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Abstract 

The use of Unified Modeling Language (UML) 
analysis/design models on large projects leads to a large 
number of interdependent UML diagrams. As software 
systems evolve, those diagrams undergo changes to, for 
instance, correct errors or address changes in the 
requirements. Those changes can in turn lead to 
subsequent changes to other elements in the UML 
diagrams. Impact analysis is then defined as the process 
of identifying the potential consequences (side-effects) of 
a change, and estimating what needs to be modified to 
accomplish a change. In this article, we propose a UML 
model-based approach to impact analysis that can be 
applied before any implementation of the changes, thus 
allowing an early decision-making and change planning 
process. We first verify that the UML diagrams are 
consistent (consistency check). Then changes between two 
different versions of a UML model are identified 
according to a change taxonomy, and model elements 
that are directly or indirectly impacted by those changes 
(i.e., may undergo changes) are determined using 
formally defined impact analysis rules (written with 
Object Constraint Language). A measure of distance 
between a changed element and potentially impacted 
elements is also proposed to prioritize the results of 
impact analysis according to their likelihood of 
occurrence. We also present a prototype tool that 
provides automated support for our impact analysis 
strategy, that we then apply on a case study to validate 
both the implementation and methodology.  

1. Introduction 

The use of UML (Unified Modeling Language) 
analysis/design models [8] on large projects leads to a 
large number of inter-dependent UML diagrams (that may 
also contain OCL [14] constraints, e.g., contracts, guard 
conditions). Those diagrams undergo changes as the 
software systems are evolving. Such changes to a diagram 
may lead to subsequent changes to other elements of the 
same diagram or in other related diagrams. In this context, 
several issues require attention. The (potential) side 

effects of a change to the unchanged diagrams should be 
automatically identified to help (1) keep those diagrams 
up-to-date and consistent and (2) assess the potential 
impact of changes in the system. This can in turn help 
predict the cost and complexity of changes and help 
decide whether to implement them in a new release [2].  

In the context of large software development teams, 
the above problems are even more acute as diagrams may 
undergo changes in a concurrent manner and different 
people may be involved in those changes. Support is 
therefore required to help a team assess the complexity of 
changes, identify their side effects, and communicate that 
information to each of the affected team members. In 
order to address the above issues, the work presented here 
focuses on impact analysis of UML analysis or design 
models. Impact analysis is defined as the process of 
identifying the potential consequences (side-effects) of a 
change, and estimating what needs to be modified to 
accomplish a change [2]. 

Most of the research on impact analysis is based on the 
program code (implementation). However, in the context 
of UML-based development, it becomes clear that the 
complexity of changing Analysis and Design models is 
also very high. Therefore, we seek to provide automated 
support to identify changes made to UML model elements 
and the impact of these changes on other model elements. 

While code-based impact analysis methods have the 
advantage of identifying impacts in the final product – the 
code, they require the implementation of these changes (or 
a very precise implementation plan) before the impact 
analysis can be performed. However, a UML model-based 
approach to impact analysis looks at impacts to the system 
before the implementation of such changes. Then a proper 
decision can be made earlierbefore any change detailed 
implementation is consideredon whether to implement a 
particular (set of) change(s) based on what design 
elements are likely to get impacted and thus on the likely 
change cost. Earlier decision-making and change planning 
is clearly important in the context of rigorous change 
management. On the other hand, since UML models 
describe the system at a higher level of abstraction than 
the code, model-based approaches may provide less 
precise results than code-based ones. For example, it may 
be possible that new, unexpected impacts appear at 
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implementation time. This is an issue that requires further 
investigation but will not be addressed in this article.  

Another assumption made by any model-based impact 
analysis method is that the model is consistent with the 
code and up-to-date. This is often an issue in many 
software development organizations. However, the 
functionality to manage traceability and consistency 
between design models and code is now available in many 
UML CASE tools. For example, Together®, by 
TogetherSoft™ [12], updates the class diagram when 
changes are made to the code and checks some 
consistency aspects of the updated class diagram with 
other UML diagrams in the design model.  

Our work contributes in several complementary ways 
to providing support for the impact analysis of UML 
models: 

- It defines a methodological framework. 
- It provides a set of change detection and impact 

analysis (side effect) rules, that were derived by 
systematically analyzing components of UML 
models (including constraints in the Object 
Constraint Language [14]) and analyzing changes in 
actual case studies.  

