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Abstract

The use of Unified Modeling Language (UML) analysis/design models on large projects leads to a large number of interdepen-
dent UML diagrams. As software systems evolve, UML diagrams undergo changes that address error corrections and changed
requirements. Those changes can in turn lead to subsequent changes to other elements in the UML diagrams. Impact analysis is
defined as the process of identifying the potential consequences (side-effects) of a change, and estimating what needs to be modified
to accomplish that change. In this article, we propose a UML model-based approach to impact analysis that can be applied before
implementation of changes, thus allowing early decision-making and change planning. We first verify that the UML diagrams in a
design model are consistent. Then the changes between two different versions of UML models are automatically identified according
to a change taxonomy. Next, model elements which are directly or indirectly impacted by the changes (i.e., may undergo changes)
are determined using formally defined impact analysis rules (defined with the Object Constraint Language). A measure of distance
between a changed element and potentially impacted elements is also proposed to prioritize the results of impact analysis according
to their likelihood of occurrence. We also present a prototype tool that provides automated support for our impact analysis strategy,
and two case studies that validate both the methodology and the tool. Empirical results confirm that distance helps determine the
likelihood of change in the code.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction diagrams. In this context, several issues require atten-

tion. The (potential) side effects of a change to the un-

The use of UML (Unified Modeling Language) anal-
ysis/design models (Bruegge and Dutoit, 2000) on large
projects leads to a large number of inter-dependent
UML diagrams (that may also contain OCL (Warmer
and Kleppe, 1999) constraints, e.g., contracts, guard
conditions). As software systems evolve, UML diagrams
undergo changes. Such changes to a diagram may lead
to subsequent changes to other elements of the model’s
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changed diagrams should be automatically identified
to help (1) keep those diagrams up-to-date and consis-
tent and (2) assess the potential impact of changes on
the system models and code. This can in turn help pre-
dict the cost and complexity of changes and help decide
whether to implement them in a new release (Bohner
and Arnold, 1996a).

In the context of large software development teams,
the above problems are even more acute as diagrams
may undergo changes in a concurrent manner as differ-
ent people may be involved in those changes. Support is
therefore required to help a team assess the complexity
of changes, identify their side effects, and communicate
that information to each of the affected team members.
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In order to address the above issues, the work presented
here focuses on impact analysis of UML analysis or
design models. Impact analysis is defined as the process
of identifying the potential consequences (side-effects) of
a change, and estimating what needs to be modified to
accomplish a change (Bohner and Arnold, 1996a).

Most of the research on impact analysis is based on
the program code (implementation). However, in the
context of UML-based development, it becomes clear
that the complexity of changing Analysis and Design
models is also very high. Therefore, we seek to provide
automated support to identify changes made to UML
model elements and the impact of these changes on
other model elements.

While code-based impact analysis methods have
the advantage of identifying impacts in the final prod-
uct-the code, they require the implementation of
these changes (or a very precise implementation plan)
before the impact analysis can be performed. How-
ever, a UML model-based approach to impact analy-
sis looks at impacts to the system before the
implementation of such changes. A proper decision
can therefore be made—before any detailed imple-
mentation of the change is considered—on whether
to implement a particular (set of) change(s) based
on what design elements are likely to be impacted
and thus on the likely change cost. Earlier decision-
making and change planning is clearly important in
the context of rigorous change management. On the
other hand, since UML models describe the system
at a higher level of abstraction than the code, mod-
el-based approaches may provide less precise results
than their code-based counterparts. For example, it
may be possible that new, unexpected impacts show
up at implementation time. This is an issue that
requires further investigation, but that will not be
addressed in this article.

Another assumption made by any model-based im-
pact analysis method is that the model is up-to-date
and therefore consistent with the code. This is often an
issue in many software development organizations.
There are several reasons for this problem:

1. Current UML tools do not provide many functional-
ities that would allow people to exploit models, for
example in terms of test case specification or impact
analysis. If there is no significant ways to benefit from
models once the system is developed, then there is no
incentive to maintain them.

2. Even if there were the motivation to maintain models,
current tools are not always effective at supporting
change. They do not always provide ways to check
the consistency of diagrams (according to configura-
ble rules) or perform impact analysis on diagrams.
However, the functionality to manage traceability
and consistency between design models and code is

now available in some UML CASE tools. For
example, Together® (Borland, 2003), updates the
class diagram when changes are made to the code
and checks some consistency aspects of the updated
class diagram with other UML diagrams in the design
model.

3. And there is the usual problem of training and educa-
tion. Most software engineers are not yet familiar
with model-driven development, though this is the
case of most new graduates.

However, even with this state of practice, we believe
that our work is still relevant because it can address
points 1 and 2 above. It provides one more way to ex-
ploit models (early impact analysis) and it provides a
mechanism to help changes in models (through model
impact analysis).

Our work contributes in several complementary ways
to providing support for the impact analysis of UML
models:

o It defines a methodological framework.

o It provides a set of change detection and impact
analysis (side effect) rules, that were derived by sys-
tematically analyzing components of UML models
(including constraints in the Object Constraint
Language (Warmer and Kleppe, 1999)) and analyz-
ing changes in actual case studies. Note that our
work started long before the recent adoption of
the new UML 2.0 standard (OMG, 2003). How-
ever, though minor adjustments are required, the
overall feasibility and principles of our approach
are not affected.

e A prototype tool implements the above principles
using a carefully thought-out architecture and an
extensible design.

e Two case studies have been performed to assess the
feasibility and practical challenges of our
approach.

