XML Encoded Reverse Engineering of Java to UML

C. R. Russell and R.G. Dewar
Department of Computer Science, School of Mathematical and Computer Sciences, Heriot-Watt
University, Riccarton, Edinburgh, EH14 4A4S, Scotland, UK.
{c.r.russell | r.g.dewar} @hw.ac.uk

Abstract

This paper introduces an XML encoded reverse
engineering transformation from Java to the Unified
Modeling Language (UML). We explore the relationship
between an XML based representation of Java, namely
JavaML, and an XML based representation of UML,
XMI. A series of XSLT templates are then described that
reverse engineer Java to UML Class diagrams. By
exploiting XML technologies, this approach
demonstrates the opportunities for simple, standardised
and adaptable conversions between code and design
information, within a software development and
maintenance environment.

1. Introduction

Today’s corporate world is dynamic and software
artefacts have to be adaptable to keep pace with business
needs,. Hence there is a need for tools to automate the
modification and development of existing systems.

An essential procedure involved with such software
maintenance efforts is code understanding. However this
process can be time-consuming and tedious possibly
made more difficult by a lack of good documentation. It
is often the case that maintainers of code are not the
original designers [1]. As such, programmers spend large
amounts of time deciphering other people’s code. In fact,
it is estimated that 50% of a software engineer’s time is
spent on maintenance tasks involving information
searching and program understanding [2].

Reverse engineering techniques allow analysts to
produce design models, which can be used to discover the
underlying program architecture and behaviour. These
abstractions aid the program understanding process by
allowing the software engineer to quickly gain a picture
of the overall system. Additionally, reverse engineering
plays an important role in facilitating code reengineering
and evolutionary development [1, 3].

Source code representation is an important issue in
software analysis, it influences how easily analysis and
maintenance tools can extract, process and exchange the
program data. Traditional representation has been
through Abstract Syntax Trees (AST) [4]. However XML
based representations seem to present a more useful form

of source code. Mamas and Kontogiannis [5] argue that
this format allows for more open data exchange and
exploits the abundance of XML tools and technologies,
which make it easier to traverse, edit and analyse code.
McArthur et al [6] complement this work with an
extensible tool for XML-encoded source code
representation.

Since the Unified Modeling Language (UML) [7] has
been accepted as a standard, by the Object Management
Group (OMG), it has become established as a principle
means for modelling software systems. Although many
tools exist that reverse engineer code into UML models,
Gogolla and Kollmann [8] observe that, “a wuniform
standardized process for the redoccumentation of Java
programs with UML diagrams that furthermore aims at
an extensive coverage of the notational features of the
UML is still missing”.

This paper highlights the opportunities to standardise
the reverse engineering process that result from adopting
XML based techniques. In addition, the work emphasises
the power and simplicity of XML translation schemes in
a software development and maintenance environment.

The paper is organised as follows: in sections 2 and 3
the technologies involved in our approach are discussed;
section 4 describes the implementation of the XML
encoded reverse engineering tool; and finally we draw
conclusion and highlight future directions for this
research.

2. Java Markup Language (JavaML)

An XML based representation of Java source code, the
Java Markup Language (JavaML), is presented by Badros
[9, 10]. He has developed a converter using the Jikes Java
compiler that transforms Java source code into the Java
Markup Language (JavaML). The result is a Java
program delimited by tags that describe the elements of
the code. Badros maintains that this representation offers
a number of benefits over classical text representation.
With respect to reverse engineering, it is easier to parse
and analyse by utilising the mass of existing XML related
tools.

The rules that structure Java source code are
inherently mirrored in the hierarchy of JavaML elements.
As a result the structure of a program is presented

directly through the way in which JavaML elements are
nested.

It is worthwhile noting that the JavaML elements
embody all the existing source information. Hence
anything else, required for another format, must be either
generated by the transformation or deduced from this
source information. The following provides a simple
example of some Java code (Figure 1) and its equivalent
representation in JavaML (Figure 2).

class Person

{
private String firstName;
private String lastName;
private Car myCar;

public void setName (String n) {
firstName=n;

}
Figure 1. Simple Java Class (Code 1).

