added Entry Action
Change Code: CSAEA
Description: There exists a state in the model such that in the modified version it has an

entry action and it doesn’t have this property in the original version.
OCL Expression: context model::behaviouralElements::stateMachines::State

 self.entry->size = 1 and self.view.model.application.
 originalModel.statechartDiagramView.getState(self.
 getPathname()).entry->size = 0

88. Changed State – Deleted Entry Action
Change Code: CSDEA
Description: There exists a state in the model such that in the original version it has an

entry action and it doesn’t have this property in the modified version.
OCL Expression: context model::behaviouralElements::stateMachines::State

 self.entry->size = 0 and self.view.model.application.
 originalModel.statechartDiagramView.getState(self.
 getPathname()).entry->size = 1

89. Changed State – Added Exit Action
Change Code: CSAExA
Description: There exists a state in the model such that in the modified version it has an

exit action and it doesn’t have this property in the original version.
OCL Expression: context model::behaviouralElements::stateMachines::State

 self.exit->size = 1 and self.view.model.application.
 originalModel.statechartDiagramView.getState(self.
 getPathname()).exit->size = 0

66

90. Changed State – Deleted Exit Action
Change Code: CSDExA
Description: There exists a state in the model such that in the original version it has an exit

action and it doesn’t have this property in the modified version.
OCL Expression: context model::behaviouralElements::stateMachines::State

 self.exit->size = 0 and self.view.model.application.
 originalModel.statechartDiagramView.getState(self.
 getPathname()).exit->size = 1

91. Changed State – Added Internal Transition
Change Code: CSAIT
Description: There exists a state in the model such that in the modified version it has an

internalTransition that it doesn’t have in the original version.
OCL Expression: context model::behaviouralElements::stateMachines::State

 self.internalTransition->exists(t1:Transition|not
 self.view.model.application.originalModel.
 statechartDiagramView.getState(self.getPathname()).
 internalTransition->exists(t2:Transition|
 t1.getIDStr() = t2.getIDStr()))

92. Changed State – Deleted Internal Transition
Change Code: CSDIT
Description: There exists a state in the model such that in the original version it has an

internalTransition that it doesn’t have in the modified version.
OCL Expression: context model::behaviouralElements::stateMachines::State

 self.view.model.application.originalModel.
 statechartDiagramView.getState(self.getPathname()).
 internalTransition->exists(t1:Transition|not
 self.internalTransition->exists(t2:Transition|
 t1.getIDStr() = t2.getIDStr()))

93. Changed State – Changed State Invariant
Change Code: CSCSI
Description: There exists a state in the model such that its state invariant is not the same in

the two model versions.
OCL Expression: context model::behaviouralElements::statecharts::State

 not self.invariant.equals(self.view.model.application.
 originalModel.statechartDiagramView.getState(self.
 getPathname()).invariant)

67

The following definition is used in rules 94 to 97 inclusive:
context model::commonBehaviour::Action def:
 let originalSMAction:Action =
 (if Action.allInstances.transition->size = 1 then
 Action.allInstances.transition.view.model.application.originalModel.
 statechartDiagramView.getTransition(Action.allInstances.transition.
 getIDStr()).effect
 else -- the else clause assumes that Action.allInstances.state->size = 1
 Action.allInstances.state.view.model.application.originalModel.
 statechartDiagramView.getState(Action.allInstances.state.getPathname()).
 action
 -- here the action returned by the expression refers to
 -- the entry, exit and doActivity properties of State.
 endif)

94. Changed State Machine Action – Added Discrete Action
Change Code: CSMAADA
Description: There exists an action in the model such that in the modified version it has a

discrete action that it doesn’t have in the original version.
OCL Expression: context model::commonBehaviour::Action

 Action.allInstances.oclIsTypeOf(ActionSequence) and
 originalSMAction.oclIsTypeOf(ActionSequence) and
 Action.allInstances.action->exists(a1:Action|not
 originalSMAction.action->exists(a2:Action|
 a1.getIDStr() = a2.getIDStr()))

95. Changed State Machine Action – Deleted Discrete Action
Change Code: CSMADDA
Description: There exists an action in the model such that in the original version it has a

discrete action that it doesn’t have in the modified version.
OCL Expression: context model::commonBehaviour::Action

 Action.allInstances.oclIsTypeOf(ActionSequence) and
 originalSMAction.oclIsTypeOf(ActionSequence) and
 originalSMAction.action->exists(a1:Action|not
 Action.allInstances.action->exists(a2:Action|
 a1.getIDStr() = a2.getIDStr()))

96. Changed State Machine Action – Changed Recurrence
Change Code: CSMACR
Description: There exists an action in the model such that its recurrence property is not

the same in the two model versions.
OCL Expression: context model::commonBehaviour::Action

 not Action.allInstances.oclIsTypeOf(ActionSequence) and
 not originalSMAction.oclIsTypeOf(ActionSequence) and
 not Action.allInstances.recurrence.
 equals(originalSMAction.recurrence)

97. Changed State Machine Action – Changed Script
Change Code: CSMACS
Description: There exists an action in the model such that its script property is not the

same in the two model versions.
OCL Expression: context model::commonBehaviour::Action

 not Action.allInstances.oclIsTypeOf(ActionSequence) and
 not originalSMAction.oclIsTypeOf(ActionSequence) and
 not Action.allInstances.script.equals(originalSMAction.script)

68

Appendix C Consistency Verification
Each consistency rule is briefly described in Natural Language. The rules are being

formalized using OCL. Each of the rules is a Boolean expression. There are also some

consistency warnings listed below, these indicate consistency conditions that should be

checked. These arise because further work is needed to make extract the required

information from the model so that they can be consistency rules.

1. No protected operation can be called (in a sequence diagram) by an operation
belonging to a class that is not a descendent of the container class

2. No protected operation can be called (in a statechart) by an operation belonging to a
class that is not a descendent of the container class

3. No private operation can be called (in a sequence diagram) by an operation belonging
to another class

4. No private operation can be called (in a statechart) by an operation belonging to
another class

5. Each object (in a sequence diagram) must be an instantiation of a class in a class
diagram

6. If an operation appears in a pre or postcondition then it must have the property
“query”

7. An attribute with the “frozen” property cannot be assigned a value in a sequence
diagram

8. An attribute with the “frozen” property cannot be assigned a value in a state transition

9. A class that has the “leaf” property cannot be extended

10. A class that has the “root” property cannot extend another class

11. The comparison types of the attributes in the class invariant must be compatible

12. The comparison types of attributes in a precondition must be compatible

13. The comparison types of attributes in a postcondition must be compatible

14. If an attribute’s type is a class then that class has to be visible to the class containing
the attribute

15. If the return type of an operation is a class then that class has to be visible to the class
containing the operation

16. In a sequence diagram, if an attribute is assigned the return value of an operation,
then the types have to be compatible

17. For each message between two objects (in a sequence diagram) there has to be a valid
path (navigable) between them

69

18. Each attribute in a precondition must appear in the class diagram

19. Each attribute in a postcondition must appear in the class diagram

20. Each precondition should not violate the class invariant

21. Each postcondition should not violate the class invariant

22. An abstract operation cannot be invoked in a sequence diagram

23. An abstract operation cannot be invoked in a statechart

24. A class that contains an abstract operation must be abstract

25. A descendant of an abstract class must implement each abstract operation of its parent

26. An operation that is not polymorphic may not be overridden by a descendant class

27. An operation that has the property “query” cannot be an event in a statechart

28. A static operation cannot access an instance attribute

29. A static operation cannot invoke an instance operation

30. No private attribute can be accessed by an operation of another class

31. No protected attribute can be accessed by an operation of a class that is not a
descendant of the class that owns the attribute

32. An operation with the “leaf” property may not be overridden

33. Each attribute that is called in a statechart transition must be defined in the
corresponding class diagram

34. Each operation that is invoked in a sequence message must be defined in a class
diagram

35. Each operation that is invoked in a state transition must be defined in a class diagram

36. There must be no cycles in the directed paths of aggregation links. A class cannot be a part in
an aggregation in which it is the whole. A class cannot be a part of an aggregation in which
its superclass is the whole.

37. There must not be two (or more) associations present in the static view of the model such that
they cannot be distinguished. That is, no two associations in the static view must connect the
same two classes, have the same name and the same rolenames.

38. A class cannot be a part in more than one composition – no composite part may be shared by
two composite objects.

39. Each base classifier that appears in a sequence diagram must be defined in the static view of
the model.

40. Each operation invoked on a classifier role in a sequence diagram must be defined in the
static view of the model.

41. No attribute of a class and a qualifier or rolename of an associated class can have the same
name.

42. If an association end has a private visibility, then its participant can only be accessed, via the
association, by the class at the other association end.

70

43. If an association end has a protected visbility , then its participant can only be accessed, via
the association, by the class at the other association end and classes that are descendants of
the participant.

44. In a sequence diagram, a class role can only invoke an operation on another role if it has a
navigable association to the target role.

45. If a navigation expression occurs in an operation contract, then there must exist a navigable
association from the class that owns the contract’s operation to the target class in the
navigation expression.

46. For each operation that is invoked in a state transition, there must exist a navigable
association from the context class to the class that owns the invoked operation.

47. No two class in the same package can have the same name.

48. No two attributes in a class can have the same name.

49. A sequence message cannot update an attribute if the attribute’s changeability is not
“changeable”.

50. A transition’s action list cannot update an attribute if the attribute’s changeability is not
“changeable”.

51. The postcondition of an operation must not possibly update an attribute whose changeablity is
not “changeable”.

52. The multiplicity range for an attribute must be adhered to by all elements that access it.

53. A static operation cannot access an instance attribute

54. A static operation cannot invoke an instance operation

55. For every class in which operations use another class there must be a dependency
relationship between the two classes in the class diagram.

56. Each concrete class must implement all the abstract operations of its super class(es).

57. Each class that contains at least one abstract operation must be declared abstract.

58. An abstract class cannot be instantiated.

59. A class’s multiplicity must not be violated by the multiplicity of any association end
in which it is the participant.

60. A class’s multiplicity must not be violated by the multiplicity of any classifier role in
which it is the base.

61. A class’s package visibility should be observed, especially for associations between
classes of different packages.

62. A class that realizes an interface must declare all the operations in the interface.

63. A classifier role cannot have an available operation that is not declared in its base
class.

64. An operation cannot be invoked on a classifier role that is not present in its set of
available operations.

65. An abstract operation cannot be invoked.

71

66. If an operation is not polymorphic then it cannot be overriden in subclasses of its
class.

67. The directions of all the parameters of any class operation, that realizes an interface
operation, must match the directions of the parameters of the interface operation.

68. The default values of all the parameters of any class operation, that realizes an
interface operation, must match the default values of the parameters of the interface
operation.

69. For all the class operations that realize an interface operation, their concurrency
values must be the same as that of the interface operation.

70. For all the class operations that realize an interface operation, their polymorphic
properties must be the same as that of the interface operation.

71. For all the class operations that realize an interface operation, their query properties
must be the same as that of the interface operation.

72. For all the class operations that realize an interface operation, their owner scope
values must be the same as that of the interface operation.

73. For all the class operations that realize an interface operation, their precondition must
be the same as that of the interface operation.

74. For all the class operations that realize an interface operation, their postcondition
must be the same as that of the interface operation.

75. There must not exists two classifier roles in the sequence diagram view such that both
roles have the same pathnames.

76. There must be no cycles in the directed paths of aggregation links. A class cannot be a part in
an aggregation in which it is the whole. A class cannot be a part of an aggregation in which
its superclass is the whole.

77. There must not be two (or more) associations present in the static view of the model such that
they cannot be distinguished. That is, no two associations in the static view must connect the
same two classes, have the same name and the same rolenames.