This article describes the methodological framework
and the fundamental principles underlying the change
detection and impact analysis rules,' and reports on
two case studies. Section 2 discusses related works. Sec-
tion 3 provides a precise description of the problems we
address, the objectives of our research, and an overview
of the approach. Section 4 through Section 6 detail each
of the most important aspects of the approach and pro-
vide examples. Section 7 presents the case studies and
the last section, Section 8, outlines our main conclusions
and future work.

! Details on our tool iIACMTool) are not provided in this article but
can be found in Briand et al. (2003).
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2. Related works

Bohner (2002) examines the general issues involved in
change impact analysis, and provides structured guide-
lines to help find solutions to such issues. For instance,
if one considers both direct and indirect (transitive clo-
sure) impacts, the results of the impact analysis shows
an enormous number of impacts, thus (possibly) over-
estimating the impact. This advocates tool support, as
well as the use of semantic (related to the impacts) and
structural (e.g., distance between a change and an
impact) constraints to structure analysis results.

A large portion of the change impact analysis strate-
gies require source code analysis (see for instance the
strategies reported in Bohner and Arnold (1996b)),
whereas a few of them are model-based. In Kung et al.
(1994), the authors describe how change impact analysis
can be performed from a class diagram, introducing the
notion of class firewall (i.e., classes that may be im-
pacted by a change in a given class), and discuss the
impact of object-oriented characteristics (e.g., encapsu-
lation, inheritance, polymorphism, dynamic binding)
on such an analysis. The analysis, however, is rough as
only static information (the class diagram) is used. In
Von Mayrhauser and Zhang (1999), the authors use a
functional model (referred to as “domain model”’, which
is not based on UML) of the system under consideration
to generate test cases, build a mapping between changes
to the domain model and the impact it has on test cases,
and classify the test cases according to the mapping. An-
other method for regression test selection, based on
UML models (class and sequence diagrams), is pre-
sented in Briand et al. (2002a). In this method, a rough
impact analysis is performed with the sole purpose of
classifying the regression test cases as obsolete, retest-
able, or reusable. The current work is a significant exten-
sion and performs impact analysis at a much more
refined level so that it can be applied to a variety of
problems, including change effort estimates and support
to identify ripple effects.

A recent work, performed concurrently to ours, ad-
dresses the identification of impacts on UML models
when system requirements (e.g., use case descriptions)
undergo changes (von Knethen and Grund, 2003). The
user derives a first set of impacted elements by following
traceability links between textual use case descriptions
and model elements. Then impact analysis classifies im-
pacted elements into primary impacts (elements that
have to be changed), secondary impacts (elements that
have to be changed with a high probability), and tertiary
impacts (elements that may have to be changed). How-
ever, the three categories of impacts are not described
with enough technical details (e.g., what is a high prob-
ability and how is it determined?) thus preventing us
from comparing our approach with theirs in terms of
impact analysis rules.

3. Problem definition, objectives, and overview of the
approach

Automating impact analysis of UML design models
can be decomposed into several sub-problems: Verify
the consistency of changed diagrams; Automatically de-
tect and classify changes across different versions of
UML models; Perform an impact analysis to determine
the potential side effects of changes in the design; Prior-
itize the results of impact analysis according to the like-
lihood of occurrence of predicted impacted elements.

Due to space constraints, we do not present all the
details of our change impact analysis strategy. Rather
we concentrate on the important notions, providing ex-
cerpts for all the four steps that are involved in the strat-
egy: consistency checking, change detection, change
impact analysis, prioritization of impacts. Further de-
tails can be found in Briand et al. (2003). The concepts
presented in this section, and their relationships, are
illustrated by the conceptual model in Fig. 1 (using a
UML class diagram). Note that Fig. 1 is also an excerpt
of the class diagram of our prototype tool (Briand et al.,
2003), referred to as iIACMTool.

3.1. Verify the consistency of changed diagrams

The original and modified models must be self-consis-
tent for any impact analysis algorithm to provide correct
results. Note that this is different from impact analysis
as it does not focus on finding (potentially) impacted ele-
ments (i.e., whose implementation may require change)
between two model versions, but structural inconsisten-
cies between UML diagrams of a single model, e.g., a
class instance (classifier role?) in a sequence diagram
whose class is not in the class diagram.

Since consistency in complex UML models is not al-
ways easy to achieve, verifying consistency must be sup-
ported by tools. Inconsistencies may be automatically
modeled and detected by a set of consistency rules, also
called well-formedness rules in OMG (2001). Each rule
corresponds to one type of inconsistency and must be
implemented in any tool supporting impact analysis on
UML diagrams. We have used 120 of the rules defined
in OMG (2001). For example, one simple rule we use
can be described informally” as:

Each operation that is invoked in a sequence message
must be defined in a class diagram, in the specific class
of the target object of the message.

2 In the UML standard terminology, a classifier role identifies an
object in a sequence diagram, and the base class of the classifier role is
the class of this object (the term base does not relate to inheritance).

3 It can also be expressed using OCL on the UML meta-model as
shown in OMG (2001).
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version 1 1

Direct

Fig. 1. Conceptual model.

3.2. Automatically detect and classify changes

Ideally, one modifies a UML model and then uses the
impact analysis tool to automatically identify all the
changes performed since the last version (once the tool
has verified that each version of UML diagrams is
consistent). We do not want software engineers to have
to specify each and every change as we want to avoid the
overhead that would prevent the practice of impact
analysis.

In UML, a model element is a constituent of a model
(OMG, 2001): An attribute, a classifier (e.g., a class) are
model elements. Each model element is defined by a set
of properties, which is a named value denoting a charac-
teristic of an element (Briand et al., 2002a; OMG, 2001):
An attribute is a property of a classifier (e.g., a class), a
name is a property of an attribute.