- A prototype tool implements the above principles 
using a carefully thought-out architecture and an 
extensible design. 

- Case studies have been performed to assess the 
feasibility and practical challenges of our approach. 

This paper describes the methodological framework 
and the fundamental principles underlying the change 
detection and impact analysis rules, presents our tool’s 
architecture at a high level, and reports on a case study. 
Section 2 discusses related works. Section 3 provides a 
precise description of the problems we addressed and the 
objectives of our research. An overview of the approach, 
along with some justifications, is given in Section 4. The 
next Sections, up to Section 9, which presents a case 
study, then detail each of the most important aspects of the 
approach and provide examples. Section 10 outlines our 
main conclusions and future work.  

2. Related works 

Bohner [1] examines the general issues involved in 
change impact analysis, and provides structured guidelines 
to help find solutions to such issues. For instance, if one 
considers both direct and indirect (transitive closure) 
impacts, the results of the impact analysis shows an 
enormous number of impacts, thus (possibly) over-
estimating the impact. This advocates tool support, as well 
as the use of semantic (related to the impacts) and 
structural (e.g., distance between a change and an impact) 
constraints to structure analysis results. 

A large portion of the change impact analysis 
strategies require source code analysis (see for instance 
the strategies reported in [3]), whereas a few of them are 
model-based. Kung et al. [10] describes how change 
impact analysis can be performed from a class diagram, 
introducing the notion of class firewall (i.e., classes that 
may be impacted by a change in a given class), and 
discusses the impact of object-oriented characteristics 
(e.g., encapsulation, inheritance, polymorphism, dynamic 
binding) on such an analysis. In [13], the authors use a 
functional model (referred to as "domain model") of the 
system under consideration to generate test cases, and 
build a mapping between changes to the domain model 
and the impact it has on test cases, to classify them. 
Another method for regression test selection, based on 
UML models (class and sequence diagrams), is presented 
in [6]. In this method, a rough impact analysis is 
performed with the sole purpose of classifying the 
regression test cases as obsolete, retestable, or reusable. 
The current work is a significant extension and performs 
impact analysis at a much more refined level so that it can 
be applied to a variety of problems, including change 
effort estimates and support to identify ripple effects. 

3. Problem definition and objectives 

The support of impact analysis of UML design models 
can be decomposed into several sub-problems: 

1. Automatically detect and classify changes across 
different versions of UML models. Ideally, one 
modifies a UML model and then uses the impact 
analysis tool to automatically identify all the 
changes performed since the last version. We do 
not want software engineers to have to specify 
each and every change as we want to avoid the 
overhead that would prevent the practice of 
impact analysis. As seen below, changes have to 
be classified to be able to perform a precise 
impact analysis.  

2. Verify the consistency of changed diagrams. The 
modified model must be self-consistent for any 
impact analysis algorithm to provide correct 
results. Since consistency in complex UML 
models is not always easy to achieve, verifying 
consistency must be supported by tools. Note that 
this is different from impact analysis as it does not 
focus on finding (potentially) impacted elements 
(i.e., whose implementation may require change) 
but structural inconsistencies between UML 
diagrams, e.g., a class instance (classifier role1) in 

1 In the UML standard terminology, a classifier role identifies an object 
in a sequence diagram, and the base class of the classifier role is the 
class of this object (the term base does not relate to inheritance). 
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a sequence diagram whose class is not in the class 
diagram.  

3. Perform an impact analysis to determine the 
potential side effects of changes in the design. In 
most cases, for reasons described below, side 
effects cannot be identified with certainty as there 
is no way to ascertain whether a change is really 
necessary based on the UML analysis or design 
only. As a result, an impacted element is a UML 
model element whose properties or 
implementation may require modification as a 
result of changing another model element (i.e., 
one of its properties may change)2. To clarify the 
terminology we employ, changes to UML 
diagrams are the result of logical changes
corresponding to error corrections, design 
improvements, or requirement changes. We refer 
to changes to model elements when a property of 
an element has changed from one version of a 
diagram to another, e.g., the visibility of an 
operation. A logical change usually results in a set 
of changes to model elements. Impact analysis can 
be performed for each logical change 
independently or for an entire, new UML model.  