78. A class cannot be a part in more than one composition – no composite part may be shared by
two composite objects.

79. Each base classifier that appears in a sequence diagram must be defined in the static view of
the model.

80. Each operation invoked on a classifier role in a sequence diagram must be defined in the
static view of the model.

81. No attribute of a class and a qualifier or rolename of an associated class can have the same
name.

82. If an association end has a private visibility, then its participant can only be accessed, via the
association, by the class at the other association end.

83. If an association end has a protected visbility , then its participant can only be accessed, via
the association, by the class at the other association end and classes that are descendants of
the participant.

72

84. In a sequence diagram, a class role can only invoke an operation on another role if it has a
navigable association to the target role.

85. If a navigation expression occurs in an operation contract, then there must exist a navigable
association from the class that owns the contract’s operation to the target class in the
navigation expression.

86. For each operation that is invoked in a state transition, there must exist a navigable
association from the context class to the class that owns the invoked operation.

87. No two class in the same package can have the same name.

88. No two attributes in a class can have the same name.

89. A sequence message cannot update an attribute if the attribute’s changeability is not
“changeable”.

90. A transition’s action list cannot update an attribute if the attribute’s changeability is not
“changeable”.

91. The postcondition of an operation must not possibly update an attribute whose changeablity is
not “changeable”.

92. The multiplicity range for an attribute must be adhered to by all elements that access it.

93. A static operation cannot access an instance attribute

94. A static operation cannot invoke an instance operation

95. For every class in which operations use another class there must be a dependency
relationship between the two classes in the class diagram.

96. Each concrete class must implement all the abstract operations of its super class(es).

97. Each class that contains at least one abstract operation must be declared abstract.

98. An abstract class cannot be instantiated.

99. A class’s multiplicity must not be violated by the multiplicity of any association end
in which it is the participant.

100. A class’s multiplicity must not be violated by the multiplicity of any classifier role in
which it is the base.

101. A class’s package visibility should be observed, especially for associations between
classes of different packages.

102. A class that realizes an interface must declare all the operations in the interface.

103. A classifier role cannot have an available operation that is not declared in its base
class.

104. An operation cannot be invoked on a classifier role that is not present in its set of
available operations.

105. An abstract operation cannot be invoked.

106. If an operation is not polymorphic then it cannot be overriden in subclasses of its
class.

73

107. The directions of all the parameters of any class operation, that realizes an interface
operation, must match the directions of the parameters of the interface operation.

108. The default values of all the parameters of any class operation, that realizes an
interface operation, must match the default values of the parameters of the interface
operation.

109. For all the class operations that realize an interface operation, their concurrency
values must be the same as that of the interface operation.

110. For all the class operations that realize an interface operation, their polymorphic
properties must be the same as that of the interface operation.

111. For all the class operations that realize an interface operation, their query properties
must be the same as that of the interface operation.

112. For all the class operations that realize an interface operation, their owner scope
values must be the same as that of the interface operation.

113. For all the class operations that realize an interface operation, their precondition must
be the same as that of the interface operation.

114. For all the class operations that realize an interface operation, their postcondition
must be the same as that of the interface operation.

115. There must not exists two classifier roles in the sequence diagram view such that
both roles have the same pathnames.

Consistency Warnings

1. For all preconditions of operations in a class, they must not (possibly) violate the
class invariant.

2. For all postconditions of operations in a class, they must not (possibly) violate the
class invariant.

3. For all the state invariants in a state machine of a class, they must not (possibly)
violate the class invariant.

4. For each state invariant in a state machine of a class, they must not (possibly) violate
the preconditions of the operations, that are invoked in that state.

5. For each state invariant in a state machine of a class, they must not (possibly) violate
the postconditions of the operations that have been invoked in a transition whose
target state is the state of the state invariant.

74

Appendix D Impact Analysis (Side Effect) Rules
The impact analysis rules described below correspond to the changes defined in the

change taxonomy defined in Appendix B. The fields for each rule are described below.

The format for the title of each rule is as follows: “Changed Element –

Added/Changed/Deleted Property”. Where Element is the changed element’s class, and

Property is the property of the element that has changed. If the property is an

added/deleted link, then the target object’s class is used.

Note that some fields may not appear in a particular rule – this is because these fields do

not have a value, thus there is no point in including the field. For example, if no elements

were impacted by a particular change then there would be no Rationale, no Resulting

Changes and no OCL Expressions since these would not have any value. Note also, that

the rules assume that the model is consistent.

Some rules require the getProperty(propertyID:String) operation. This operation is defined

for each model element class that requires it. The operation returns the element’s property

given the property’s ID. A data dictionary will be included later providing detail

information on all the operations that appear in the rules.

Change Code: This is the code that is assigned to the rule and is an acronym for
the change type.

Changed Element: The pathname of the class (in the meta-model) that has been
changed. Note that is field shows the type for changedElement
type (in the OCL expressions below) is of type

Added Property: The rolename of the association end containing the class (in the
meta-model) for the added link’s target object; or the pathname of
the class (in the meta-model) for the added link’s target object.
Note that a property is an attribute or a link to a changed element.

Changed Property: The changed attribute of the changed element.

Deleted Property: The rolename of the association end containing the class (in the
meta-model) for the added link’s target object; or the pathname of
the class (in the meta-model) for the deleted link’s target object.

75

Impacted Element: Specifies the pathname of the impacted element’s class (in the
meta-model).

Description: States, in natural language, what elements have been impacted by
the change and under what conditions.

Rationale: Explains the reason(s) for the impacts.

Resulting Change: States the changes that may be needed to accomplish a change.
These changes are the changes for which no impact analysis rules
are defined, such as changes to the implementation, for example.

Invoked Rules: The rules to be invoked by the current rule. That is, a rule may
result in a set of changes – there may be impact analysis rules
defined for these changes. Each of these invoked rules may
subsequently invoke other rules. Therefore, this field provides
information about the transitive closure for a particular change.

OCL Expression: OCL expression stating how the impacted elements are
determined. The OCL expression represents only the logic of how
to determine the impacted elements, and thus the implementation
may be different.

76

The following definition is used in some of the rules below.
def:
 let null:ModelElement = Set{}

1. Changed Class Diagram View – Added Association

Change Code: CCDVAA
Changed Element: model::foundation::core::ClassDiagramView
Added Property: model::foundation::core::Association
Impacted Element: model::foundation::core::ClassClassifier
Description: The bag of impacted classes is such that each impacted class in the bag is a

participant (in the meta-model) of one of the added association’s ends, and
each impacted class can navigate to the classifier at the other end of the
association via the added association.

Rationale: Each of the impacted classes has gained a navigable association.
Resulting Change: The class invariant and operation contracts (preconditions and postconditions)

may have to be updated to reflect this change. In addition, additional operations
may have to be defined, and/or methods (implementations of the operations)
updated to reflect the change. Also, a variable storing reference(s) to objects of
the class at the opposite end may have to be added to the class’s implementation.

OCL Expression: context modelChanges::Change
 let addedAssociation:Association = self.changedElement.
 oclAsType(ClassDiagramView).getProperty(self.propertyID).
 oclAsType(Association)

 addedAssociation.end->select(e:AssociationEnd|
 addedAssociation.getOtherEnd(e.getIDStr()).
 isNavigable = true).participant

2. Changed Class Diagram View – Deleted Association
Change Code: CCDVDA
Changed Element: model::foundation::core::ClassDiagramView
Deleted Property: model::foundation::core::Association
Impacted Element: model::foundation::core::ClassClassifier
Description: The bag of impacted classes is such that each impacted class in the bag was a

participant (in the meta-model) of one of the deleted association’s ends,
and each impacted class was able to navigate to the classifier at the other end of
the association via the deleted association.

Rationale: Each of the impacted classes has lost a navigable association.
Resulting Change: Methods (implementations of the operations) may have to be updated and/or

deleted to reflect the change. Also, the variable storing reference(s) to objects of
the class at the opposite end may have to be deleted from the class’s
implementation. Note that since the model is assumed to be consistent the class
invariant and operation contracts in each impacted class should not contain
navigation expressions to the class that uses the deleted association.

OCL Expression: context modelChanges::Change
 let deletedAssociation:Association = self.changedElement.
 oclAsType(ClassDiagramView).getProperty(self.propertyID).
 oclAsType(Association)

 deletedAssociation.end->select(e:AssociationEnd|
 addedAssociation.getOtherEnd(e.getIDStr()).
 isNavigable = true).participant->select(p:ClassClassifier|
 p.view.model.application.modifiedModel.classDiagramView.
 classClassifier->exists(c:ClassClassifier|
 c.getPathname() = p.getPathname()))

77

3. Changed Class Diagram View – Added Class
Change Code: CCDVAC
Changed Element: model::foundation::core::ClassDiagramView
Added Property: model::foundation::core::ClassClassifier
Description: No impact since the model is assumed to be consistent.

4. Changed Class Diagram View – Deleted Class
Change Code: CCDVDC
Changed Element: model::foundation::core::ClassDiagramView
Deleted Property: model::foundation::core::ClassClassifier
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Interface
Description: The bag of impacted classes is such that each impacted class in the bag had a

navigable association to, or dependency relationship (as a client) with the
deleted class. The descendants of the deleted class are also impacted. The
interfaces that have a dependency relationship (as a client) with the deleted class
are also impacted.

Rationale: Each of the impacted classes can no longer access the services of the deleted
class (directly or indirectly).

Resulting Changes: The implementation of the impacted classes may have to modified. This
modification may include the deletion of the variable that stores the reference to
objects of the deleted class. In addition, methods may have to be modified to
reflect the change. The implementation of the impacted interfaces may have to
be modified to reflect the change. Note that since the model is assumed to be
consistent the class invariant and operation contracts in each impacted class
should not contain navigation expressions to the deleted class. Also, since the
model is assumed to be consistent, there should be no parameter nor attribute
that has the deleted class as its type.

OCL Expressions: context modelChanges::Change def:
 let deletedClass:ClassClassifier = self.changedElement.
 oclAsType(ClassDiagramView).getProperty(self.propertyID).
 oclAsType(ClassClassifier)

context modelChanges::Change -- associated classes
 let deletedClassEnd:AssociationEnd = deletedClass.
 associationEnd

 if deletedClassEnd.isNavigable = true then
 deletedClassEnd.association.getOtherEnd(deletedClassEnd.
 getIDStr()).participant
 else
 null
 endif

context modelChanges::Change -- dependent classifiers
 deletedClass.clientDependency.client

context modelChanges::Change -- subclasses
 deletedClass.specialization.child

78

5. Changed Class Diagram View – Added Dependency
Change Code: CCDVAD
Changed Element: model::foundation::core::ClassDiagramView
Added Property: model::foundation::core::Dependency
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Interface
Description: The client classifier (class or interface) is impacted.
Rationale: The impacted classifier now has a dependency relationship with another

classifier.
Resulting Change: The implementation of the impacted classifier may have to modified to reflect

the change. This modification may include, for instance, updating methods (in
the case of classes) to reflect the change.

OCL Expression: context modelChanges::Change
 self.changedElement.oclAsType(ClassDiagramView).
 getProperty(self.propertyID).oclAsType(Dependency).client

6. Changed Class Diagram View – Deleted Dependency
Change Code: CCDVDD
Changed Element: model::foundation::core::ClassDiagramView
Deleted Property: model::foundation::core::Dependency
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Interface
Description: Same as that of CCDVAD.
Rationale: The impacted classifier has now lost its dependency relationship with another

classifier.
Resulting Change: Same as that of CCDVAD.
OCL Expression: -— Same as that of CCDVAD.

7. Changed Class Diagram View – Added Generalization
Change Code: CCDVAG
Changed Element: model::foundation::core::ClassDiagramView
Added Property: model::foundation::core::Generalization
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Interface
Description: The child classifier (class or interface) is impacted.
Rationale: The impacted classifier is now a subclassifier of another classifier.
Resulting Change: The implementation of the impacted classifier may have to be modified, for

example, in the case of a class classifier, the class declaration code may have to
specify that the class is now a subclass of another class.