Thus, the identification of a change to a model ele-
ment requires checking if any of its properties has chan-
ged. Each model element change (class Change in Fig.
1) is classified according to a change taxonomy in order
to associate impact analysis rules with each type of
change. The change taxonomy we defined reflects
changes to class diagrams, sequence diagrams, and
statecharts. Some more details are provided in Section
4. The complete change taxonomy contains 97 change
categories.”*

3.3. Perform an impact analysis

Once we have verified that the diagrams of a UML
model are consistent, and model element changes have
been detected, the next step is to automatically perform
impact analysis using impact analysis rules, that is, rules
that determine what model elements could be directly or
indirectly (through transitive closure) impacted by each
model element change (Section 5): class Impact and
its subclasses in Fig. 1. As rules tend to depend on the

* Though we made a conscious effort to be as exhaustive as possible,
this number may change as we gain more experience, especially by
applying our change impact analysis strategy to different case studies.

type of change for which we perform impact analysis,
we define one such rule for each change category in
the change taxonomy, thus resulting in 97 rules®.

In most cases, side effects cannot be identified with
certainty as there is no way to ascertain whether a
change is really necessary based on the UML analysis
or design only. As a result, an impacted element is a
UML model element whose properties or implementa-
tion may require modification as a result of changing an-
other model element (i.e., one of its properties may
change).” To clarify the terminology we employ, changes
to UML diagrams are the result of logical changes cor-
responding to error corrections, design improvements,
or requirement changes (in a library system, a require-
ment change could be to allow customers to check out
borrowed books themselves without asking a librarian).
We refer to changes to model elements when a property
of an element has changed from one version of a dia-
gram to another, e.g., the visibility of an operation. A
logical change usually results in a set of changes to mod-
el elements. Impact analysis can be performed for each
logical change independently or for an entire, new
UML model. For instance, if logical changes 4 and B
result is x and y changed model elements respectively,
impact analysis can be performed for any one of the
changed model elements separately, for either logical
change A or B (thus only considering x or y changed
model elements), or for both logical changes all together
(thus considering x + y changed model elements).

3.4. Prioritize the results of impact analysis

In object-oriented designs, when considering all direct
and indirect dependencies among model elements, im-
pact analysis often results in a large number of (poten-
tially) impacted model elements, thus making their
verification impractical. In order for impact analysis to

> Even when no model property changes, the model element
implementation may require change. For example, a change in an
operation’s algorithm will not necessarily be visible as a change of the
operation’s contract or any other change in the model.
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be useful and practical, we need to find ways to indicate
what model elements should be checked first as they,
and their code counterpart, are more likely to require
change. For example, Briand et al. (1999) have explored
the use of coupling measures and predictive statistical
model for that purpose. To do so, we define a measure
of distance between the changed elements and poten-
tially impacted elements (Section 6) where the assump-
tion is that the larger the distance, the less likely is the
model element to be impacted.

4. Model changes

To derive the change taxonomy, we analyzed each
property of each model element in the UML meta-mod-
el to determine the possible changes that can occur. An
element property is modeled as an attribute or an aggre-
gation link to another element in the meta-model
(OMG, 2001). In the latter case, linked elements are
termed impact related elements since a change to one
of these component elements affects the composite ele-
ment to which it belongs. For example, if an attribute
is changed, then the class (class Classifier in the
meta-model) to which it belongs is considered impacted.
(In the meta-model, there is a composition between clas-
ses Classifier and Feature, parent class of class
Attribute.) A changed element property is defined
as a changed attribute of the element, or an added or
deleted link to an impact related element in the meta-
model. For example, considering an excerpt of the
meta-model in Fig. 2, we see that an association end
has several properties, some modeled as a link to model
elements (qualifier modeled as a link to zero or several
instances of Attribute) and others as attributes
(e.g., isNavigable to model whether an association
end is navigable).

Some element properties uniquely identify the ele-
ment among the set of all elements instantiating a
meta-model class. These properties are not included in
the change taxonomy but the element is considered de-
leted and a new element added if a change to such a
property occurs. For example, a class is uniquely identi-
fied by its name within its package’s namespace, and
thus a changed class name is regarded as the deletion
of the original class and the addition of a new class.
Using such key attributes is the way any impact analysis

AssociationEnd

-aggregation : AggregationKind
-changeability : Ch. bleKind

-isNavigable : boolean

-multiplicity : Multiplicity
-ordering : OrderingKind 1
-targetScope : ScopeKind
-visibility : VisibilityKind

Attribute

+qualifier
" -initialValue : Expression

Fig. 2. Example of impact related element from the meta-model.

system can keep track of the identity of model elements
across design versions.

We provide below a set of definitions regarding the
basic terminology and concepts used throughout the
article. We first provide some preliminary definitions.
Then we define model element changes (changes to
properties that do not uniquely identify model elements)
and impact related elements (changes to elements impact
other elements). Last we show how changes to proper-
ties that do uniquely identify model elements can have
an impact on other elements.

Definitions:

Let E be the set of all model elements (i.e., instances
of classes in the UML meta-model) in the UML
model under study. Let Pe be the set of all the prop-
erties of e € E, and Pe” C Pe be the set of properties
that uniquely identify e € E.

Definition 1: Model element changes

If any one p e (Pe— Pe") is changed, then e is
changed.

Definition 2: Impact related elements

Ve, e; € E® e # e, €5 1s said to be an impact related
element of ¢; if when e, is changed then e, is consid-
ered changed.

Definition 3: Added/deleted model elements

Ve, e, € E e, is an impact related element of e,
e, is added/deleted = e is a changed element.