4. Prioritize the results of impact analysis according 
to the likelihood of occurrence of predicted 
impacted elements. In object-oriented designs, 
when considering all direct and indirect 
dependencies among model elements, impact 
analysis often results in a large number of 
(potentially) impacted model elements, thus 
making their verification impractical. Addressing 
this issue requires a way to order side effects 
according to criteria that can be easily evaluated 
and which are good indicators of the probability 
of a side effect, for a given change. For example, 
Briand et al. [7] have explored the use of coupling 
measures and predictive statistical model for that 
purpose.  

4. Overview of the approach 

First note that, due to space constraints, we do not 
present all the details of our change impact analysis 
strategy. Rather we concentrate on the important notions, 
providing excerpts for all the four steps that are involved 
in the strategy: consistency checking, change detection, 
change impact analysis, prioritization of impacts. Further 
details can be found in [5]. 

As mentioned above, the identification of model 
inconsistencies is important to ensure that the impact 
analysis algorithms we use yield correct results. 

2 Even when no model property changes, the model element 
implementation may require change. 

Inconsistencies may be automatically modeled and 
detected by a set of consistency rules. Each rule 
corresponds to one type of inconsistency and must be 
implemented in any tool supporting impact analysis on 
UML diagrams. We have identified 120 consistency 
rules3. For example, one simple rule we use can be 
described informally as4:

Each operation that is invoked in a sequence 
message must be defined in the class diagram, 
in the specific class of the target object of the 
message. 

Each model element in a UML design is defined by a 
set of properties, e.g., a class has attributes. Thus, the 
identification of a change to a model element requires 
checking if any of its properties has changed. Each model 
element change is classified according to a change
taxonomy in order to associate impact analysis rules with 
each type of change. The change taxonomy reflects 
changes to class diagrams, sequence diagrams, and 
statecharts. More details are provided, for some examples, 
in Section 6, and the complete change taxonomy contains 
97 change categories3 (leaf nodes).  

Once we have verified that the diagrams of a UML 
design model are consistent, and model element changes 
have been detected, the next step is to automatically 
perform impact analysis using impact analysis rules, that 
is, rules that determine what model elements could be 
directly or indirectly (through transitive closure) impacted 
by each model element change (Section 7). As rules tend 
to depend on the type of change for which we perform 
impact analysis, we define one such rule for each change 
category in the change taxonomy, thus resulting in 97 
rules3.

In order for impact analysis to be useful and practical, 
we need to find ways to indicate what model elements 
should be checked first as they, and their code 
counterpart, are more likely to require change. To do so, 
we define a measure of distance between the changed 
elements and potentially impacted elements (Section 8) 
where the assumption is that the larger the distance, the 
less likely is the model element to be impacted.  

Figure 1 is a conceptual model (using a class diagram) 
that provides a useful overview of all the concepts 
presented above. 

3 Though we made a conscious effort to be as exhaustive as possible, 
this number may change as we gain more experience, especially by 
applying our change impact analysis strategy to different case studies.  
4 Note that it can also be expressed using OCL on the meta-model. 
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5. Tool architecture and overview 

Our impact analysis tool (iACMTool) reads two 
versions of a UML model (composed of a number of 
diagrams and associated OCL constraints) and produces 
an impact analysis report as well as a consistency 
verification report. After each version of the model is 
read, its consistency is first verified. When both versions 
have been read and checked for internal consistency, 
change detection is done to identify all the changes 
between the two versions of the model, and classify them 
according to the taxonomy we defined (Section 6). These 
changes are then used to perform impact analysis on the 
model using the impact analysis rules relevant to each 
change type. 

There are seven main packages in the system, namely: 
parser, model, modelChanges, reportGeneration,
consistencyVerification, impactAnalysis, and 
control. The subsystem decomposition is shown in 
Figure 2 with packages and dependencies 
among them. More architectural details can be 
found in [5]. In particular, the packages 
contain 99 classes, 69 of which are in the 
model package (the UML meta-model), and 
the current implementation consists of 9064 
lines of Java source code, excluding 
comments. 