<java-source-program name="Person.java">
<class name="Person">
<field name="firstName" visibility="private">
<type name="String"/>
</field>
<field name="lastName" visibility="private">
<type name="String"/>
</field>
<field name="myCar" visibility="private">
<type name="Car"/>
</field>
<method name="setName" visibility="public">
<type name="void" primitive="true"/>
<formal-arguments>
<formal-argument name="n" id="frmarg-20">
<type name="String"/>
</formal-argument>
</formal-arguments>
<statements>
<assignment-expr>
<lvalue>
<var-set name="firstName"/>
</lvalue>
<var-ref name="n" idref="frmarg-20"/>
</assignment-expr>
</statements>
</method>
</class>
</java-source-program>

Figure 2. JavaML Representation of Figure 1.

3. UML, XMI, PGML and ArgoUML

UML seems an obvious choice as a form of abstract
representation for Java reverse engineering given that
both: a tight mapping exists between UML and OO
languages; and it is now familiar to many software
engineers [11].

XML Metadata Interchange (XMI) is a standard
produced by the OMG [12]. It merges the UML standard

with the accepted form of information exchange, XML.
The result creates a standard format for the open
interchange of design information [13]. Relevant to this
work, it offers a standardised method to store and
transfer the information that is displayed through UML
diagrams.

Alternatively, a translation scheme could be developed
to convert into other exchange formats, for instance,
GXL [14]. However, this work focuses on demonstrating
the benefits of establishing translation schemes, between
XML-encoded software artefacts.

ArgoUML is an object-oriented design tool that
supports the use of UML for software development [15].
It is also an Open Source Development Project that stores
UML models with the XMI standard. The Precision
Graphics Markup Language (PGML) [16] is used to save
the graphical representation of these models.

The Ophelia project [17] is working to integrate
ArgoUML into a suite of software engineering tools. At
the moment, the environment includes a parse-oriented
reverse engineering facility. We have augmented this
functionality with a transformation-based reverse
engineering method.

4. Reverse Engineering Transformation

The need for automated software maintenance tools
and the role that reverse engineering techniques play in
program understanding have been highlighted. In
addition, UML has been presented as a suitable
modelling language for representing design abstractions.
Indeed, UML has the major benefits of being both an
industry standard and supported by XMI. Additionally,
the advantages of XML based program representation, in
particular JavaML, have been introduced.

The key observation is that a missing link exists
between JavaML representation of source code and XMI
representation of design information. This work
concentrates on exploring the relationship and mappings
between these formats. In essence, this mapping is the
reverse engineering process. JavaML represents the
marked up source code (i.e. no abstraction or loss of
detail) while XMI should contain only the marked up
UML design information (i.e. an abstraction). To achieve
standardized reverse engineering, a complete translation
scheme that re-documents the JavaML in XMI must be
developed.

Initially the project has only been concerned with
creating a class model in order to concentrate on and
demonstrate the XML techniques involved.

A reverse engineering tool has been developed that
extracts design and structure information from Java
source files and generates the relevant XMI file. The tool

allows the class model to be visualised, in ArgoUML, by
generating a PGML file that relates to the XMI model.

4.1. Transformation Language

Two main methods to transform XML exist; these are
XSL Transformations [18] and the Document Object
Model (DOM) [19]. While XSLT describes the state of
the transformed document in relation to the original
document, DOM allows manipulation of the tree
structure.

Since the XMI and JavaML vocabularies are
completely different it is sensible to declare the state of
the output XMI, wusing XSLT, as opposed to
implementing a procedure to modify every element.

The basis of a mapping exists between these two
formats. To implement this with DOM would require the
development of procedures that reconstruct the tree
according to the mapping rules. Alternatively, with
XSLT we can directly describe the translation, leaving
the tree construction to the XSL processor.