Using definitions above, a change taxonomy is pro-
vided in Briand et al. (2003). The UML class diagram
notation is used to describe the taxonomy, as illustrated
in Fig. 4. Each non-terminal node in the taxonomy rep-
resents an abstract change category of a model element.
The leaf nodes are concrete change categories and corre-
spond to one changed element property. The taxonomy
(the class diagram) can be seen as a meta-model for the
model element changes: Any change in a UML model is
an instance of exactly one change category in the
taxonomy.

For example, let us look at a simple change category
example: Adding a message in a sequence diagram. We
provide in Fig. 3 a description of the change category.
Each change category has an acronym, a short textual
description, and an OCL expression that shows how,
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Changed Sequence Diagram View — Added Message

Change Code: CSDVAM

Description: In the modified model version there exists a message that does not exist in the original

version.

OCL Expression:

context model: :behaviouralElements::collaborations: :SequenceDiagramView

self.message->select ( mNew:Message |

not self.model.application.originalModel.
sequenceDiagramView.message->exists( mOld:Message |
mNew.getIDStr () = mOld.getIDStr ()

)

Fig. 3. Example change type.

Changed Model

Changed Class Diagram View |

—| Changed Sequence Diagram View|

Added Classifier Role|

—| Changed Classifier RoIel‘— -

—| Deleted Classifier Change|

Added Message
—| Changed Message Action|‘— -

Deleted Message

—| Changed Statechart Diagram View|

Fig. 4. Excerpt of change taxonomy.

based on the UML meta-model, the correspond-subsys-
tem class diagram (which is instantiated by the parser
subsystem), the corresponding changes can be automat-
ically detected. In our example, the OCL expression re-
turns a collection of added messages in a given Sequence
Diagram View (we always assume the context of the
OCL expression is the modified view). Such OCL expres-
sions are logical specifications that ensure our excerpt of
the UML metamodel (in subsystem model in the
1ACMTool) and the modelChange class diagram (an-
other IACMTool subsystem) are sufficient to implement
a workable change retrieval algorithm.

Fig. 5 shows an excerpt of the model subsystem class
diagram (with a link to the Change class in model-
Change) that is navigated by the OCL expression of
our example in Fig. 3. Since the OCL expression does
produce the added messages we wish to obtain and is
consistent with the class diagram, we know that the
meta-model is sufficient for this particular change detec-
tion rule.

Fig. 4 shows an excerpt of the change taxonomy
where our example change category (added message) is
located. We see it is in the changed Sequence Diagram
View, which may itself be composed (note the composi-

tion) of added messages but also added classifier roles,
changed message actions, among others. Changed
Classifier Role and Changed Message Action
are further decomposed into subcategories that are not
shown here and are available in Briand et al. (2003).
The taxonomy has been designed so that we could define
precise impact analysis rules for every leaf change
category.

5. Impact analysis rules

Each impact analysis rule is a specification (using
OCL) of how to derive several collections of elements,
corresponding to elements of different types (e.g., clas-
ses, operations), that are potentially impacted by a par-
ticular change (e.g., added message). These collections
are OCL bags, i.e., collections with possibly several
occurrences of an eclement (Warmer and Kleppe,
1999), because it is possible that an element is impacted
in several ways by a particular change. A model element
is considered impacted by a change if a modification to
that element or its implementation may be needed to
accomplish the change (this cannot always be decided
with certainty). There is one impact analysis rule for
each change category in the taxonomy. As further de-
scribed below, these rules are recursively applied in
order to obtain model elements that are indirectly
impacted.

Definition 3: Bag of impacted elements

Let £ and E’ be the set of all model elements in the
original and modified model version, respectively.
Then [ is the bag of impacted elements (in the
modified model version) resulting from that change
such that Vie ICE’, Jec ENE' such that e # i
and, when recursively applying impact analysis rules
from e, we obtain a bag of model elements containing
i

Though this is rare, note that the bag of impacted ele-
ments / may be empty, i.e., it is certain that no resulting
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+ application
IACMTool
(from control)
+ application

+ changedModel

Postcondition

Change 1

(from modelChange) 1
- propertylD: String

- Operation l—
1

1 + changedElement

,—[>| ModelView |—[>| ModeIEIement| -

SequenceDiagramView|

CallAction

Message

* + action

Action

+ view 1 1§/ + view
*

* + getIDStr() :

1 ]
+ receiver *

ClassifierRole

- multiplicity
* 1 [+ sender

*

1
+ base

ClassClassifier

String 1
~ 1|+ activator

Feature

*| + feature

- 1
Classifier
| Classifier @ ———

Fig. 5. Excerpt from the iACMTool class diagram (Briand et al., 2003).

changes are necessary to accomplish the change that
caused the impact. The resulting changes to be
made to an impacted model element must be of a type
defined in the change taxonomy for the impacted
element type.