The parser subsystem has two main 
functions: (1) parsing XMI (XML Metadata 
Interchange [9]) files that describe the UML 
models, (2) parsing OCL expressions 
associated with the models. Parsed model 
information is then stored in the model
subsystem, which also handles persistency. The 
model subsystem is a UML meta-model 
adapted to our requirements (e.g., it has been 
modified to improve information retrieval 
efficiency). This meta-model is based on the 
official UML meta-model [11] and supports 

features related to three views of the 
meta-model: static (class diagram) 
view, interaction (sequence diagram) 
view, and the statechart diagram 
view. This includes classes, 
interfaces, sequence messages, state 
machines, but also class invariants, 
state invariants as well as pre- and 
post-conditions. It is designed so 
that it can later be upgraded to 
include other features of UML such 
as use case and activity diagrams. 
The modified UML meta-model is 
presented in [5] and, due to space 
constraints, only an excerpt is 

presented in Section 7. The modelChanges subsystem is 
responsible for change detection by analyzing the two 
versions of a UML design model. The main class in this 
package, ChangeDetector, implements the change 
detection rules corresponding to the change taxonomy 
introduced previously and further detailed in Section 6. 
The consistencyVerification subsystem is 
responsible for checking consistency in each version of 
the model, using the set of rules discussed above. The 
control subsystem is responsible for the overall control 
flow of the application. The impactAnalysis subsystem 
is responsible for performing the impact analysis related 
to a set of model element changes. This subsystem 
implements the impact analysis rules discussed above and 
further detailed in Section 7. The reportGeneration
subsystem is responsible for generating the different types 
of reports required by the system, including a consistency 
verification report, and an impact analysis report. 
Different flavors of the reports may be generated to meet 
the requirements of the user. 

Figure 1 Conceptual model 

UML Model Design Impact Analysis

UML Diagram
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Figure 2 Impact analysis tool subsystems 
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6. Model changes 

To derive the change taxonomy, we analyzed each 
property of each model element (in the UML meta-model) 
to determine the possible changes that can occur. An 
element property is modeled as an attribute or an 
aggregation link to another element. In the latter case, 
linked elements are termed impact related elements since 
a change to one of these component elements affects the 
composite element to which it belongs. For example, if an 
attribute is changed then the class to which it belongs is 
considered impacted. A changed element property is 
defined as a changed attribute of the element, or an added 
or deleted link to an impact related element in the meta-
model. For example, using an excerpt of the meta-model 
in Figure 3, we see that an association end has several 
properties, some modeled as a link to model elements 
(qualifier modeled as a link to zero or several attributes) 
and others as attributes (e.g., isNavigable to model 
whether an association end is navigable).  

-aggregation : AggregationKind
-changeability : ChangeableKind
-isNavigable : boolean
-multiplicity : Multiplicity
-ordering : OrderingKind
-targetScope : ScopeKind
-visibility : VisibilityKind

AssociationEnd

-initialValue

Attribute

1

+qualifier

*

Figure 3 Example of impact related element from 
the meta-model 

Some element properties uniquely identify the element 
among the set of all elements instantiating a meta-model 
class. These properties are not included in the change 
taxonomy but the element is considered deleted and a new 
element added if a change to such a property occurs. For 
example, a class is uniquely identified by its name within 
its package’s namespace, and thus a changed class name is 

regarded as the deletion of the original class and the 
addition of a new class. Using such key attributes is the 
way any impact analysis system can keep track of the 
identity of model elements across design versions.  

We provide below a set of definitions regarding the 
basic terminology and concepts used throughout the 
paper.
Definition 1: Model element changes 

Let e ∈ E, where E is the set of all model elements 
(i.e., meta-model instances) in the UML design model. 
Let P be the set of all the properties of e. Let PU ⊂ P be
the set of properties that uniquely identify e. If any one 
p ∈ (P – PU) is changed, then e is changed.  

Definition 2: Impact related elements 
Given two different model elements e1 and e2 (e1 ∈ E
and e2 ∈ E such that e1 ≠ e2), e2 is said to be an impact 
related element of e1 if when e2 is changed then e1 is 
considered changed. 
Using definitions above, a change taxonomy is 

provided in [5]. The UML class diagram notation is used 
to describe the taxonomy, as illustrated in Figure 5. Each 
non-terminal node in the taxonomy represents an abstract 
change category of a model element. The leaf nodes 
correspond to one changed element property.  