OCL Expression: context modelChanges::Change
 self.changedElement.oclAsType(ClassDiagramView).
 getProperty(self.propertyID).oclAsType(Generalization).child

8. Changed Class Diagram View – Deleted Generalization
Change Code: CCDVDG
Changed Element: model::foundation::core::ClassDiagramView
Deleted Property: model::foundation::core::Generalization
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Interface
Description: Same as that of CCDVAG.
Rationale: The impacted classifier is no longer a subclassifier of its former superclassifier.
Resulting Changes: The implementation of the impacted classifier may have to be modified, for

example, in the case of a class classifier, the class declaration code may have to
modified to reflect the change.

OCL Expression: -- Same as that of CCDVAG.

79

9. Changed Class Diagram View – Added Interface
Change Code: CCDVAI
Changed Element: model::foundation::core::ClassDiagramView
Added Property: model::foundation::core::Interface
Description: No impact since the model is assumed to be consistent.

10. Changed Class Diagram View – Deleted Interface
Change Code: CCDVDI
Changed Element: model::foundation::core::ClassDiagramView
Deleted Property: model::foundation::core::Interface
Impacted Elements: model::foundation::core::ClassClassifier

model::foundation::core::Interface
Description: The bag of impacted classes is such that each impacted class in the bag had a

navigable association to, or dependency relationship (as a client) with the
deleted interface. The classes that realized the deleted interface are impacted as
well. In addition, the descendants of the deleted interface as well as the
interfaces that had a dependency relationship (as a client) with the deleted
interface are also impacted.

Rationale: Each of the impacted classes can no longer access the services of the deleted
interface (directly or indirectly). The impacted interfaces are no longer sub-
interfaces of the deleted interface – in the case of the former child interfaces;
and for the other impacted interfaces, they can no longer access the services of
the deleted interface.

Resulting Changes: The implementation of the impacted classes may have to modified. This
modification may include the deletion of the variable that stores the reference to
objects of the classes that realized the deleted interface. In addition, methods
may have to be modified to reflect the change. The implementation of the
interfaces that inherited from the deleted interface may have to be modified.
This modification may include the interface declaration code, for example.

OCL Expressions: context modelChanges::Change def:
 let deletedInterface:Interface = self.changedElement.
 oclAsType(ClassDiagramView).oclAsType(ClassDiagramView).
 getProperty(self.propertyID).oclAsType(Interface)

context modelChanges::Change -- associated classes
 let deletedInterfaceEnd:AssociationEnd = deletedInterface.
 specifiedEnd

 if deletedInterfaceEnd.isNavigable = true then
 deletedInterfaceEnd.association.
 getOtherEnd(deletedInterfaceEnd.getIDStr()).participant
 else
 null
 endif

context modelChanges::Change -- dependent classes and interfaces
 deletedInterface.clientDependency.client

context modelChanges::Change -- subinterfaces
 deletedInterface.specialization.child

80

11. Changed Class Diagram View – Added Realization
Change Code: CCDVAR
Changed Element: model::foundation::core::ClassDiagramView
Added Property: model::foundation::core::Realization
Impacted Element: model::foundation::core::ClassClassifier
Description: The implementation class is impacted.
Rationale: The impacted class now has to implement all the operations in the interface

(specification).
Resulting Change: The implementation of the impacted class may have to be modified to define the

the methods that implement the interface’s operations.
OCL Expression: context modelChanges::Change

 self.changedElement.oclAsType(ClassDiagramView).
 getProperty(self.propertyID).oclAsType(Realization).
 implementation

12. Changed Class Diagram View – Deleted Realization
Change Code: CCDVDR
Changed Element: model::foundation::core::ClassDiagramView
Deleted Property: model::foundation::core::Realization
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CCDVAR.
Rationale: The impacted class no longer realizes the deleted interface.
Resulting Change: The implementation of the impacted class may have to be modified, for

example, the class declaration code may have to modified to reflect the change.
OCL Expression: –- Same as that of CCDVAR.

13. Changed Sequence Diagram View – Added Classifier Role
Change Code: CSDVACR
Changed Element: model::behaviouralElements::collaborations::

SequenceDiagramView
Added Property: model::behaviouralElements::collaborations::ClassifierRole
Description: No impact since the model is assumed to be consistent.

81

14. Changed Sequence Diagram View – Deleted Classifier Role
Change Code: CSDVDCR
Changed Element: model::behaviouralElements::collaborations::

SequenceDiagramView
Deleted Property: model::behaviouralElements::collaborations::ClassifierRole
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
Description: The bag of impacted classes is such that each impacted class in the bag is a base

class of at least one of the classifier roles in the sequence diagram view of the
model, and each impacted class sent at least one message, to the deleted
classifier role, that did not invoke an operation (on the deleted classifier role).
The bag of impacted operations is such that each impacted operation sent at least
one message to the deleted classifier role.

Rationale: The impacted classes no longer send messages to the deleted classifier role. The
impacted operations no longer send messages to the deleted classifier role.

Resulting Changes: The implementation of the impacted classes as well as that of the impacted
operations may have to be changed.

OCL Expressions: context modelChanges::Change def:
 let deletedRole:ClassifierRole = self.changedElement.
 oclAsType(SequenceDiagramView).getProperty(self.
 propertyID).oclAsType(ClassifierRole)

 let senderRoles:ClassifierRole = deletedRole.receivedMessage.
 sender

context modelChanges::Change -- classes
 senderRoles->select(sr:ClassifierRole|sr.
 sentMessage->select(sm:Message|deletedRole.
 receivedMessage->includes(sm))->exists(m:Message|
 not m.activator.action.oclIsTypeOf(CallAction))).base

context modelChanges::Change -- operations
 senderRoles.base.operation->select(od:Operation|
 deletedRole.receivedMessage.activator.action.
 operation->exists(oi:Operation|od.equals(oi)))
 -- od = defined operation
 -- oi = invoked operation

82

15. Changed Sequence Diagram View – Added Message
Change Code: CSDVAM
Changed Element: model::behaviouralElements::collaborations::

SequenceDiagramView
Added Property: model::behaviouralElements::collaborations::Message
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
 model::foundation::core::Postcondition
Description: The base class of the classifier role that sends the added message is impacted if

the message that sends the added message does not invoke an operation, i.e. its
action is not a call action; else, the operation, o, that sends the added message is
impacted. The postcondition of o is also impacted.

Rationale: The impacted class now performs one more action. The impacted operation also
now performs one more action. The impacted postcondition may now not
represent the effect (what is true on completion) of its operation.

Resulting Changes: The implementation of the base class may have to be modified. The method of
the impacted operation may have to be modified. The impacted postcondition
should be checked to ensure that it is still valid.

Invoked Rule: Changed Class Operation – Changed Postcondition (CCOCPst)
OCL Expressions: context modelChanges::Change def:

 let addedMessage:Message = self.changedElement.
 oclAsType(SequenceDiagramView).getProperty(self.
 propertyID).oclAsType(Message)

 let sendingOperation:Operation =
 (if addedMessage.activator.action.oclIsTypeOf(CallAction)
 then
 addedMessage.sender.base.
 operation->select(o:Operation|
 o.equals(addedMessage.activator.action.operation))
 else
 null
 endif)

context modelChanges::Change -- class
 if not addedMessage.activator.oclIsTypeOf(CallAction) then
 addedMessage.sender.base
 else
 null
 endif

context modelChanges::Change -- operation
 sendingOperation

context modelChanges::Change -- postcondition
 sendingOperation.postcondition

83

16. Changed Sequence Diagram View – Deleted Message
Change Code: CSDVDM
Changed Element: model::behaviouralElements::collaborations::

SequenceDiagramView
Deleted Property: model::behaviouralElements::collaborations::Message
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
 model::foundation::core::Postcondition
Description: The base class of the classifier role that sent the deleted message is impacted if

the message that sent the deleted message does not invoke an operation; else,
the operation, o, that sent the deleted message is impacted. The postcondition of
o is also impacted.

Rationale: The impacted class now performs one less action. The impacted operation also
now performs one less action. The impacted postcondition may be invalidated
since one action has been deleted from the sequence of actions performed by the
postcondition’s operation.

Resulting Changes: The implementation of the base class may have to be modified. The method of
the impacted operation may have to be modified. The impacted postcondition
should be checked to ensure that it is still valid.

Invoked Rule: Changed Class Operation – Changed Postcondition (CCOCPst)
OCL Expressions: -- Same as that of CSDVAM.

17. Changed State Diagram View – Added Composite State
Change Code: CStDVACS
Changed Element: model::behaviouralElements::stateMachines::

StatechartDiagramView
Added Property: model::behaviouralElements::stateMachines::CompositeState
Impacted Element: model::foundation::core::ClassClassifier
Description: The context class, of the state machine to which the added composite state

belongs, is impacted.
Rationale: The impacted class’s state machine now has one more state.
Resulting Change: The implementation of the impacted class (or class cluster to which it belongs)

may have to be modified to account for the new state.
OCL Expression: context modelChanges::Change

 self.changedElement.oclAsType(StatechartDiagramView).
 getProperty(self.propertyID).oclAsType(CompositeState).
 stateMachine.context

18. Changed State Diagram View – Deleted Composite State
Change Code: CStDVDCS
Changed Element: model::behaviouralElements::stateMachines::

StatechartDiagramView
Deleted Property: model::behaviouralElements::stateMachines::CompositeState
Impacted Element: model::foundation::core::ClassClassifier
Description: The context class, of the state machine to which the deleted composite state

belonged, is impacted.
Rationale: The impacted class’s state machine now has one less state.
Resulting Change: The implementation of the impacted class (or class cluster to which it belongs)

may have to be modified to account for the deleted state.
OCL Expression: -- Same as that of CStDVACS.

84

19. Changed State Diagram View – Added Simple State
Change Code: CStDVASS
Changed Element: model::behaviouralElements::stateMachines::

StatechartDiagramView
Added Property: model::behaviouralElements::stateMachines::SimpleState
Impacted Element: model::foundation::core::ClassClassifier
Description: The context class, of the state machine to which the added simple state belongs,

is impacted.
Rationale: The impacted class’s state machine now has one more state.
Resulting Change: The implementation of the impacted class (or class cluster to which it belongs)

may have to be modified to account for the new state.
OCL Expression: context modelChanges::Change

 self.changedElement.oclAsType(StatechartDiagramView).
 getProperty(self.propertyID).oclAsType(SimpleState).
 stateMachine.context

20. Changed State Diagram View – Deleted Simple State
Change Code: CStDVDSS
Changed Element: model::behaviouralElements::stateMachines::

StatechartDiagramView
Deleted Property: model::behaviouralElements::stateMachines::SimpleState
Impacted Element: model::foundation::core::ClassClassifier
Description: The context class, of the state machine to which the deleted simple state

belonged, is impacted.
Rationale: The impacted class’s state machine now has one less state.
Resulting Change: The implementation of the impacted class (or class cluster to which it belongs)

may have to be modified to account for the deleted state.
OCL Expression: -- Same as that of CStDVASS.

21. Changed State Diagram View – Added Transition
Change Code: CStDVAT
Changed Element: model::behaviouralElements::stateMachines::

StatechartDiagramView
Added Property: model::behaviouralElements::stateMachines::Transition
Impacted Element: model::foundation::core::ClassClassifier
Description: The context class, of the state machine to which the added transition belongs, is

impacted.
Rationale: The impacted class’s state machine now has one more transition.
Resulting Change: The implementation of the impacted class (or class cluster to which it belongs)

may have to be modified to account for the new transition.
OCL Expression: context modelChanges::Change

 self.changedElement.oclAsType(StatechartDiagramView).
 getProperty(self.propertyID).oclAsType(Transition).
 stateMachine.context

85

22. Changed State Diagram View – Deleted Transition
Change Code: CStDVDT
Changed Element: model::behaviouralElements::stateMachines::

StatechartDiagramView
Deleted Property: model::behaviouralElements::stateMachines::Transition
Impacted Element: model::foundation::core::ClassClassifier
Description: The context class, of the state machine to which the deleted transition belonged,

is impacted.
Rationale: The impacted class’s state machine now has one less transition.
Resulting Change: The implementation of the impacted class (or class cluster to which it belongs)

may have to be modified to account for the deleted transition.
OCL Expression: -- Same as that of CStDVAT.