Impact analysis rules are described in a structured
and precise manner so that it is easy to review, refine,
and change them, for example as the UML standard is
evolving. A sample impact analysis rule is presented in
Fig. 6 by elaborating on our change detection rule exam-
ple above (adding a message to a sequence diagram).
The change title is presented first, followed by the corre-
sponding change code (CSDVAM: see example of change
detection rule in Fig. 3), after which the pathname of the
changed/added/deleted model element class is presented,
followed by the property that has changed. In this case
an instance of SequenceDiagramView (located inside
the model subsystem) has been changed as a result of a
changed property: an instance of Message has been
added and linked to it. After the property is listed, the
pathname of the impacted element class(es) is stated
(ClassClassifier, Operation, and Postcondi-
tion in this case). A brief discussion follows that states
the elements impacted, and under what conditions. The
rationale for the change then states the reasons for the
impacts. The changes potentially resulting from the im-
pacts are then described and they translate into addi-
tional impact analysis rules being invoked. This is the
way the transitive closure of impacts is explicitly mod-
eled here: some rules invoke others as direct impacts
lead to indirect ones (Bohner, 2002). These descriptions
are followed by the OCL expression(s) describing the
formal derivation of the impacted elements based on
our meta-model (for the rule example in Fig. 6, see
meta-model excerpt in Fig. 5). The first expression in
our example (each expression being expressed in a con-
text) uses the 1et operator to define two placeholders
(variables) for navigation expressions capturing the

added message and the sending operation in the class
diagram, respectively. The added message is identified
as the message having the IDStr (string uniquely
identifying each model element and returned by the
getIDStr () operation) corresponding to the changed
property of the view associated with the change (prop-
ertyID in Change).

In our example, the changed property is an added
message in the SequenceDiagramView. Then, the
operation that possibly sends the added message is iden-
tified. Note that the navigation expression first identifies
the base class of the classifier role” that sends the added
messages, as we want to identify the operation as de-
scribed in the class diagram, and not the operation as
it is used in the sequence diagram.® This identification
involves selecting (the select operator) the method
declaration in the class that corresponds to the invoked
method in the sequence diagram, and is realized by the
equals() operation’ in the OCL expression of Fig.
6. Once the added message and the sending operation
have been identified, the propagation of the impact to
the sending class, the sending operation, and the post-
condition of the sending operation is described in three
OCL expressions, each of them starting with the con-
text keyword. Though they only return one element
each in this example, those expressions return bags in
the general case.

% In this case, the navigation is simply: addedMessage. activa-
tor.callAction. operation. As in the official UML meta-
model, operation invocations and declarations are modeled by the
same Operation class.

7 This operation is not trivial because of overloaded methods and we
have to resort to heuristics since UML sequence diagrams do not show
formal parameter and return types but only arguments (actual
parameters) (Briand et al., 2002a,b).
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Change Title: Changed Sequence Diagram — Added Message

Change Code: CSDVAM

Changed Element: model::behaviouralElements::collaborations::

SequenceDiagramView

Added Property: model: :behaviouralElements::collaborations: :Message

Impacted Elements: model: :foundation::core::ClassClassifier
model: :foundation::core: :0Operation
model: :foundation::core::Postcondition

Description: The base class of the classifier role that sends the added message is impacted. The operation
that sends the added message is impacted and its postcondition is also impacted.

Rationale: The sending/source class now sends a new message and one of its operations, actually
sending the added message, is impacted. This operation is known or not, depending on whether the
message triggering the added message corresponds to an invoked operation. If, for example, it is a
signal then we may not know the operation, just by looking at the sequence diagram. Additionally,
the operation postcondition may no longer accurately represent the effect (what is true on
completion) of the operation: the postcondition is thus impacted.

Resulting Changes: The implementation of the base class may have to be modified. The method of the
impacted operation may have to be modified. The impacted postcondition should be checked to

ensure that it is still valid.

Invoked Rule: Changed Class Operation — Changed Postcondition (CCOCPst)

OCL Expressions:

context modelChanges: :Change def:

let addedMessage:Message = self.sequenceDiagramView.message->select (m:Message |

m.getIDStr ()=self.propertyID)
let sendingOperation:Operation = (

if addedMessage.activator.action.oclIsTypeOf (CallAction) then
addedMessage.sender.base.operation->select (o:0Operation |
o.equals (addedMessage.activator.callAction.operation))

else
null
endif)

context modelChanges: :Change - class
addedMessage.sender.base

context modelChanges: :Change - operation
sendingOperation

context modelChanges: :Change - postcondition

sendingOperation.postcondition

Fig. 6. Impact analysis rule example.

6. Distance measure

When impacts between model elements are indirect,
following the general guidelines in Bohner (2002), we
suggest using a distance measure between the changed
model elements and the impacted elements. In Bohner
(2002), it is stated that a common assumption® is that
“If direct impacts have a high potential for being true,
then those farther away will be less likely.” Even with
a carefully designed set of impact analysis rules and
change taxonomies, the number of impacts may be very
large. Using a distance measure to filter/order impacts is
therefore often necessary in practice. The main related
question then becomes how to define such a distance
measure.

Recall that impact analysis rules determine impacted
elements and then, in some cases, a number of impact
analysis rules are invoked again on some of the directly

8 This fundamental assumption seems reasonable, but empirical
investigations are warranted to validate it.

impacted elements. We define the distance between a
changed element and a given impacted element to be
the number of impact analysis rules that had to be
invoked to identify this impacted element.

Definition: Distance between a changed element and an
impacted element

Let ImpactRule € E x E be the relation that associ-
ates a changed model element to its direct impact
related elements when applying once any one of the
impact analysis rules: e; € E, e, € E, ¢; ImpactRule
e, <= e has a direct impact on e.

e1 € E, e; € E, e has a (direct or indirect) impact on
e < dn e N e ¢ ImpactRule” e, where n is the
distance between changed model element e¢; and
impacted element e,. If the impact is direct then
n =1, otherwise, n> 1.