For example, let us look at a simple change example: 
Adding a message in a sequence diagram. We provide in 
Figure 4 a description of the change. Each change 
category has an acronym, a short textual description, and 
an OCL expression that shows how, based on the model
subsystem class diagram (which is instantiated by the 
parser subsystem), such changes can be automatically 
detected. In our example, the OCL expression returns a 
collection of added messages in a given Sequence 
Diagram View (we always assume the context of the OCL 
expression is the modified view). Such OCL expressions 
are logical specifications that ensure our meta-model (in 
model), and the modelChange class diagram, are 
appropriate to implement a workable change retrieval 
algorithm.  

Figure 4 Example change type 

Changed Sequence Diagram View – Added Message 
Change Code: CSDVAM 
Description: In the modified model version there exists a message that does not exist in the original version. 
OCL Expression:

context model::behaviouralElements::collaborations::SequenceDiagramView 
self.message->select(

exists(
mNew:Message | not self.model.application.originalModel. 
sequenceDiagramView.message->exists(

mOld:Message | mNew.getIDStr() = mOld.getIDStr() 
)

)
)
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Figure 6 shows an excerpt of the model subsystem 
class diagram (with a link to the Change class in 
modelChanges) that is navigated by the OCL expression 
of our example in Figure 4. Since the OCL expression 
does produce the added messages we wish to obtain and is 
consistent with the class diagram, we know that the meta-
model is sufficient for this particular change detection 
rule.  

Figure 5 shows an excerpt of the change taxonomy 
where our example change type (added 
message) is located. We see it is in the 
changed Sequence Diagram View, 
which may itself be composed (note 
the composition) of added messages 
but also added classifier roles, changed 
message actions, among others. 
Changed Classifier Role and 
Changed Message Action are 
further decomposed into subcategories 
which are not shown here and are 
available in [5]. The taxonomy has 
been designed so that we could define 
precise impact analysis rules for every 
leaf change category.  

7. Impact analysis rules 

Each impact analysis rule is a specification (using 
OCL) of how to derive several collections (i.e., OCL 
bags) of elements, corresponding to elements of different 
types (e.g., classes, operations), that are potentially 
impacted by a particular change (e.g., added message). 
These collections are bags, i.e., collections with possibly 
several occurrences of an element [14], because it is 
possible that an element is impacted in several ways by a 
particular change. A model element is considered 
impacted by a change if a modification to that element or 
its implementation may be needed to accomplish a change 
(this cannot always be decided with certainty). There is 
one impact analysis rule for each type of change in the 
taxonomy.  
Definition 3: Bag of impacted elements 

Let E and E’ be the set of all model elements in the 
original and modified model version, respectively. 
Then I is the bag of impacted elements (in the 
modified model version) resulting from that change 
such that ∀i ∈ I, ∃ e∈E∩E’ such that e ≠ i and there is 
a navigation path from e to i in the object diagram 
corresponding to the modified model version. 
Though this is rare, note that the bag of impacted 

elements I may be empty, i.e., it is certain that no resulting 
changes are necessary to accomplish the change that 
caused the impact. The resulting changes to be made to an 
impacted model element must be of a type defined in the 
change taxonomy for the impacted element type.  

Figure 5 Excerpt of Change Taxonomy

Changed Model

Changed Class Diagram View

Changed Sequence Diagram View

Added Classifier Role

Changed Classifier Role

Deleted Classifier Change

Added Message

Changed Message Action

Deleted Message

Changed Statechart Diagram View

*

+receiver
1

+view 1

*

+view1

*

*

+sender1

+model
1

+view 3

+application

1
+originalModel 1

+application1 +changedModel1

*

+changedElement1

+base
1

*

*

+action

1

1

*

1
1

+getIDStr() : String

Message

-multiplicity : Multiplicity

ClassifierRole

+activator
1*

+classifier 1

+feature*

IACMTool
(from control)