23. Changed Association End – Changed Aggregation
Change Code: CAECA
Changed Element: model::foundation::core::AssociationEnd
Changed Property: aggregation
Impacted Element: model::foundation::core::ClassClassifier
Description: There is no impact when aggregation is changed from “no aggregation” to

“aggregation” since the model is assumed to be consistent. The association end’s
participant (in the meta-model) is impacted when aggegation is
changed from “no aggregation” to “composition”. There is no impact when
aggregation is changed from “aggregation” to “no aggregation”. The
association end’s participant (in the meta-model) is impacted when
aggregation is changed from “aggregation” to “composition”. The
association end’s participant (in the meta-model) is impacted when
aggregation is changed from “composition” to “no aggregation”. The
association end’s participant (in the meta-model) is impacted when
aggregation is changed from “composition” to “aggregation”.

Rationale: When aggregation is changed to “composition” then the participant is
impacted because it now has to handle the the life time issues of the parts, i.e.
the parts live and die with the composite, and so the impacted class has to
account for this. However, when aggregation is changed from
“composition”, then the participant is impacted because now it is no longer
responsible for the life time issues of the parts and thus the class
(participant) may have to be changed to reflect this.

Resulting Change: Certain methods of the impacted class may have to be changed to reflect the
change in the life time dependencies of the parts in the composition relationship,
for example, constructors and destructors may have to be changed.

OCL Expression: context modelChanges::Change
 if (self.changedElement.oclAsType(AssociationEnd).
 getAggregation() = #composite) or (self.changedElement.
 association.view.model.application.originalModel.
 classDiagramView.getAssociation(self.changedElement.
 association.getIDStr()).getEnd(self.changedElement.
 getIDStr()).getAggregation() = #composite) then
 self.changedElement.participant
 else
 null
 endif)

86

24. Changed Association End – Changed Changeability
Change Code: CAECC
Changed Element: model::foundation::core::AssociationEnd
Changed Property: changeability
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
Description: The class at the unchanged association end is impacted if the changed

association end is navigable. The impacted operations are those in the class at
the unchanged association end, such that the postcondition of each of these
operations contains at least one navigation (via the changed association) to the
class at the changed association end.

Rationale: The criterion for adding, modifying and deleting links to objects of the class at
the changed association end has changed and thus the method of each impacted
operation may have to be changed to reflect this change. The implementation of
the impacted class may have to be changed.

Resulting Changes: The implementation (method) of each impacted operation should be checked to
verify that it does not violate the new changeability criterion. If
changeability was changed to “changeable” then the methods of the
impacted operations may have to be modified to allow for the addition,
modification or deletion of links to objects of the class at the changed
association end. If changeability was changed from “frozen” to
“addOnly” then the methods of the impacted operations may have to be
modified to allow for the addition of links to objects of the class at the changed
association end. Also, additional operations may have to be defined (and
implemented) in the impacted class. The postconditions of some operations in
the impacted class may not show a navigation to the class at the changed
association end even though their methods have such navigations. The
implementation of the impacted class thus has to be checked for the occurrences
of these methods.

OCL Expressions: context modelChanges::Change Def:
 let affectedClass:ClassClassifier = self.changedElement.
 association.getOtherEnd(self.changedElement.getIDStr()).
 participant

context modelChanges::Change -- operations
 affectedClass.operation->select(o:Operation|o.postcondition.
 containsNavigation(self.changedElement.participant,
 self.changedElement.association))

context modelChanges::Change -- class
 if self.changedElement.isNavigable = true then
 affectedClass
 else
 null
 endif

25. Changed Association End – Added Interface Specifier
Change Code: CAEAIS
Changed Element: model::foundation::core::AssociationEnd
Added Property: interfaceSpecifier
Description: No impact since the model is assumed to be consistent.

87

26. Changed Association End – Changed Interface Specifier
Change Code: CAECIS
Changed Element: model::foundation::core::AssociationEnd
Changed Property: interfaceSpecifier
Description: “Changed Interface Specifier” refers to a change in the classifier’s specification.

For example, if the interface specifier is an interface, then an added operation is
treated as a changed specification. There is no impact since the model is
assumed to be consistent.

27. Changed Association End – Deleted Interface Specifier
Change Code: CAEDIS
Changed Element: model::foundation::core::AssociationEnd
Deleted Property: interfaceSpecifier
Description: No impact – the original services are still available and have not changed. Note

that an association end interface specifier specifies the subset of the
funtionalities of a classifier that are needed in the association. Thus, deleting the
interface specifier does not result in any impacts.

28. Changed Association End – Changed isNavigable
Change Code: CAECiN
Changed Element: model::foundation::core::AssociationEnd
Changed Property: isNavigable
Impacted Element: model::foundation::core::ClassClassifier
Description: If isNavigable equals true then the class at the unchanged association end

is impacted.
Rationale: The impacted class is now able to navigate to the classifier at the unchanged

association end via the changed association.
Resulting Change: The existing operations of the impacted class may have to be modified and/or

new operations defined to access link(s) to the class at the changed association
end.

OCL Expression: context modelChanges::Change
 if self.changedElement.isNavigable = true then
 self.changedElement.association.getOtherEnd(self.
 changedElement.getIDStr()).participant
 else
 null
 endif

88

29. Changed Association End – Changed Multiplicity
Change Code: CAECM
Changed Element: model::foundation::core::AssociationEnd
Changed Property: multiplicity
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Invariant
 model::foundation::core::Operation
 model::foundation::core::Operation

Description: The class at the unchanged association end is impacted if the changed
association end is navigable. The invariant of the class at the unchanged
association end is impacted if it contains any navigation (via the changed
association) to the class at the changed association end. The bag of impacted
operations is such that each impacted operation in the bag belongs to the class at
the unchanged association end, and each impacted operation’s pre/postcondition
contains at least one navigation (via the changed association) to the class at the
changed association end. The impacted pre/postconditions are those of the
impacted operations that contain navigations (via the changed association) to the
class at the changed association end.

Rationale: The impacted class’s implementation may have to be changed. The impacted
invariant and pre/postconditions may be accessing links that no longer exist or
may have to be modified to account for the new number of links. The method of
each impacted operation may have to be modified.

Resulting Changes: The method of each impacted element may have to be modified to reflect the
changed multiplicity, i.e. the changed multiplicity affects the number of
accessible links. It may also affect how the links are accessed. The
implementation of the impacted class may have to be changed to reflect the
change. For example, if the multiplicity was changed from 1 to *, then the
implementation needs to define an attribute that has a multiplicity greater than 1
to store the links to objects of the class at the changed association end. In
addition, new operations may have to be defined to facilitate access to the new
number of links.

Invoked Rules: Changed Class – Changed Invariant (CCCI).
Changed Class Operation – Changed Precondition (CCOCPre)
Changed Class Operation – Changed Postcondition (CCOCPst)

89

OCL Expressions: context modelChanges::Change Def:
 let affectedClass:ClassClassifier = self.changedElement.
 association.getOtherEnd(self.changedElement.getIDStr()).
 participant

context modelChanges::Change -- class
 if self.changedElement.isNavigable = true then
 affectedClass
 else
 null
 endif

context modelChanges::Change -- invariant
 if affectedClass.invariant.containsNavigation(self.
 changedElement.participant, self.changedElement.
 association) then
 affectedClass.invariant
 else
 null
 endif

context modelChanges::Change -- operations
 affectedClass.operation->select(o:Operation|o.postcondition.
 containsNavigation(self.changedElement.participant, self.
 changedElement.association) or o.precondition.
 containsNavigation(self.changedElement.participant,
 self.changedElement.association))

context modelChanges::Change -- preconditions
 affectedClass.operation.precondition->select(pr:Precondition|
 pr.containsNavigation(self.changedElement.participant,
 self.changedElement.association)

context modelChanges::Change -- postconditions
 affectedClass.operation.postcondition->select(ps:Postcondition|
 ps.containsNavigation(self.changedElement.participant,
 self.changedElement.association)

90

30. Changed Association End – Changed Ordering
Change Code: CAECO
Changed Element: model::foundation::core::AssociationEnd
Changed Property: ordering
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
Description: The class at the unchanged association end is impacted if the changed

association end is navigable. The bag of impacted operations is such that each
impacted operation in the bag belongs to the class (impacted class) at the
unchanged association end, and each impacted operation’s pre/postcondition
contains at least one navigation (via the changed association) to the class at the
changed association end.

Rationale: The method of each impacted operation may have to be modified to reflect the
new ordering criterion. For example, if the method adds links then it (the
method) may have to be changed to reflect the new ordering criterion.
Additional operations may have to be defined to implement the new ordering
criterion. Also, a data type change may be required for the variable (in the
implementation of the impacted class) that stores the links to the objects of the
class at the changed association end.

Resulting Changes: The impacted class’s implementation may have to be modified. The method of
each impacted operation may have to be modified.

OCL Expressions: context modelChanges::Change Def:
 let affectedClass:ClassClassifier = self.changedElement.
 association.getOtherEnd(self.changedElement.getIDStr()).
 participant

context modelChanges::Change -- class
 if self.changedElement.isNavigable = true then
 affectedClass
 else
 null
 endif

context modelChanges::Change -- operations
 affectedClass.operations->select(o:Operation|o.postcondition.
 containsNavigation(self.changedElement.participant,
 self.changedElement.association) or o.precondition.
 containsNavigation(self.changedElement.participant,
 self.changedElement.association))

31. Changed Association End – Added Qualifier
Change Code: CAEAQ
Changed Element: model::foundation::core::AssociationEnd
Added Property: qualifier
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
Description: Same as that of CAECO.
Rationale: The method of each impacted operation may have to be changed so that it now

uses the added qualifier in link selection. Data structure(s) may have to be
defined to facilitate the new lookup feature that the added qualifier introduces.
In addition, new operations may have to be defined (and implemented) to
facilate the change.

Resulting Changes: Same as that of CAECO.
OCL Expressions: -- Same as that of CAECO.

91

32. Changed Association End – Changed Qualifier Type
Change Code: CAECQT
Changed Element: model::foundation::core::AssociationEnd
Changed Property: qualifier
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
Description: Same as that of CAECO.
Rationale: The method of each impacted operation may have to be changed so that it is

now consistent with the changed qualifier type. The implementation of the
qualifier may have to be changed.

Resulting Changes: Same as that of CAECO.
OCL Expressions: -- Same as that of CAECO.

33. Changed Association End – Deleted Qualifier
Change Code: CAEDQ
Changed Element: model::foundation::core::AssociationEnd
Deleted Property: qualifier
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
Description: Same as that of CAECO.
Rationale: The method of each impacted operation may have to be changed so that it

doesn’t use the deleted qualifier in link selection. Certain operations defined
specifically for the deleted qualifier may have to be deleted. The declaration of
the data structure used for the deleted qualifier may have to be deleted.

Resulting Changes: Same as that of CAECO.
OCL Expressions: -- Same as that of CAECO.

34. Changed Association End – Changed Target Scope
Change Code: CAECTS
Changed Element: model::foundation::core::AssociationEnd
Changed Property: targetScope
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
Description: Same as that of CAECO.
Rationale: The method of each impacted operation may have to be changed so that it is

now consistent with the changed target scope. The declaration of variables
containing links to the target class in the implementation of the impacted class
may have to be changed.

Resulting Changes: Same as that of CAECO.
OCL Expressions: -- Same as that of CAECO.