Finally, the main motivation to use XSLT instead of
DOM is that by using XSLT the translation becomes
adaptable. Changing the process merely requires altering
the stylesheet, no recompilation is necessary.

4.2. XMI Class Diagram Components

While designing, it was important to understand the
structure of these two formats (JavaML and XMI) and
their relationship. Significantly, however, only a subset
of the JavaML and XMI schemas are relevant to the
project problem.

Adopting a pragmatic approach, initial analysis
involved generating UML models with ArgoUML and
examining the equivalent XMI document. This identified
three distinct components required in the XMI model of a

UML Class Diagram:
= class
= association
= data type

For each component, it is essential to categorise its
elements depending on whether they must be mapped,
deduced or generated. Mapped, indicates a transfer of
information directly from JavaML to XMI. Deduced,
refers to information that is implicit in JavaML but must
be made explicit in XMI during the translation. Finally
generated, specifies elements that have no connection to
the JavaML input and must be generated. Such a
categorisation could form the basis of a framework for
creating translation schemes between XML-encoded
software artefacts.

4.3. XSLT Templates

Several XSLT templates have been designed that
implement these JavaML to XMI translations, which are
all combined within an overall stylesheet.

In order to use the Argo environment to display the
reverse engineered model, a PGML file must be
generated that relates to the XMI model. To display a
model with PGML, every class, association and
association end must be referenced by a group element.
Another style sheet implements this and generates a
PGML file for a given XMI file.

Figure 3 highlights how the prototype utilises the
specified style sheets and generates an Argo project.

Reverse Engineering Tool ArgoUML

Java

Source | =]| =] JavamL

Code

ToXMI stylesheet
FixTypes stylesheet

XMI

ToPGML stylesheet

PGML

Argo

File

ArgoUML Project

Key

XSL Processor [| ’) rter
Badros Converter

Figure 3. Prototype System View.

Unfortunately, space limitations prevent us showing
actual transformations graphically realised in modeling
applications.

5. Conclusions

This paper introduces an XML based transformation
of marked up Java source code to marked up design
information. Our initial work aims to highlight the
benefits and opportunities that could result from
extending XML encoding throughout the automated
software environment.

A key difference from existing reverse engineering
techniques, that must be emphasised, lies in the data
gathering operation. Traditional methods depend upon
parsing, which involves grammar rules, whereas our
approach simply requires transforming. With XML

encoding, grammar rules are already implicit within the
input document structure thus allowing focus to be placed
on the desired transformation.

It is worth reiterating that the XSLT style sheets used
in the transformation are declarative. As a result, our
approach is adaptable and extensible; any alterations or
additions to the process simply require modified or new
templates, no recompilation.

Ultimately, as XML based source code representations
become more prevalent, a library of adaptable XSLT style
sheets could prove useful in the automation of the
software design process.

This work should serve as a proof of concept for future
translations between XML-encoded software artefacts. In
fact, Alves-Foss ef al. [20] have recently highlighted
such a notion in their future work, yet our investigations
have already shown its feasibility.

6. Future Work

Possibly the most significant extension to this work
would result from applying our approach to the
development of automated round-trip engineering
capabilities. A library of XSLT style sheets could be
implemented that describe the possible mappings to and
from design information and source code. Also, this
approach presents opportunities to overcome the key
problem of consistency, involved with round-trip
engineering, by exploiting X-Diff tools [21].

Indeed, incorporating XML tools with our approach
would offer considerable advantages. Tools could
determine and compare design and code metrics to check
consistency. Additionally, XML technologies could allow
elements of software that are affected by design changes
to be easily referenced and modified.

Finally, as more languages become XML encoded, our
approach could be applied to translate among languages
as well as between alternative design information
representations.

7. Acknowledgements

Thanks to the members of the Ophelia team, in
particular Mike Smith and Alan Smith, for their support
and advice. Thanks also to Hunter Davis for his
feedback. Lastly we greatly appreciate the work of Greg
Badros.