UMLModel

ModelView

-propertyID : String

Change
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ModelElement

SequenceDiagramView

Postcondition

Operation

CallAction

Action

ClassClassifier
Classifier

Feature

Figure 6 Excerpt from the iACMTool class diagram 
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Impact analysis rules are described in a structured and 
precise manner so that it is easy to review, refine, and 
change them, for example as the UML standard is 
evolving. A sample impact analysis rule is presented in 
Figure 7 by elaborating on our change detection rule 
example above (adding a message to a sequence diagram). 
The change title is presented first, followed by the 
corresponding change code (CSDVAM – see example of 
change detection rule in Figure 4), after which the 
pathname of the changed/added/deleted model element 
class is presented, followed by the property that has 
changed. In this case an instance of 
SequenceDiagramView (located inside the model
subsystem) has been changed and one of its property has 
been changed: an instance of Message has been added 
and linked to it. After the property is listed, the pathname 
of the impacted element class(es) is stated 
(ClassClassifier, Operation, and Postcondition
in this case). A brief discussion follows that states the 
elements impacted, and under what conditions. The 
rationale for the change then states the reasons for the 
impacts. The changes potentially resulting from the 

impacts are then described and they translate into 
additional impact analysis rules being invoked. This is the 
way the transitive closure of impacts is explicitly modeled 
here: some rules invoke others as direct impacts lead to 
indirect ones [1]. These descriptions are followed by the 
OCL expression(s) describing the formal derivation of the 
impacted elements based on our meta-model (for the rule 
example in Figure 7, see meta-model excerpt in Figure 6).
The first expression in our example (each expression 
being expressed in a context) uses the let operator to 
define two placeholders (variables) for navigation 
expressions capturing the added message and the sending 
operation in the class diagram, respectively. The added 
message is identified as the message having the IDStr
(string uniquely identifying each model element and 
returned by the getIDStr() operation) corresponding to 
the changed property of the view associated with the 
change (propertyID in Change).

In our example, the changed property is an added 
message in the SequenceDiagramView. Then, the 
operation that possibly sends the added message is 
identified. Note that the navigation expression first 

Figure 7 Impact Analysis Rule Example 

Change Title: Changed Sequence Diagram – Added Message 
Change Code: CSDVAM 
Changed Element: model::behaviouralElements::collaborations:: SequenceDiagramView 
Added Property: model::behaviouralElements::collaborations::Message
Impacted Elements: model::foundation::core::ClassClassifier

model::foundation::core::Operation
model::foundation::core::Postcondition

Description: The base class of the classifier role that sends the added message is impacted. The operation that sends the 
added message is impacted and its postcondition is also impacted.  

Rationale: The sending/source class now sends a new message and one of its operations, actually sending the added 
message, is impacted. This operation is known or not, depending on whether the message triggering the added 
message corresponds to an invoked operation. If, for example, it is a signal then we may not know the operation, just 
by looking at the sequence diagram. The impacted postcondition may now not represent the effect (what is true on 
completion) of its operation. 

Resulting Changes: The implementation of the base class may have to be modified. The method of the impacted 
operation may have to be modified. The impacted postcondition should be checked to ensure that it is still valid. 

Invoked Rule: Changed Class Operation – Changed Postcondition (CCOCPst) 
OCL Expressions: 
context modelChanges::Change def:

let addedMessage:Message = self.changedElement.oclAsType(SequenceDiagramView).  
Message->select(m:Message | m.getIDStr()=self.propertyID) 

let sendingOperation:Operation = (  
if addedMessage.activator.action.oclIsTypeOf(CallAction) then 

addedMessage.sender.base.operation->select(o:Operation | 
o.equals(addedMessage.activator.callAction.operation))

else
null

endif)
context modelChanges::Change – class 

addedMessage.sender.base
context modelChanges::Change – operation 

sendingOperation
context modelChanges::Change – postcondition 

sendingOperation.postcondition
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identifies the base class of the classifier role that sends the 
added messages, as we want to identify the operation as 
described in the class diagram, and not the operation as it 
is used in the sequence diagram5. This identification 
involves selecting (the select operator) the operation 
declaration in the class that corresponds to the invoked 
operation in the sequence diagram, and is realized by the 
equals() operation in the OCL expression. This 
operation’s complexity stems from overloaded operations, 
as described in [4, 6], since UML sequence diagrams do 
not show parameter (and return) types. Once the added 
message and the sending operation have been identified, 
the propagation of the impact, to the sending class, the 
sending operation, and the postcondition of the sending 
operation, is described in three OCL expressions, each of 
them starting with the context keyword. Though they 
only return one element each in this example, those 
expressions return bags in the general case.  