35. Changed Association End – Changed Visibility
Change Code: CAECV
Changed Element: model::foundation::core::AssociationEnd
Changed Property: visibility
Description: No impact since the model is assumed to be consistent.

92

36. Changed Class – Added Attribute
Change Code: CCAA
Changed Element: model::foundation::core::ClassClassifier
Added Property: model::foundation::core::Attribute
Description: There is no impact since the model is assumed consistent. However, the class

may have to be modified to include operations that access the new attribute
and/or existing operations may have to be modified to access the new attribute.
In addition, the class invariant may have to be modified to reflect the constraints
(if any) on the attribute.

37. Changed Class – Deleted Attribute
Change Code: CCDA
Changed Element: model::foundation::core::ClassClassifier
Deleted Property: model::foundation::core::Attribute
Description: No impact since the model is assumed to be consistent. However, the

implementation of the changed class may have to be updated.

38. Changed Class – Changed Invariant
Change Code: CCCI
Changed Element: model::foundation::core::ClassClassifier
Changed Property: invariant
Description: No impact since the model is assumed to be consistent.

39. Changed Class – Changed isAbstract
Change Code: CCCiAbs
Changed Element: model::foundation::core::ClassClassifier
Changed Property: isAbstract
Impacted Element: model::foundation::core::ClassClassifier
Description: The classes that have a navigable association to the changed class are impacted.

The classes that have a dependency relationship (as a client) with the changed
class are also impacted.

Rationale: If isAbstract is now true, then now it is not possible to have links to objects
of the changed class, only links to concrete subclasses. If isAbstract is now
false, then it is now possible to have links to objects of the changed class.

Resulting Change: The implementation of the impacted classes may have to be changed. For
example, some of the methods that access the changed class may have to be
changed.

OCL Expression: context modelChanges::Change
 self.changedElement.associationEnd->select(e:AssociationEnd|
 e.isNavigable = true)->forAll(e:AssociationEnd|e.association.
 getOtherEnd(e.getIDStr()))->union(self.changedElement.
 clientDependency.client->select(c:Classifier|
 c.oclIsTypeOf(ClassClassifier)))

40. Changed Class – Changed isActive
Change Code: CCCiA
Changed Element: model::foundation::core::ClassClassifier
Changed Property: isActive
Description: No impact. However, the implementation of the changed class may have to be

updated.

93

41. Changed Class – Changed isLeaf
Change Code: CCCiL
Changed Element: model::foundation::core::ClassClassifier
Changed Property: isLeaf
Description: No impact since the model is assumed to be consistent. However, the

implementation of the changed class may have to be updated. For example, the
variable declaration section of the code may have to be changed to state that the
class cannot be extended.

42. Changed Class – Changed isRoot
Change Code: CCCiR
Changed Element: model::foundation::core::ClassClassifier
Changed Property: isRoot
Description: No impact since the model is assumed to be consistent. However, the

implementation of the changed class may have to be updated.

43. Changed Class – Changed Multiplicity
Change Code: CCCM
Changed Element: model::foundation::core::ClassClassifier
Changed Property: multiplicity
Description: No impact since the model is assumed to be consistent. However, the

implementation of the changed class may have to be updated.

44. Changed Class – Added Operation
Change Code: CCAO
Changed Element: model::foundation::core::ClassClassifier
Added Property: model::foundation::core::Operation
Description: No impact since the model is assumed to be consistent. However, the

implementation of the changed class may have to be updated.

45. Changed Class – Deleted Operation
Change Code: CCDO
Changed Element: model::foundation::core::ClassClassifier
Deleted Property: model::foundation::core::Operation
Description: No impact since the model is assumed to be consistent. However, the

implementation of the changed class may have to be updated.

46. Changed Class – Changed Visibility
Change Code: CCCV
Changed Element: model::foundation::core::ClassClassifier
Changed Property: visibility
Description: No impact since the model is assumed to be consistent. However, the

implementation of the changed class may have to be updated. For example, the
variable declaration section of the code may have to be changed to state the new
visibility.

47. Changed Interface – Added Operation
Change Code: CIAO
Changed Element: model::foundation::core::Interface
Added Property: model::foundation::core::Operation
Description: No impact since the model is assumed to be consistent. However, the

implementation of the changed interface may have to be updated.

94

48. Changed Interface – Deleted Operation
Change Code: CIDO
Changed Element: model::foundation::core::Interface
Deleted Property: model::foundation::core::Operation
Impacted Element: model::foundation::core::ClassClassifier
Description: The classes that realize the changed interface are impacted if they declare the

deleted operation.
Rationale: The impacted classes realizes an interface operation that has been deleted from

the realized interface.
Resulting Change: The deleted interface operation may have to be deleted from the impacted

classes. The method of the deleted operation may also have to be deleted from
the impacted classes.

OCL Expression: context modelChanges::Change
 self.changedElement.implementationRealization.
 implementation->select(c:ClassClassifier|
 c.operation->includes(self.changedElement.
 oclAsType(Interface).getOperation(self.propertyID).
 oclAsType(Operation)))

49. Changed Classifier Role – Added Available Operation
Change Code: CCRAAO
Changed Element: model::behaviouralElements::collaborations::ClassifierRole
Added Property: availableOperation
Description: No impact since the model is assumed to be consistent.

50. Changed Classifier Role – Deleted Available Operation
Change Code: CCRDAO
Changed Element: model::behaviouralElements::collaborations::ClassifierRole
Deleted Property: availableOperation
Description: No impact since the model is assumed to be consistent.

51. Changed Classifier Role – Changed Base Class Classifier
Change Code: CCRCBCC
Changed Element: model::behaviouralElements::collaborations::ClassifierRole
Changed Property: base
Description: Handled by the rules that deal with a changed class.

52. Changed Classifier Role – Changed Multiplicity
Change Code: CCRCM
Changed Element: model::behaviouralElements::collaborations::ClassifierRole
Changed Property: multiplicity
Description: Handled by the rule that deals with a changed class multiplicity (CCCM).

95

53. Changed Message Action – Changed Recurrence
Change Code: CMACR
Changed Element: model::behaviouralElements::collaborations::Message
Changed Property: action.recurrence
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation
 model::foundation::core::Postcondition

Description: The base class of the classifier role that sends the changed message is impacted
if the message that sends the changed message does not invoke an operation;
else, the operation, o, that sends the changed message is impacted. The
postcondition of o is also impacted.

Rationale: One of the impacted class’s actions has been changed. The impacted operation
action has also been changed. The impacted postcondition may now not
represent the effect (what must be true on completion) of its operation.

Resulting Changes: The implementation of the impacted class may have to be modified. The method
of the impacted operation may have to be modified. The impacted postcondition
should be checked to ensure that it is correct.

Invoked Rule: Changed Class Operation – Changed Postcondition (CCOCPst)
OCL Expressions: context modelChanges::Change def:

 let changedMessage:Message = self.changedElement

 let sendingOperation:Operation =
 (if changedMessage.activator.action.oclIsTypeOf(CallAction)
 then
 changedMessage.sender.base.
 operation->select(o:Operation|
 o.equals(changedMessage.activator.action.operation))
 else
 null
 endif)

context modelChanges::Change -- class
 if not changedMessage.activator.oclIsTypeOf(CallAction) then
 changedMessage.sender.base
 else
 null
 endif

context modelChanges::Change -- operation
 sendingOperation

context modelChanges::Change -- postcondition
 sendingOperation.postcondition

54. Changed Composite State – Added Subvertex
Change Code: CCSAS
Changed Element: model::behaviouralElements::stateMachines::CompositeState
Added Property: subvertex
Impacted Element: model::foundation::core::ClassClassifier
Description: The context class of the state machine to which the composite class belongs is

impacted.
Rationale: The context class now has one more state.
Resulting Change: The implementation of the impacted class (or class cluster) may have to be

modified to account for the extra state and the corresponding logic.
OCL Expression: context modelChanges::Change

 self.changedElement.stateMachine.context

96

55. Changed Composite State – Deleted Subvertex
Change Code: CCSDS
Changed Element: model::behaviouralElements::stateMachines::CompositeState
Deleted Property: subvertex
Impacted Element: model::foundation::core::ClassClassifier
Description: The context class of the state machine to which the composite class belongs is

impacted.
Rationale: The context class now has one less state.
Resulting Change: The implementation of the impacted class (or class cluster) may have to be

modified to account for the deleted state and the corresponding logic.
OCL Expression: -- Same as that of CCSAS.

56. Changed Transition – Changed Guard
Change Code: CTCG
Changed Element: model::behaviouralElements::stateMachines::Transition
Changed Property: guard
Impacted Element: model::foundation::core::ClassClassifier
Description: The context class of the state machine to which the transition belongs is

impacted.
Rationale: The condition required to trigger the event (in the context class state machine),

of the changed transition, has changed.
Resulting Change: The implementation of the impacted class (or class cluster) may have to be

modified to account for the changed guard condition.
OCL Expression: -- Same as that of CCSAS.

97

57. Changed Attribute – Changed Changeability
Change Code: CACC
Changed Element: model::foundation::core::Attribute
Changed Property: changeability
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation

Description: The bag of impacted operations is such that the changed attribute’s
changeablity is not “changeable” and the postcondition of each impacted
operation possibly updates the changed attribute. The owner (class) of the
attribute is also impacted.

Rationale: If the attribute’s changeability was changed from “changeable” to
“frozen” then each impacted operation’s method may have to be changed to
ensure that the attribute’s value is not updated nor no additional values are
added/deleted to/from the attribute. If the changeability was changed from
“changeable” to “addOnly” then each impacted operation’s method may have to
be changed to ensure that the attribute’s value is not updated nor no values
deleted from the attribute. The implementation of the impacted class may have
to be changed to ensure that the attribute’s new changeablity property is
observed. For example, if the changeability was changed from “frozen” to
“changeable” then some operations may have to be modified to update the
attribute and/or new operations defined to update the attribute. The variable
declaration for the attribute may have to be changed as well.

Resulting Changes: The implementation of the impacted operation may have to be changed. The
implementation of the impacted class may have to be changed and/or operations
defined/deleted/modified.

OCL Expressions: context modelChanges::Change Def:
 let affectedClass:ClassClassifier = self.changedElement.
 getClassClassifier()

context modelChanges::Change -- class
 affectedClass

context modelChanges::Change -- operations
 if self.changedElement.oclAsType(Attribute).getProperty(self.
 propertyID).oclAsType(ChangeableKind) <> #changeable
 then
 affectedClass.getOperations()->select(o:Operation|
 o.postcondition.possiblyUpdatesVariable(self.
 changedElement.name))
 else
 null
 endif

98

58. Changed Attribute – Changed Initial Value
Change Code: CACIV
Changed Element: model::foundation::core::Attribute
Changed Property: initialValue
Impacted Elements: model::foundation::core::Precondition
 model::foundation::core::Postcondition

Description: The bag of impacted preconditions is such that each impacted precondition uses
the changed attribute. The bag of impacted postconditions is such that each
impacted postcondition uses the changed attribute.

Rationale: The changed initial value may now violate the impacted preconditions. The
changed initial value may now change the impacted postconditions.

Invoked Rules: Changed Class Operation – Changed Precondition (CCOCPre)
Changed Class Operation – Changed Postcondition (CCOCPst)

OCL Expressions: context modelChanges::Change -- precondition
 self.changedElement.getClassClassifier().getOperations().
 precondition->select(pr:Precondition|pr.usesVariable(self.
 changedElement.name))

context modelChanges::Change -- postcondition
 self.changedElement.getClassClassifier().getOperations().
 postcondition->select(ps:Postcondition|ps.usesVariable(self.
 changedElement.name))

59. Changed Attribute – Changed Multiplicity
Change Code: CACM
Changed Element: model::foundation::core::Attribute
Changed Property: multiplicity
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation

Description: The bag of impacted operations is such that the precondition of each impacted
operation uses the changed attribute or the postcondition of each impacted
operation accesses the changed attribute. The class that owns the changed
attribute is also impacted.