If we use Fig. 7 as an example, we can see that the sets
of impacted elements can be represented as the nodes of
a tree whose arcs are impact analysis invocation rules.
We reuse here the added message example of Fig. 6. This
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{s1}
T v
(Added message)

Level 1 {c;} {o;} {py}

CCOCPst
(Changed postcondition) ¢;€C, where C is the set of class classifiers

Level 2 {pZ’ P3sees pn} {027 035 ..oy On}

Nodes: model elements

Edges: invocation of rules

s,€S, where S is the set of sequence
diagram views

0,€0, where O is the set of operations
p,€P, where P is the set of postconditions

Fig. 7. Example distance between a changed element and an impacted element.

rule triggers, for the impacted postcondition (pl), the
changed postcondition rule (CCOCPst), thus leading
to the identification of other impacted postconditions
and operations. Only the first two depth levels of the tree
are shown. The level in the tree of a given impacted ele-
ment is the distance associated with this element, e.g.,
distance(p,) = 2. Such a distance measure could then
be used to either sort impacts according to their distance
from a given changed clement or even to exclude im-
pacted elements further than a certain distance specified
by the tool’s user. If a model element is impacted several
times, then the minimum distance can be used (i.e., the
strongest impact).

In our definition of distance, all the impact analysis
rules have the same weight. However, one could argue
that some rules may correspond to impacts occurring
with higher probabilities than others and this will be
investigated by future work. But it seems a priori diffi-
cult to establish a relationship between the rules and im-
pact likelihood as it likely depends on the system under
study (e.g., the semantics of the associations between
classes). Moreover, results discussed next suggest that
our definition of distance is sufficient.

7. Case studies

We have selected an Automated Teller Machine
(ATM) and a Cruise Control (CC) system as case stud-
ies. Results are presented below in a consistent form for
the two case studies and general conclusions are drawn
in the next section. We first describe the procedure we
followed to perform the case studies.

7.1. Procedure followed during case studies

The procedure is illustrated by the activity diagram in
Fig. 8. For each system under study (SUS), we first de-
fined a number of realistic logical changes to the original
system and then determined their effect to produce up-
dated UML diagrams. These logical changes were se-
lected to be of three types: requirements changes,
design improvements, and error corrections. We then
used our prototype tool (iIACMTool) to identify the
changes between the two UML model versions and
performed impact analysis (steps 1 and 2 in Fig. 8). This

resulted is a set of impacted elements in UML models, at
various distances.

Concurrently, an investigation was done to examine
the accuracy of the strategy with respect to the imple-
mentation (source code) of the model: Do direct and
indirect impacts at various distances, as identified from
the UML models, actually correspond to changes in
the source code? By answering this question, we deter-
mine a set of false-positives that correspond to cases
where there is an impacted model element (e.g., opera-
tion, class) but no change to the corresponding code.
This task corresponds to steps 3-6 in Fig. 8. First, the
impacts resulting from the logical changes made to the
SUS’s UML model were implemented in the SUS’s
source code. The modified source code was then tested
(functional test cases) to ensure changes were correctly
implemented, i.e., that added or changed functionalities
were correctly implemented and that unchanged func-
tionalities were not affected. The source code files of
the two versions were then compared to identify
changes, resulting in a set of impacted elements in the
source code. Last (step 6), we checked the consistency
of the two sets of impacted elements: the first set is pro-
duced by our tool, and the second by our analysis of the
source code. Note that some logical changes do not re-
sult into any impacted element in the UML diagrams.
Those changes are therefore not considered in the accu-
racy analysis.

The procedure in Fig. 8 is an attempt to perform an
objective evaluation of the accuracy of the results pro-
duced by our approach and prototype tool based on
UML diagrams. Though part of the analysis is manual
and faults can be overlooked, the procedure leaves no
room for subjective human interpretation.

For each of the two case studies discussed below, we
first report on the results generated by the iACMTool,
and then on the accuracy analysis.

7.2. Automated teller machine (ATM )

7.2.1. ATM description

The first version of UML documents contains 19
classes (e.g., ATM, Bank, Withdrawal) and 15 use
cases (e.g., Transaction, Withdrawal, GetPIN,
CardNotReadable), ecach use case being associated
with a sequence diagram. Furthermore, 29 attributes
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’ UML model version 1 ‘

—
-

—

’ UML model version 2 ‘

p—

Gldentify changes in UML diagrams (iACMTo@

@Implement changes in Source CodD Q Perform Impact Analysis (iACMTo@

\

@Test Modified Source Code (function@

\

G: Determine impact in Source Cod9

Fig. 8. Procedure followed during case studies.

and 72 operations appear in the class diagram, and clas-
ses are related by inheritance (4), association (11) and
dependency (3) relationships. The system functionality
can be summarized as follows: The customer inserts
his/her card, enters a PIN and then performs a number
of transactions such as withdrawal and deposit before a
receipt is issued by the ATM at the end of all the
transactions.

7.2.2. Impact analysis

We made eleven realistic, logical changes to the origi-
nal version of the UML diagrams: requirements changes
(5), design improvements (2), and error corrections (4).
They result in 43 model element changes. Let us take a
few examples of logical changes and describe them.
One logical change (requirement change) stems from
the need to be able to keep track of how many times
per session a user attempts to enter the PIN—after three
invalid PIN’s the card will be retained. This logical
change translates into 11 model element changes. An-
other logical change (design improvement) is to change
class ATM state’s representation from an integer to an
enumeration class, and results into 23 model element
changes. Two other logical changes concern changes in
the legal states of the system and translate into new
association end multiplicities in the class diagram: (1)
An account can be owned by at most two customers
and at least one customer (a multiplicity is changed from
1-*to 1, 2);(2) A customer must belong to a bank
and a customer can only belong to one bank (a multi-
plicity is changed from O - * to 1). The last logical
change example consists of making class Account
abstract since only its subclasses are instantiated
(e.g., Saving).