8. Distance measure 

When impacts between model elements are indirect, 
following the general guidelines in [1], we suggest using a 
distance measure between the changed model elements 
and the impacted elements. In [1], it is stated that a 
common assumption6 is that “If direct impacts have a high 
potential for being true, then those farther away will be 
less likely.” Even with a carefully designed set of impact 
analysis rules and change taxonomies, the number of 
impacts may be very large. Using a distance measure to 
filter/order impacts is therefore often necessary in 
practice. The main related question then becomes how to 
define such a distance measure.  

Recall that impact analysis rules determine impacted 
elements and then, in some cases, a number of impact 
analysis rules are invoked again on some of the directly 
impacted elements. We define the distance between a 

5 In this case, the navigation is simply: addedMessage.
activator.callAction.operation. As in the official UML 
meta-model, operation invocations and declarations are modeled by the 
same Operation class.  
6

This fundamental assumption seems reasonable, but empirical 
investigations are warranted to validate it. 

changed element and a given impacted element to be the 
number of impact analysis rules that had to be invoked to 
identify this impacted element. If we use Figure 8 as an 
example, we can see that the sets of impacted elements 
can be represented as the nodes of a tree whose arcs are 
impact analysis invocation rules. We reuse here the rule 
example in Figure 7 when a message is added to a 
sequence diagram. This rule triggers, for the impacted 
postcondition (p1), the changed postcondition rule 
(CCOCPst), thus leading to the identification of other 
impacted postconditions and operations. Only the first two 
depth levels of the tree are shown. The level in the tree of 
a given impacted element is the distance associated with 
this element, e.g., distance(p2) = 2. Such a distance 
measure could then be used to either sort impacts 
according to their distance from a given changed element 
or even to exclude impacted elements further than a 
certain distance set by the tool’s user. If a model element 
is impacted several times, then the minimum distance can 
be used (i.e., the strongest impact).  

9. Case study 

We have selected an Automated Teller Machine 
(ATM) as a case study: The customer inserts his/her card, 
enters a PIN and then can perform transactions such as 
withdrawal and deposit before a receipt is issued by the 
ATM at the end of all the transactions. The first version of 
UML documents (see [5] for all the diagrams) contains a 
class diagram (19 classes such as ATM, Bank,
Withdrawal) and a use case diagram (15 use cases such 
as Transaction, Withdrawal, CardNotReadable,
GetPIN) – each use case being associated with a sequence 
diagram. Most of the sequence diagrams contain between 
3 and 7 messages (e.g., sequence diagrams for use cases 
ATMStartUp and ATMShutOff contain 7 and 3 messages 
respectively), the sequence diagram for use case 
Transaction being the most complicated one with 22 
messages. 15 attributes and 18 operations appear in the 
class diagram, and classes are related by inheritance (4), 
association (11) and dependency (3) relationships. 

We made 10 realistic, logical changes to the original 
version of the UML diagrams. These logical changes are 

{s1}

{c1} {o1} {p1}

{p2, p3, …, pn} {o2, o3, …, on}

Level 1

Level 2

CSDVAM
(Added message)

CCOCPst
(Changed postcondition)

… … …

Nodes: model elements
Edges: invocation of rules
si∈S, where S is the set of sequence 

diagram views
cj∈C, where C is the set of class classifiers
ok∈O, where O is the set of operations
pl∈P, where P is the set of postconditions
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{c1} {o1} {p1}

{p2, p3, …, pn} {o2, o3, …, on}

Level 1

Level 2

CSDVAM
(Added message)

CCOCPst
(Changed postcondition)

… … …

Nodes: model elements
Edges: invocation of rules
si∈S, where S is the set of sequence 

diagram views
cj∈C, where C is the set of class classifiers
ok∈O, where O is the set of operations
pl∈P, where P is the set of postconditions