Rationale: The methods of the impacted operations may not be accessing the correct
attribute values. The variable declaration for the changed attribute may have to
be changed. In addition, new operations may have to be defined, or operations
deleted. Methods may also have to be changed to accomplish the change to the
attribute.

Resulting Changes: The implementation of the impacted class may have to be changed. The
implementation of the impacted methods may have to be changed.

OCL Expressions: context modelChanges::Change Def:
 let affectedClass:ClassClassifier = self.changedElement.
 getClassClassifier()

context modelChanges::Change -- class
 affectedClass

context modelChanges::Change -- operations
 affectedClass.getOperations()->select(o:Operation|
 o.precondition.usesVariable(self.changedElement.name) or
 o.postcondition.accessesVariable(self.changedElement.name))

99

60. Changed Attribute – Changed Ordering
Change Code: CACO
Changed Element: model::foundation::core::Attribute
Changed Property: ordering
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation

Description: Same as that of CACM.
Rationale: The variable declaration (in the implementation of the impacted class) for the

changed attribute may have to be changed. In addition, new operations may have
to be defined, or operations deleted. Methods may also have to changed to
accomplish the changed ordering of the changed attribute.

Resulting Changes: Same as that of CACM.
OCL Expressions: -- Same as that of CACM.

61. Changed Attribute – Changed Owner Scope
Change Code: CACOS
Changed Element: model::foundation::core::Attribute
Changed Property: ownerScope
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation

Description: Same as that of CACM.
Rationale: The variable declaration (in the implementation of the impacted class) for the

changed attribute may have to be changed. In addition, if the attribute is now
static then an operation may have to be defined to update its value. Also, the
methods of the impacted operations should be checked to ensure that their
access to the changed attribute is of the correct scope.

Resulting Changes: Same as that of CACM.
OCL Expressions: -- Same as that of CACM.

62. Changed Attribute – Changed Target Scope
Change Code: CACTS
Changed Element: model::foundation::core::Attribute
Changed Property: targetScope
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation

Description: Same as that of CACM.
Rationale: The variable declaration (in the implementation of the impacted class) for the

changed attribute may have to be changed. In addition, if the attribute now
stores static values then the methods of operations that access the attribute may
have to be checked to ensure consistency.

Resulting Changes: Same as that of CACM.
OCL Expressions: -- Same as that of CACM.

100

63. Changed Attribute – Changed Type
Change Code: CACT
Changed Element: model::foundation::core::Attribute
Changed Property: type
Impacted Elements: model::foundation::core::ClassClassifier
 model::foundation::core::Operation

Description: Same as that of CACM.
Rationale: The variable declaration (in the implementation of the impacted class) for the

changed attribute may have to be changed. The methods of the impacted
operations may have to be changed if they contain type incompatibilities in
regards to the changed attribute.

Resulting Changes: Same as that of CACM.
OCL Expressions: -- Same as that of CACM.

64. Changed Attribute – Changed Visibility
Change Code: CACV
Changed Element: model::foundation::core::Attribute
Changed Property: visibility
Description: No impact since the model is assumed to be consistent.

65. Changed Class Operation – Changed Concurrency
Change Code: CCOCC
Changed Element: model::foundation::core::Operation
Changed Property: concurrency
Description: No impact. The method of the changed operation may have to be modified since

concurrent access to it has changed.

66. Changed Class Operation – Changed isAbstract
Change Code: CCOCiAbs
Changed Element: model::foundation::core::Operation
Changed Property: isAbstract
Description: No impact since the model is assumed to be consistent. However, the method

may have to be modified to indicate whether the operation is abstract or not.

67. Changed Class Operation – Changed isPolymorphic
Change Code: CCOCiP
Changed Element: model::foundation::core::Operation
Changed Property: isPolymorphic
Description: No impact since the model is assumed to be consistent. However, the method

may have to be modified to indicate whether the operation can be overridden.

68. Changed Class Operation – Changed isQuery
Change Code: CCOCiQ
Changed Element: model::foundation::core::Operation
Changed Property: isQuery
Description: No impact since the model is assumed to be consistent. However, the method

(implementation) of the changed operation should be checked to ensure that it
observes the isQuery property.

101

69. Changed Class Operation – Changed Owner Scope
Change Code: CCOCOS
Changed Element: model::foundation::core::Operation
Changed Property: ownerScope
Description: No impact since the model is assumed to be consistent. However, the method

(implementation) of the changed operation should be checked to ensure that it
observes the ownerScope property.

70. Changed Class Operation – Changed Precondition
Change Code: CCOCPre
Changed Element: model::foundation::core::Operation
Changed Property: precondition
Impacted Element: model::foundation::core::Operation
Description: The operations that invoke the changed operation are impacted..
Rationale: The methods of the impacted operations may now be violating the changed

precondition.
Resulting Change: The methods of the impacted operations have to be checked to ensure that the

changed precondition is not violated.
OCL Expression: context modelChanges::Change

 self.changedElement.getInvokingOperations()

71. Changed Class Operation – Changed Postcondition
Change Code: CCOCPst
Changed Element: model::foundation::core::Operation
Changed Property: postcondition
Impacted Elements: model::foundation::core::Operation
 model::foundation::core::Postcondition
Description: The operations that invoke the changed operation are impacted. The

postconditions of the impacted operations are also impacted.
Rationale: The methods of the impacted operations may now have different effects. The

impacted postconditions may have to be changed.
Resulting Change: The methods of the impacted operations have to be checked and possibly

changed.
Invoked Rule: Changed Class Operation – Changed Postcondition (CCOCPst)
OCL Expressions: context modelChanges::Change -- operations

 changedOperation.getInvokingOperations()

context modelChanges::Change -- postconditions
 changedOperation.getInvokingOperations().postcondition

72. Changed Class Operation – Changed Visibility
Change Code: CCOCV
Changed Element: model::foundation::core::Operation
Changed Property: visibility
Description: No impact since the model is assumed to be consistent. However, the method

may have to be modified to indicate the new visibility of the operation.

73. Changed Interface Operation – Changed Concurrency
Change Code: CIOCC
Changed Element: model::foundation::core::Operation
Changed Property: concurrency
Description: No impact since the model is assumed to be consistent.

102

74. Changed Interface Operation – Changed isPolymorphic
Change Code: CIOCiP
Changed Element: model::foundation::core::Operation
Changed Property: isPolymorphic
Description: No impact since the model is assumed to be consistent. However, the code may

have to be modified to state that the operation cannot be overridden.

75. Changed Interface Operation – Changed isQuery
Change Code: CIOCiQ
Changed Element: model::foundation::core::Operation
Changed Property: isQuery
Description: No impact since the model is assumed to be consistent.

76. Changed Interface Operation – Changed Owner Scope
Change Code: CIOCOS
Changed Element: model::foundation::core::Operation
Changed Property: ownerScope
Description: No impact since the model is assumed to be consistent. However, the code may

have to be modified to indicate the new scope.

77. Changed Interface Operation – Changed Precondition
Change Code: CIOCPre
Changed Element: model::foundation::core::Operation
Changed Property: precondition
Description: No impact since the model is assumed to be consistent. The methods of the

operations that realize the changed interface operation should be checked.

78. Changed Interface Operation – Changed Postcondition
Change Code: CIOCPst
Changed Element: model::foundation::core::Operation
Changed Property: postcondition
Description: No impact since the model is assumed to be consistent. The methods of the

operations that realize the changed interface operation should be checked.

103

79. Changed Class Operation Parameter – Changed Default Value
Change Code: CCOPCDV
Changed Element: model::foundation::core::Parameter
Changed Property: defaultValue
Impacted Elements: model::foundation::core::Precondition

model::foundation::core::Postcondition
Description: The precondition of the operation to which the changed parameter belongs is

impacted if it uses the changed parameter. The postcondition of the operation is
also impacted if it uses the changed parameter.

Rationale: The impacted operation contracts (pre/postconditions) are using a parameter
whose default value has changed, so conditional statements, for example, may
yield different results.

Resulting Change: The method of the operation to which the changed parameter belongs should be
checked and possibly changes made to account for the changed parameter
default value.

Invoked Rules: Changed Class Operation – Changed Precondition (CCOCPre)
Changed Class Operation – Changed Postcondition (CCOCPst)

OCL Expressions: context modelChanges::Change -- precondition
 self.changedElement.getOperation().
 precondition->select(pr:Precondition|pr.
 usesVariable(self.changedElement.name))

context modelChanges::Change -- postcondition
 self.changedElement.getOperation().
 postcondition->select(ps:Postcondition|ps.
 accessesVariable(self.changedElement.name))

80. Changed Class Operation Parameter – Changed Direction
Change Code: CCOPCD
Changed Element: model::foundation::core::Parameter
Changed Property: direction
Description: There is no impact since the model is assumed to be consistent. However, the

method of the operation to which the changed parameter belongs should be
checked to ensure consistency.

104

81. Changed Class Operation Parameter – Changed Name
Change Code: CCOPCN
Changed Element: model::foundation::core::Parameter
Changed Property: name
Impacted Elements: model::foundation::core::Precondition

model::foundation::core::Postcondition
Description: Same as that of CCOPCDV.
Rationale: The impacted operation contracts (pre/postconditions) are using a parameter

whose name has changed so they have to account for this change.
Resulting Change: The method of the operation to which the changed parameter belongs should be

checked to ensure that it is using the correct name to reference the changed
parameter.

Invoked Rules: Changed Class Operation – Changed Precondition (CCOCPre)
Changed Class Operation – Changed Postcondition (CCOCPst)

OCL Expressions: context modelChanges::Change def:
 let parameterOriginalName:String = self.changedElement.
 getOperation().getClassClassifier().view.model.
 application.originalModel.classDiagramView.
 getClassClassifier(self.changedElement.getOperation().
 getClassClassifier().getPathname()).getOperation(self.
 changedElement.getOperation().getSignature()).
 parameter->asSequence->at(self.changedElement.
 getOperation().getParameterPosition(self.
 changedElement)).name

context modelChanges::Change -- precondition
 self.changedElement.getOperation().
 precondition->select(pr:Precondition|pr.
 usesVariable(parameterOriginalName))

context modelChanges::Change -- postcondition
 self.changedElement.getOperation().
 postcondition->select(ps:Postcondition|ps.
 usesVariable(parameterOriginalName))

82. Changed Interface Operation Parameter – Changed Default Value
Change Code: CIOPCDV
Changed Element: model::foundation::core::Parameter
Changed Property: defaultValue
Impacted Elements: model::foundation::core::Precondition

model::foundation::core::Postcondition
Description: Same as that of CCOPCDV.
Rationale: Same as that of CCOPCDV.
Invoked Rules: Changed Class Operation – Changed Precondition (CCOCPre)

Changed Class Operation – Changed Postcondition (CCOCPst)
OCL Expressions: -- Same as that of CCOPCDV.

83. Changed Interface Operation Parameter – Changed Direction
Change Code: CIOPCD
Changed Element: model::foundation::core::Parameter
Changed Property: direction
Description: No impact since the model is assumed to be consistent.