8. References

[1] E.J. Chikofsky and J. H. Cross II. “Reverse Engineering
and Design Recovery: A Taxonomy”. /EEE Software,
7(1):13-17, Jan 1990.

[2] R.S. Pressman. Software Engineering, A Practitioner’s
Approach. McGraw Hill, 1997.

[3] J. Bowen, P. Breuer, and K. Lano. “A compendium of
formal techniques for software maintenance”. In Software
Engineering Journal, September, 1993.

[4] A. V. Aho, R.Sethi and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley, 1986.

[5] E. Mamas and K. Kontogiannis. “Towards Portable Source
Code Representations Using XML”. In Proceedings of 7"
Working Conference on Reverse Engineering (WCRE
2000), pages 172-182.1EEE, Brisbane, Australia,
November 2000.

[6] G.McArthur, J. Mylopoulos and S. K. K. Ng. “An
Extensible Tool for Source Code Representation Using
XML”. In Proceedings of 9" Working Conference on
Reverse Engineering (WCRE 2002), pages 199-210.1EEE,
Richmond, Virginia, USA, October 2002.

[71 OMG, editor. OMG Unified Modeling Language
Specification, Version 1.3, June 1999. Object
Management Group, http://www.omg.org, 1999.

[8] M. Gogolla and R. Kollmann. “Application of UML and
their Adornments in Design Recovery”. In Proceedings of
8™ Working Conference on Reverse Engineering (WCRE
2001), pages 81-90. IEEE, Los Alamitos, 2001.

[9]1 G.J. Badros. JavaML Home Page.
http://www.cs.washignton.edu/homes/gjb/JavaML.

[10] G. J. Badros. “JavaML: A Markup Language for Java
Source Code”. In Proceedings of 9" International World
Wide Web Conference (WWW9). Amsterdamm,
Netherlands. May 2000.

[11] M. Gogolla and R. Kollmann. “Re-Documentation of Java
with UML Class Diagrams”. In E. Chikofsky, editor,
Proceedings of 7" Reengineering Forum, Reengineering
Week 2000 Zurich, pages REF 41-REF 48. Reengineering
Forum, Burlington, Massachusetts, 2000.

[12] OMG: XML Metadata Interchange (XMI) Version 1.1.
November 2000, Object Management Group.
http://www.w3.org/TR/xmi

[13] S. Brodsky. “XMI Opens Application Interchange”. IBM,
March 1999.

[14] R. C. Holt, A. Winter and A. Schurr. “GXL: Towards a
Standard Exchange Format”. In Proceedings of 7"
Working Conference on Reverse Engineering (WCRE
2000), pages 162-171.1EEE, Brisbane, Australia,
November 2000.

[15] J. Robbins. “Cognitive Support Features for Software
Development Tools”. 1999. http://argouml-
tigris.org/docs/robbins_dissertation

[16] N. Al-Shamma and others. Precision Graphics Markup
Language (PGML). W3C Note, April 1998.
http://www.w3.0rg/TR/1998/NOTE-PGML

[17] Ophelia Project Home Page.
http://www.cee.hw.ac.uk/ophelia

[18] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C
Recommendation, November 1999.
http://www.w3.org/TR/xslt

[19] A. Le Hors and others. Document Object Model (DOM)
Level 2 Core Specification Version 1.0. W3C
Recommendation, November 2000.
http://www.w3.org/TR/DOM-Level-2-Core.

[20] J. Alves-Foss, D. Conte de Leon and P. Oman.
“Experiments in the Use of XML to Enhance Traceability
Between Object-Oriented Design Specifications and
Source Code”. In Proceedings of 35" Hawaii International
Conference on System Sciences (HICSS 2002), pages 276-
284. IEEE, Big Island, Hawaii, 2002.

[21]XML Diff and Merge Tool.
http://www.alphaworks.ibm.com/tech/xmldiffmerge