Figure 8 Example distance between a changed element and an impacted element 
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of three types: requirements changes (5), design 
improvements (2), and error corrections (3). They result in 
70 model element changes, out of which 54 have shown 
impacted elements (the distribution of these changes for 
the elements in the taxonomy can be found in [5]). Let us 
take a few examples of logical changes and describe them. 
One logical change stems from our need to be able to keep 
track of how many times per session a user attempts to 
enter the PIN – after 3 invalid PIN’s the card will be 
retained. This logical change translates into 11 model 
element changes. Another logical change is to change the 
ATM state’s representation from an integer to an 
enumeration class, and results into 34 model element 
changes. Two other logical changes concern changes in 
the legal states of the system and translate into new 
association end multiplicities in the class diagram: (1) An 
account can be owned by at most two customers and at 
least one customer (a multiplicity is changed from 1..* to 
1,2); (2) A customer must belong to a bank and a 
customer can only belong to one bank (a multiplicity is 
changed from 0..* to 1). A last logical change example 
(design) consists in making class Account abstract since 
only its subclasses are instantiated (e.g., Saving). A 
complete description of all logical changes can be found 
in [5]. 

Let us consider the impacted operations, when 
accounting for all changed model elements taken together, 
and their distance to the changed model elements. Figure
9 plots, for each of the 54 model element changes, a 
curve/point representing the cumulative number of 
impacted operations (y-axis) for each distance value (x-
axis). A first, clearly visible result is that only four curves 
are visible as only four changes propagate impacts farther 
than a distance of 2. The reason is that the impacted 
elements at distance one and two that do not propagate are 
classes, and a class is not an impact related element of any 
other element in a class diagram (see Definition 2). The 
rationale is that the propagation of impacts from class to 
class is already addressed since operations and attributes 
are impact related elements of the operations that call/use 
them.  

More importantly, when there is propagation of 
impacts, Figure 9 clearly shows that the curves are not 
exponential, as suggested in [1], but rather linear. This is 
important as it suggests that our impact analysis rules are 
rather precise. Also, the maximum distance for impacted 
elements is limited to six. Though more case studies are 
necessary to draw definitive conclusions, we can state that 
these results are probably due to our use of semantic-
based impact rules, instead of connectivity graphs (see 
[1]), that allow a more refined identification of impacted 
elements and reduce false-positives. 

In the analysis above we perform an overall impact 
analysis for all logical changes but, if we were in a 
situation where we would have to decide on which logical 

changes to implement in a next release, we might want to 
perform the same analysis for each logical change in 
isolation to evaluate its individual cost. Also, we only 
looked at the cumulative number of operations but the 
same graph could be plotted for classes or even for all 
model elements impacted together. We provide such 
diagrams in [5] and the results clearly show that the 
curves are very similar to the one in Figure 9 (though with 
significantly different scales on the Y-axis). 

10. Conclusions 

We present in this paper a methodology supported by a 
prototype tool (iACMTool) to tackle the impact analysis 
and change management of analysis/design documents in 
the context of UML-based development. Consistency 
rules between UML diagrams, automated change 
identification and classification between two versions of a 
UML model, as well as impact analysis rules have been 
formally defined by means of OCL constraints on an 
adaptation of the UML meta-model. 

Our impact analysis methodology and tool are assessed 
through a case study, thus providing an initial 
demonstration of its feasibility and practicality. Results 
are encouraging as it is shown that, with impact rules 
based carefully on UML diagram semantics and 
assumptions on the way the notation is used, the number 
of elements impacted by changes grows linearly (and not 
exponentially) when accounting for indirect impacts. This 
suggests that the impact analysis rules are rather precise, 
an important result given that a refined identification of 
impacted elements and the reduction of false-positives is 
known to be a major challenge when automating impact 
analysis.  

We also define a distance measure to be able to sort 
impacts, according to their likelihood of occurrence, 

Figure 9 Cumulative number of impacted 
operations vs. distance 
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based on the distance between changed model elements 
and impacted elements. Whether this measure is a good 
heuristic will have to be empirically validated.  

Though we made a conscious effort to be as exhaustive 
as possible when identifying consistency rules, possible 
changes to UML models, and impact analysis rules, the 
strategy may be refined as we gain more experience, 
especially by applying our change impact analysis strategy 
to additional case studies. All three types of rules have 
been defined using OCL on the UML metamodel and we 
expect that such precise and formal definitions will help 
refine and evolve our methodology.  
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