105

84. Changed Interface Operation Parameter – Changed Name
Change Code: CIOPCN
Changed Element: model::foundation::core::Parameter
Changed Property: name
Impacted Elements: model::foundation::core::Precondition
 model::foundation::core::Postcondition

Description: Same as that of CCOPCN.
Rationale: Same as that of CCOPCN.
Resulting Changes: The impacted pre/postcondition should be modified so that they reflect the new

parameter name.
OCL Expressions: context modelChanges::Change def:

 let parameterOriginalName:String = self.changedElement.
 getOperation().getInterface().view.model.
 application.originalModel.classDiagramView.
 getInterface(self.changedElement.getOperation().
 getInterface().getPathname()).getOperation(self.
 changedElement.getOperation().getSignature()).
 parameter->asSequence->at(self.changedElement.
 getOperation().getParameterPosition(self.
 changedElement)).name

context modelChanges::Change -- precondition
 self.changedElement.getOperation().
 precondition->select(pr:Precondition|pr.
 usesVariable(parameterOriginalName))

context modelChanges::Change -- postcondition
 self.changedElement.getOperation().
 postcondition->select(ps:Postcondition|ps.
 usesVariable(parameterOriginalName))

85. Changed State – Added Activity
Change Code: CSAA
Changed Element: model::behaviouralElements::stateMachines::State
Added Property: doActivity
Impacted Element: model::foundation::core::ClassClassifier
Description: The class (context class) that owns the state machine of the changed state is

impacted.
Rationale: The behaviour of the context class has changed.
Resulting Change: The implementation of the impacted class may have to be modified.
OCL Expression: context modelChanges::Change

 self.changedElement.stateMachine.context

86. Changed State – Deleted Activity
Change Code: CSDA
Changed Element: model::behaviouralElements::stateMachines::State
Deleted Property: doActivity
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: Same as that of CSAA.
Resulting Change: Same as that of CSAA.
OCL Expression: -- Same as that of CSAA.

106

87. Changed State – Added Entry Action
Change Code: CSAEA
Changed Element: model::behaviouralElements::stateMachines::State
Added Property: entry
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: Same as that of CSAA.
Resulting Change: Same as that of CSAA.
OCL Expression: -- Same as that of CSAA.

88. Changed State – Deleted Entry Action
Change Code: CSDEA
Changed Element: model::behaviouralElements::stateMachines::State
Deleted Property: entry
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: Same as that of CSAA.
Resulting Change: Same as that of CSAA.
OCL Expression: -- Same as that of CSAA.

89. Changed State – Added Exit Action
Change Code: CSAExA
Changed Element: model::behaviouralElements::stateMachines::State
Added Property: exit
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: Same as that of CSAA.
Resulting Change: Same as that of CSAA.
OCL Expression: -- Same as that of CSAA.

90. Changed State – Deleted Exit Action
Change Code: CSDExA
Changed Element: model::behaviouralElements::stateMachines::State
Deleted Property: exit
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: Same as that of CSAA.
Resulting Change: Same as that of CSAA.
OCL Expression: -- Same as that of CSAA.

91. Changed State – Added Internal Transition
Change Code: CSAIT
Changed Element: model::behaviouralElements::stateMachines::State
Added Property: internalTransition
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: Same as that of CSAA.
Resulting Change: Same as that of CSAA.
OCL Expression: -- Same as that of CSAA.

107

92. Changed State – Deleted Internal Transition
Change Code: CSDIT
Changed Element: model::behaviouralElements::stateMachines::State
Deleted Property: internalTransition
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: Same as that of CSAA.
Resulting Change: Same as that of CSAA.
OCL Expression: -- Same as that of CSAA.

93. Changed State – Changed State Invariant
Change Code: CSCSI
Changed Element: model::behaviouralElements::stateMachines::State
Changed Property: invariant
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: A state invariant has been changed so the implemenation of the class has to be

checked.
Resulting Change: The implementation of the context class may have to be modified.
OCL Expression: -- Same as that of CSAA.

94. Changed State Machine Action – Added Discrete Action
Change Code: CSMAADA
Changed Element: model::commonBehaviour::Action
Added Property: action
Impacted Element: model::foundation::core::ClassClassifier
Description: The class (context class) that owns the state machine to which the changed

action belongs is impacted.
Rationale: A discrete action has been added to the action performed by a transition in the

state machine so the implementation of the class has to be checked.
Resulting Change: The implementation of the context class may have to be modified to account for

the added discrete action.
OCL Expression: context modelChanges::Change

 if self.changedElement.state->notEmpty then
 self.changedElement.state.stateMachine.context
 else –- the else clause assumes that the state machine action
 -- belongs to a transition instead of a state
 self.changedElement.transition.stateMachine.context

95. Changed State Machine Action – Deleted Discrete Action
Change Code: CSMADDA
Changed Element: model::commonBehaviour::Action
Deleted Property: action
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSMAADA.
Rationale: A discrete action has been deleted from the action performed by a transition in

the state machine so the implementation of the class has to be checked.
Resulting Change: The implementation of the context class may have to be modified to account for

the deleted discrete action.
OCL Expression: -- Same as that of CSMAADA.

108

96. Changed State Machine Action – Changed Recurrence
Change Code: CSMACR
Changed Element: model::commonBehaviour::Action
Changed Property: recurrence
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSMAADA.
Rationale: The recurrence property of an action in the state machine has been changed thus

this has to reflected in the implementation of the context class.
Resulting Change: The implementation of the context class may have to be modified to account for

the changed recurrence property.
OCL Expression: -- Same as that of CSMAADA.

97. Changed State Machine Action – Changed Script
Change Code: CSMACS
Changed Element: model::commonBehaviour::Action
Changed Property: script
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSMAADA.
Rationale: The script property of an action in the state machine has been changed thus this

has to reflected in the implementation of the context class.
Resulting Change: The implementation of the context class may have to be modified to account for

the changed script property.
OCL Expression: -- Same as that of CSMAADA.

109

Appendix E Case Study

E.1 Logical Changes

Eight (8) logical changes were made in the case study. This translated into 70 changes.

The logical The logical changes are described below.

Change # 1
We want to be able to keep track of how many times per session a user attempts to enter
the PIN – after 3 invalid PIN’s the card will be retained

This translates into the following changes:

1. (CCAA)1 new attribute in class ATM - numberOfTries : Integer = 0
2. 4 new methods :

a. (CCAO)resetNumTries() : Void (Class ATM)
b. (CCAO)incrementNumTries() : Void (Class ATM)
c. (CCAO)getNumTries() : Void (Class ATM)
d. (CCAO)displayRetainCard() : Void (Class Display)

3. 4 new messages in sequence diagrams
a. (CSDVAM)1.1.2: resetNumTries() (CardInsert)
b. (CSDVAM)3: try = getNumTries() (PINInvalid)
c. (CSDVAM)5: [try <=3] displayRetainCard() (PINInvalid)
d. (CSDVAM)1.3: incrementNumTries() (GetPIN)

4. 1 changed message in PINInvalid sequence diagram
a. (CMACR)old – 3: [err=1]pin = getPIN()
b. new – 4: [err = 1 and try < 3] pin = getPIN

5. 1 added object to PINInvalid sequence diagram
a. (CSDVACR)display:Display

Change #2
The ATM’s attribute ‘state’ would be better represented by an enumeration class then a
simple integer

This translates into the following changes:

1. (CCDVAI)New Interface ‘java.util.Enumeration’ – containing two methods
a. (CCAO)hasMoreElements():boolean
b. (CCAO)nextElement():Object

2. (CCDVAC)New Class ‘StateEnum’ containing 10 attributes and 10 methods
a. (CCAA)Private static final int Off
b. (CCAA)Private static final int WitingForCard
c. (CCAA)Private static final int GettingPIN
d. (CCAA)Private static final int GettingTransType
e. (CCAA)Private static final int AskingDoAnother
f. (CCAA)Private static final int GettingAccountType

110

g. (CCAA)Private static final int GettingTransAmount
h. (CCAA)Private static final int PerformingTrans
i. (CCAA)Private static final int PrintingReceipt
j. (CCAA)Private int CurrentState
k. (CCAO)Public int getCurrentState()
l. (CCAO)Public void setToOffState()
m. (CCAO)Public void setToWaitingForCard()
n. (CCAO)Public void setToGettingPINState()
o. (CCAO)Public void setToAskingDoAnotherState()
p. (CCAO)Public void setToGettingAccountTypeState()
q. (CCAO)Public void setToGettingTransAmountState()
r. (CCAO)Public void setToPerformingTransState()
s. (CCAO)Public void setToPrintingReceiptState()
t. (CCAO)Public void setToGettingTransTypeState()

3. (CCDVAR)New Realization - StateEnum realizes Enumeration
4. (CCDA)Deleted Attribute in Class ATM : state:int
5. (CCDVAA) Added association between ClassATM and Class StateEnum
6. (CSDVAM) ATMShutOff – added message ‘1.1.2: myState.setToOffState()’
7. (CSDVACR) ATMShutOff – added myState:StateEnum
8. (CSDVACR) ATMStartup – added myState:StateEnum
9. (CSDVAM) ATMStartup – added message ‘ 1.1.4 : setToWaitingForCardState()’
10. (CSDVACR)CardInsert – added myState:StateEnum
11. (CSDVAM)CardInsert – added message ‘4: setToGettingPINState()’
12. (CSDVACR)GetPIN – added myState:StateEnum
13. (CSDVAM)GetPIN – added message ‘1.4: setToGettingTransTypeState()’
14. (CSDVACR)Transaction – added myState: StateEnum
15. (CSDVAM)Transaction – added message ‘1.3: setToGettingAccountTypeState()’
16. (CSDVAM)Transaction – added message ‘ 2.3: setToGettingAmountState()’
17. (CSDVAM)Transaction – added message ‘ 2.4.3: setToPerformingTransState()’
18. (CSDVAM)Transaction – adde dmessage ‘ 2.5.7: set To

AskingDoAnotherState()’
19. (CSDVACR)AskingDoAnother – added myState:StateEnum
20. (CSDVAM)AskingDoAnother – added message ‘1.3: [response =

1]setToGettingTransTypeState()’
21. (CSDVAM)AskingDoAnother – added message ‘ 1.4: [response = 2]

setToPrintingReceiptState()’
22. (CSDVACR)PrintingReceipt – added myState: StateEnum
23. (CSDVAM)PrintingRecipet – added message ‘2.2: setToWaitingForCardState()’
24. (CSDVACR)Cancel – added myState: StateEnum
25. (CSDVAM)Cancel – added message ‘1.1.2: state = getCurrentState()’
26. (CSDVAM)Cancel – added message ‘1.1.3: [state =

3]setToWaitingForCardState()’
27. (CSDVAM)Cancel – added message ‘1.1.4: [state = 4 or 5 or

6]setToAskingDoAnotherState()’
28. (CSDVACR)CardNotReadable – added myState :StateEnum
29. (CSDVAM)CardNoReadable – added message ‘3: setToStateWaitingForCard()’

111

30. (CSDVACR)FailedTransaction – added myState:StateEnum
31. (CSDVAM)FailedTransaction – added message ‘ 4: [err=2 or

err=3]setToGettingTransAmountState()’
32. (CSDVCR)PINInvalid – added myState:StateEnum
33. (CSDVAM)PINInvliad – added message ‘ 4: [err = 1 and try < 3]

setToGettingPINState()
34. (CSDVAM)PINInvalid – added message ‘ 6:[try >=3]

setToWaitingForCardState()’

Change # 3
An account can be owned by at most 2 customers and at least 1 customer

1. (CAECM) Account – Customer from 1..* to 1,2

Change # 4
A customer must belong to a bank and a customer can only belong to one bank

1. (CAECM)Bank- Customer from 0..* to 1

Change # 5
Class Account is changed to an Abstract class – Rationale: you will never have an
instance of class Account since accounts are always either Savings or Chequeings
accounts

1. (CCCiAbs) Account

Change #6
A confirmation message is displayed to the customer acknowledging the receipt of
his/her deposit:
 1.1.3.1:display(“Your message has been accepted.”) // in the Deposit interaction

Change #7
Provides feedback to the ATM operator upon the loading (cash) of the ATM:
 1.1.13.1.1.1:displayAmounts() // in the ATMStartUp interaction

Change #8
Error corrections, as follows:

Changed invariant of the Savings class −
−
−

−

Changed inititial value fo the transAmount attribute in the ATM class
Corrected a syntax error in the postcondition of the setPIN operation in the
Transaction class
Changed the message condition for message 1.1.2 in the Inquiry interaction

112

E.2 Change Distribution

Table 1 below presents the change distribution for the ATM case study. Only 16 of the 97

(leaf) changes in the change taxonomy was used in this case study.