Of the 43 model element changes resulting from the
eleven logical changes, 29 resulted in impacts (at a
distance above or equal to 1) among which only seven

\
\
N
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-
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Fig. 9. Cumulative number of impacted elements vs. distance (ATM).

result in impacts at a distance (strictly) greater than
one.” This is due to a combination of: (1) The corre-
sponding rules not identifying any impacts since it is cer-
tain that no further change is necessary to accomplish
the original change; and (2) The necessary conditions
to identify impacted elements have not been met. For
example, the CCAO change (Changed ClassClassi-
fier—Added Operation) does not result in any impacts
since the model is assumed to be consistent (i.e., the
added operation is likely used in a sequence diagram
in an added message and this results in impacts to the
caller operation). Another example is that a CAECM
change (Changed AssociationEnd—ChangedMultiplic-
ity) does not impact any other element when the chan-
ged association end is not navigable (a necessary
condition for that change to impact other elements).
Let us consider all the impacted elements, when
accounting for all changed model elements taken
together, and their distance to the changed model

® Twenty-nine model element changes result in impacts at a distance
of 1 or above. Seven model element changes result in impacts at a
distance of 2 or above. Three model element changes result in impacts
at a distance of 3 or above.
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elements. Fig. 9 plots, for each of the three model ele-
ment changes that propagate to a distance (strictly)
greater than two (namely changes D, F and G), the
cumulative number of impacted elements for each dis-
tance value to a maximum of five. It shows curves rep-
resenting the cumulative number of impacted elements
(y-axis) for each distance value (x-axis) of the three
changes. For instance, change model element F (plain
line curve) results in impacted elements at various dis-
tances from one to five: two impacted elements at dis-
tance one, six at distance two, three at distance three
(thus a cumulative number of 11 at distance 3), two at
distance four and one at distance five. Note that we do

L.C. Briand et al. | The Journal of Systems and Software xxx (2005) xxx—xxx 11
10
5 |
8 SDi
7 NDistance 5
6 | | H Distance 4
5 — A Distance 3
g B Ml Distance 2
2 u ODistance 1
1 ||
simm INININ) iNi
|2 |%5|8%|5|L|o|(%| 5|8 oL
BlEIBI5|218\8|8(818|2 8
Impacted|impacted|impacted|impactedimpacted|impacted|
Cl DperationsClassesQperationsClasses Qperations
Logical Change 2 | Logical Change 6| Logical Change
11

not count impacts but impacted elements: each one is
counted only once (i.e., the first time it is impacted),
regardless of how many times it has been impacted.

Fig. 9 clearly shows that, when there is propagation
of impacts, the curves are not exponential, as suggested
in Bohner (2002), but rather linear. This is important as
it suggests that our impact analysis rules are rather pre-
cise. Though more case studies are necessary to draw
definitive conclusions, we can state that these results
are probably due to our use of semantic-based impact
rules,'” instead of connectivity graphs (see Bohner,
2002), that allow a more refined identification of im-
pacted elements and reduce false-positives.

In the analysis above we perform an overall impact
analysis for all logical changes but, if we were in a situ-
ation where we would have to decide on which logical
changes to implement in a next release, we might want
to perform the same analysis for each logical change
in isolation to evaluate its individual cost. Also, we only
looked at the cumulative number of all model elements
impacted together but the same graphs could be plotted
for classes or operations separately, each showing the
same trends as in Fig. 9 (though with significantly differ-
ent distances and number of impacted elements at vari-
ous distance values).

7.2.3. Results accuracy

In this investigation, a subset (six) of the eleven logi-
cal changes made to the ATM’s UML model was
checked against the ATM’s source code. Those six logi-
cal changes were selected as they are the only ones that
lead to impacted elements at a distance greater than one.

The results of the investigation are shown in Fig. 10.
Results for only three of the six logical changes are re-
ported as logical changes number 2, 6 and 11 are repre-
sentative enough. Note that logical changes 6 and 11
include model element changes F and G (Fig. 9), respec-
tively, and that logical change 2 does not include D, F,
or G. For each of those three logical changes, Fig. 10
shows the number of impacted elements (as reported

19 We use the semantics of the UML notation to define our rules.

Fig. 10. Code impacts vs. iACMTool impact (ATM).

by our iACMTool tool) as well as code impacted classes
and operations, i.e., impacts that affect the implementa-
tion (as determined by manual investigation), at differ-
ent distances for classes and operations. For instance,
the IACMTool reports, for logical change number 6,
one class impacted at distance one, three at distance
two, one at distance three and one at distance four
(“Tool” bar), whereas our manual investigation reports
that only the class impacted at distance one results in a
change to the implementation (“Code” bar). This indi-
cates that, for logical change number 6, classes impacted
at a distance greater than one, as reported by the iIACM-
Tool, are false-positives. Note that in Fig. 10 impacted
elements are counted as opposed to impacts—the set
of impacts may include several impacts to a given ele-
ment and when an element is impacted at various dis-
tances, only the minimum distance is considered in the
analysis. Fig. 10 shows that there are no required code
changes above distance one, and that all the impacted
elements at distance one lead to code changes.'! If this
result were to be confirmed on other case studies and
generalized, this would entail important practical conse-
quences. That would imply that, in practice, one does
not need to consider impacted elements above distance
one to identify changes in the code. However, it is likely
that code changes resulting from higher distance im-
pacted elements are still possible, though rare. It is then
a matter of cost-benefit analysis to decide about the
maximum distance that should be considered for code
impact analysis, i.e., checking whether the code needs
to be changed.