Change Code Number of Changes

CCDVAA 1
CCDVAC 1
CCDVAI 1
CCDVAR 1
CSDVACR 2
CSDVAM 35
CSDVDM 12
CAECM 2
CCAA 2
CCDA 1
CCCiAbs 1
CCAO 4
CCRCBCC 4
CMACR 1
CACIV 1
CCOCPst 1
Table 1: Change Distribution for ATM Case Study

E.3 Impacts Vs Distance Graphs

Figure E1 below presents the cumulative number of all impacted elements for the ATM

case study while Figure E2 below presents the cumulative number of classes impacted for

the same case study.

113

0

10

20

30

40

50

60

1 2 3 4 5 6
Distance

C
um

ul
at

iv
e

nu
m

be
r o

f
el

em
en

ts

Figure E1: Cumulative number of all impacted elements vs. distance.

0

5

10

15

20

1 2 3 4 5 6
Distance

C
um

ul
at

iv
e

nu
m

be
r o

f
im

pa
ct

ed
 c

la
ss

es

Figure E2: Cumulative number of impacted classes vs. distance

114

E.4 UML Model (Original)

1 1

11

1

1

1

0..*

11

1 1

1 1

0..*0..*

1

0..*

0..*1..*

0..*

1..*

<<entity>>
Account

-balance:Double
-AcntNum:Integer
-PIN:Integer
-dailiyAmount:Double

+setAccountNumber:void
+getAccountNumber:Integer
+setPIN:void
+getPIN:Integer
+getBalance:Double
+setBalance:void
+getCardNum:String

<<control>>
Transfer

+doTransaction:void
+validatePIN:boolean

<<boundary>>
Receipt

+printReceipt:void

<<entity>>
Transaction

-errMsg:int

+getAmount:Double
+setAmount:void
+setAccountType:void
+setAccount:void
+setAccount:void
+setErrorMsg:void
+getErrorMsg:Integer
+setCardNum:void
+setPIN:void
+getAccount:Account[]
+getAccountType:Enum

<<entity>>
Customer

-name:String
-address:String
-telNo:Integer
-PIN:Integer
-cardNum:String

<<boundary>>
CashDispenser

+dispenseCash:void

<<boundary>>
OperatorPanel

+getATMAmount:int
+getATMStatus:int
+turnOff:int
+turnON:void

<<control>>
Bank

+sendServiceRequest:int
+createTransaction:int
+createAccount:int
+createCustomer:int

<<control>>
Withdrawal

+doTransaction:void
+validatePIN:boolean

<<boundary>>
Display

+requestDollarAmount:void
+displayOffScreen:void
+requestBanking:void
+display:void
+displayErrorMsg:void
+requestPIN:void
+echoPIN:void
+requestReEnterAmount:void
+displayAmounts:void
+requestCardNum:void
+displayTransactionSelection:voi
+displayAccountTypes:void

<<boundary>>
KeyPad

+doAnotherBanking:Integer
+getAccountTypes:Integer
+readPIN:Integer
+getTransactionType:Integer
+getTransactionAmounts:Double
+cancelPressed:void

<<control>>
Deposit

+doTransaction:void
+validatePIN:boolean

<<control>>
Inquiry

+validatePIN:boolean
+doTransaction:void

<<entity>>
Chequing

<<control>>
ATM

-cardNumber:String
-pinNumber:Integer
-transAmount:Double
-atmBalance:Double
-state:int
-transType:int
-acntType:int

+doTransaction:int
+getCardNum:String
+getTransactionAmount:Double
+getAccount:Integer
+printReceipt:void
+performTransaction:int
+getPIN:Integer
+doAnotherBanking:Integer
+initializeATM:void
+setInitialCash:void
+turnOffATM:void
+cancelPressed:void
+getTransaction:Integer
+notifyATM:void
+notifyCardInserted:void

<<entity>>
Savings

<<boundary>>
EnvelopeAcceptor

+acceptEnvelope:void

<<boundary>>
CardReader

-cardInserted:Boolean

+readCardNum:String
+insertCard:void

Figure E3: Class Diagram

115

theATM:ATM display:Display keyPad:KeyPad

3:[response = 2] printReceipt(lines, size):void

2:[response = 1] trans:=doTransaction(cardNum, pin, transType):int

1.2: response:=doAnotherBanking():Integer

1.1: requestBanking():void

1: response:=doAnotherBanking():Integer

Figure E4: Sequence (Interaction) Diagram for the AskingDoAnother Use Case

116

operatorPanel:OperatorPanel theATM:ATM display:Display

Operator

Figure E5: Sequence (Interaction) Diagram for the ATMShutOff Use Case

1: turnOff():int

1.1.1: displayOffScreen():void
1.1: turnOffATM():void

1: turnON():void
1.1: notifyATM():void

1.1.3.1.1: amount:=getATMAmount():int

1.1.3.1: setInitialCash():void

1.1.3:[ATM_ON = true] initializeATM():void

1.1.2:[ATM_ON = true] requestDollarAmount():void

1.1.1: ATM_ON:=getATMStatus():int

theATM:ATMoperatorPanel:OperatorPanel display:Display

Operator

Figure E6: Sequence (Interaction) Diagram for the ATMStartUp Use Case

117

keyPad:KeyPad theATM:ATM display:Display

aCustomer

Figure E7: Sequence (Interaction) Diagram for the Cancel Use Case

1: cancelPressed():void

1.1.1: display(msg):void

1.1: cancelPressed():void

1: insertCard():void

2.2: cardNum:=readCardNum():String

2.1: requestCardNum():void

2: getCardNum():String

1.1: notifyCardInserted():void

cardReader:CardReader theATM:ATM display:Display

aCustomer

Figure E8: Sequence (Interaction) Diagram for the CardInsert Use Case

118

theATM:ATM cardReader:CardReader display:Display

Figure E9: Sequence (Interaction) Diagram for the CardNotReadable Use Case

2:[cardNum = -1] displayErrorMsg(Integer):void

1: cardNum:=readCardNum():String

3:[err = 2 or err = 3] requestReEnterAmount():void

2: err:=getErrorMsg():Integer

1: trans:=sendServiceRequest(transaction):int

theATM:ATM bank:Bank trans:Transaction display:Display

Figure E10: Sequence (Interaction) Diagram for the FailedTransaction Use Case

119

theATM
:ATM

bank:Bank
deposit:Deposit

toAccount:Account
envelopeAcceptor:EnvelopeAcceptor

[

i

i
i

1.1.3:[validPIN = true] setBalance(balance + transaction.getAm
ount()):void

1.1.2:
validPIN = true] balance:=getBalance():Double

1.1.1: validPIN:=validatePIN(transaction.getAccount(), account):boolean

2:[trans.getErrorM
essage() = 0] acceptEnvelope():void

1.1: trans:=doTransaction(transacton, account):void

1: trans:=sendServiceRequest(transacton):nt

Figure E11: Sequence (Interaction) Diagram for the Deposit Use Case

120

theATM:ATM display:Display keyPad:KeyPad

Figure E12: Sequence (Interaction) Diagram for the GetPIN Use Case

1.2.1: echoPIN():void

1.2: pin:=readPIN(int):Integer

1.1: requestPIN():void

1: pin:=getPIN():Integer

1.1.2:[validPIN] balance:=getBalance():Double

1.1.1: validPIN:=validatePIN(transaction.getAccount(), account):boolean

1.1: trans:=doTransaction(transaction, account):void

1: trans:=sendServiceRequest(transaction):int

theATM:ATM bank:Bank inquiry:Inquiry fromAccount:Account

Figure E13: Sequence (Interaction) Diagram for the Inquiry Use Case

121

theATM:ATM bank:Bank trans:Transaction

Figure E14: Sequence (Interaction) Diagram for the PINInvalid Use Case

3:[err = 1 and try < 3] pin:=getPIN():Integer

2: err:=getErrorMsg():Integer

1: trans:=sendServiceRequest(transaction):int

2.1: printReceipt(lines, size):void

2:[response = 2] printReceipt(lines, size):void

1: response:=doAnotherBanking():Integer

theATM:ATM receipt:Receipt

Figure E15: Sequence (Interaction) Diagram for the PrintReceipt Use Case

122

theATM:ATM display:Display bank:Bank

trans:Transaction

keyPad:KeyPad

2.4.1.1: 2.4.1.1:<<create>>

3: response:=doAnotherBanking():Integer

2.4.6: trans:=sendServiceRequest(trans, account):int

2.4.5: setAmount(amount):void

2.4.4: setPIN(pin):void

2.4.3: setAccountType(toAccType):void

2.4.2: setCardNum(cardNum):void

2.4.1: trans:=createTransaction(transType):int

2.4: trans:=performTransaction(cardNum, pin, transType, amount, toAccType, fromAccType):int

2.3.2: amount:=getTransactionAmounts():Double

2.3.1: displayAmounts():void

2.3: amount:=getTransactionAmount():Double

2.2.2: toAccType:=getAccountTypes():Integer

2.2.1: displayAccountTypes(inAccTypes):void

2.2:[transType = #TRANSFER or transType = #DEPOSIT] toAccType:=getAccount():Integer

2.1.2: fromAccType:=getAccountTypes():Integer

2.1.1: displayAccountTypes(inAccTypes):void

2.1:[transType = #WITHDRAW or transType = #TRANSFER or transType = #INQUIRY] fromAccType:=getAccoun...

2: trans:=doTransaction(cardNum, pin, transType):int

1.2: transType:=getTransactionType():Integer

1.1: displayTransactionSelection():void

1: transType:=getTransaction():Integer

Figure E16: Sequence (Interaction) Diagram for the Transaction Use Case

123

theATM
:ATM

bank:Bank
transfer:Transfer

toAccount:Account

r
(

:

r
(

r
(

r
r

i
i

)

r
i

i

1.1.5:[balance > t
ansaction.getAm

ount
)] setBalance(toBalance + transaction.getAm

ount())
void

1.1.4:[balance > transaction.getAm
ount()] toBalance:=getBalance():Double

1.1.3:[balance > t
ansaction.getAm

ount
)] setBalance(from

Balance - t
ansaction.getAm

ount
)):void

1.1.2:[validPIN = t
ue] f

om
Balance:=getBalance():Double

1.1.1: validPIN:=validatePIN(transaction.getAccount(), from
Account):boolean

1.1: trans:=doTransacton(transacton, toAccount, from
Account

:void

1: trans:=sendServiceRequest(t
ansacton):nt

Figure E17: Sequence (Interaction) Diagram for the Transfer Use Case

124

theATM
:ATM

bank:Bank
w

ithdraw
al:W

ithdraw
al

from
Account:Account

cashDispenser:CashDispenser

i

i

t

1.1.1.2.1: trans:=sendServiceRequest(transaction):nt

1.1.1.2:[balance > transacton.getAm
ount()] setBalance(balance + transaction.getAm

ount()):void

1.1.1.1:[valid] balance:=getBalance():Double

1.1: trans:=doTransaction(transaction, account):void

1: trans:=sendServiceRequest(
ransaction):int

Figure E18: Sequence (Interaction) Diagram for the Withdraw Use Case

125

	ABSTRACT
	TABLE OF CONTENTS
	INTRODUCTION
	RELATED WORKS
	PROBLEM DEFINITION AND OBJECTIVES
	OVERVIEW OF THE APPROACH
	TOOL ARCHITECTURE AND OVERVIEW
	MODEL CHANGES
	IMPACT ANALYSIS RULES
	
	
	
	Definition 3:Bag of impacted elements

	DISTANCE MEASURE
	CASE STUDY
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	
	
	
	
	Change # 1