"' In the case of logical change 11, the iACMTool indicates that no
class is impacted at distance 1, but an impacted operation at distance 1
propagates into an impacted class at distance 2. When looking at the
source code, the impacted operation at distance one does correspond
to a code change, but the impacted class at distance two does not.
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7.3. Cruise control system

7.3.1. System description

The original version of the Cruise Control System is
made up of 11 use cases, 37 classes, 86 attributes, and
142 operations. The main functionality of this system
is to emulate the cruise control feature of an automobile.
The user is able to turn on and off the car, press the gas
and break pedals, set a desired cruising speed, accelerate
the car to a new speed, turn off cruise control, resume to
the desired speed and view the current speed, average
trip speed and average trip fuel consumption.

7.3.2. Impact analysis

We performed four, realistic logical changes. Three of
the four logical changes are requirement changes and
one of the logical changes results from refactorization
of a sequence diagram. The first logical change to the
system is the addition of an odometer interface. To
implement the odometer functionality in the system,
the distance travelled is read at timed intervals and dis-
played on the odometer interface. The second change
consists of a more realistic implementation of a gas tank
interface. The new gast tank interface has a limited 45L
capacity, is able to gauge the level of fuel, emits a warn-
ing signal when the fuel is low, and has facilities for fuel
refilling. The third change is a reorganization of the Re-
sume sequence diagram. The Cruise use case is removed
from the Resume sequence diagram and implemented in
a new Cruise sequence diagram. The last logical change
implements a speed limiter to the cruise control system.
The speed limiter dictates a maximum speed, and if the
current speed equals to or exceeds the maximum speed
the throttle interface is appropriately adjusted.

Of the 84 model element changes, 40 resulted in de-
tected impacts. Thirty of them show impacts at a dis-
tance greater than two. Fig. 11 represents the impacted
elements at a given distance, and shows only four curves
because these curves are identical for a number of model
element changes. The number of actual model element
changes that result in the shown distance vs. impacts
curves is noted in the legend of Fig. 11. Similar to the
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Fig. 11. Cumulative number of impacted elements vs. distance (cruise
control).
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Fig. 12. Code impacts vs. IACMTool impact (cruise control).

ATM system, the most important result to note is that
distance/impacts relationships do not look exponential
and exhibit a linear trend.

7.3.3. Results accuracy

Using the same format as for the ATM system, Fig.
12 shows, for each logical change, the number of im-
pacted elements at each distance level, for the model
and code. We see, once again, that only changes at dis-
tance one result in code changes. Our most plausible
explanation for this recurring result is that both systems
used in our case studies are well-designed. Good object-
oriented designs promote encapsulation so as to prevent
change propagation. Our results in both case studies
show that change propagation is indeed rare.

However, it is very much possible that we would ob-
tain dramatically different results with a poorly designed
system. In such cases, changes would propagate through
code and greater distances would have to be considered
during impact analysis. Then, to avoid combinatorial
explosion, the above results showing a linear increase
of impacted elements with distance would be very
important to ensure and confirm.

However, one difference when compared to the ATM
case study can be observed for logical change 1: One of
the identified impacted elements at distance one does not
result in code change. This is because a change in post-
condition does not necessitate a change to the calling
operation or class.

8. Conclusions

We present in this article a methodology supported
by a prototype tool (1IACMTool) to tackle the impact
analysis and change management of analysis/design
documents in the context of UML-based development.
Consistency rules between UML diagrams, automated
change identification and classification between two ver-
sions of a UML model, as well as impact analysis rules
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have been formally defined by means of OCL con-
straints on an adaptation of the UML meta-model.

Our impact analysis methodology and tool are as-
sessed through two case studies, thus providing an initial
demonstration of its feasibility and practicality. Results
are encouraging as it is shown that, with impact rules
based carefully on UML diagram semantics and
assumptions on the way the notation is used, the num-
ber of elements impacted by changes grows linearly
(and not exponentially) when accounting for indirect
impacts. This suggests that the impact analysis rules
are rather precise, an important result given that a re-
fined identification of impacted elements and the reduc-
tion of false-positives is known to be a major challenge
when automating impact analysis.

We also define a distance measure to be able to sort
impacts, according to their likelihood of occurrence in
the code, based on the distance between changed model
elements and impacted elements. Whether this measure
is a good heuristic will have to be further empirically
validated but our initial results are encouraging. In
our case studies, we investigated whether the impacted
elements, as reported by our tool, actually necessitate
changes to the implementation. It appears that all the
impacted elements at distance one (i.e., impact is a direct
result of change), with one exception in the Cruise Con-
trol system, necessitate code changes, whereas all the im-
pacts at a distance greater than one do not, thus
indicating false-positives. Though this has to be con-
firmed by additional studies, this suggests that one does
not need to consider all the impacted model elements (at
various distances) to assess the impact of a logical
change on the implementation. We believe that this is
due to the good object-oriented design of our case stud-
ies, that prevents changes from propagating, but may
not be a general trend when the design does not address
encapsulation well. Therefore, the focus when
considering change impacts in a well-designed system,
should mostly be on impacted model elements at dis-
tance one.

Though we made a conscious effort to be as exhaus-
tive as possible in terms of rules to identify possible
changes to UML models and impact analysis rules, the
strategy may be refined as we gain more experience,
especially by applying our change impact analysis strat-
egy to additional case studies. Both the above types of
rules have been defined using OCL on the UML meta-
model and we expect that such precise and formal defi-
nitions will help refine and evolve our methodology.

Future work includes performing additional case
studies. This will also be used in an attempt to associate
probabilities with impact analysis rules based on empir-
ical data. This would allow us to further refine our rank-
ing of impacted elements according to their likelihood of
actually requiring change.
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