
Experiments in the Use of XML to Enhance Traceability Between
Object-Oriented Design Specifications and Source Code

Dr. Jim Alves-Foss
Center for Secure and

Dependable Software,
University of Idaho,

Moscow, ID 83844-1008
jimaf@csds.uidaho.edu

Mr. Daniel Conte de Leon
Center for Secure and

Dependable Software,
University of Idaho,

Moscow, ID 83844-1008
danielc@csds.uidaho.edu

Dr. Paul Oman
Schweitzer Engineering

Laboratory, Inc.,

Pullman, WA 99163-5603
paulom@selinc.com

Abstract

In this paper we explain how we implemented

traceability between a UML design specification and its
implementing source code using XML technologies. In
our linking framework an XMI file represents a detailed-
design specification and a JavaML file represents its
source code. These XML-derivative representations were
linked using another XML file, an Xlink link-base,
containing our linking information. This link-base states
which portions of the source code implement which
portions of a design specification and vice-versa. We
also rendered those links to an HTML file using XSL and
traversed from our design specification to its
implementing source code. This is the first step in our
traceability endeavors where we aim to achieve total
traceability among software life-cycle deliverables form
requirements to source code.

1. Toward a Life-Cycle Based Software
Engineering Approach

Most software developed in the commercial world
today is designed and constructed without the use of
formal verification and traceability aids because market
pressures exert a schedule urgency, which encourages ad-
hoc programming. While there exist techniques for
developing reliable mechanical and electrical components
of complex systems, the reliable construction of complex
software systems has taken a back seat to market demands
for newer functionality. Most of techniques used today to
develop reliable computational systems, such as formal
methods, structured testing, software process
management, software modeling, and software metrics,
are primarily centered on a single aspect of the software
life-cycle. For example, many techniques and tools focus

on the programming-centric paradigm, where the goal of
the methodology is to enhance the ability to write reliable
software written in a specific modern programming
language. What is needed is a higher-level approach and
tools that works above the programming-centric paradigm
to view the whole system being developed. The
development of the system from a top-down perspective,
without any presumed underlying technology, allows the
creation of complex reliable systems without needless
constraint of programming language or methodology.

Large commercial systems containing millions of lines
of code cannot be implemented in a timely fashion if all
portions of the system undergo formal verification in
addition to unit and integration testing prior to release.
The key to more rigorous large-scale software design and
implementation is to establish an integrated software
engineering environment that combines state-of-the-art
technologies in the areas of graphical user interfaces,
formal software specification/design, and code
verification and validation. The intent is to target
complex sections of software needing formal verification
and those needing rigorous testing, at the expense of the
more mundane subsections of the system requiring less
rigor and attention. We have embarked on a three year
project, funded by the Army Research Office, to explore
the integration of existing software specification and
verification techniques (from the formal methods domain)
and existing Computer Aided Software Engineering
(CASE) tools, with the goal of developing a full-spectrum
software development approach based on widely available
technologies (as opposed to language specific or process-
centric environments). In our environment, a set of
widely available and consistent tools are envisioned for
formal specification, design, verification, testing, and
change management supporting the entire software
engineering life-cycle.

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

One common problem of the software development
process is that it generates disparate documents
(requirements specifications, design specifications, source
code, etc.) written in several different specification and
programming languages. In disciplined software
engineering we need to link these documents together for
traceability, consistency, change management, and
evaluation. By creating visual, traceable links between
requirements, design structures and code, we can assess
the impact of requirement and code changes on the other
corresponding work products.

In this paper we describe how we implemented
traceability links between UML design specifications and
its implementing Java source code using XML-derivates
as specification languages and Xlink as linking language.
We plan to use XML-derivates to represent all software
life-cycle deliverables from requirements to specifications
and embed traceability information in all of them. In this
way engineers could identify and initiate the appropriate
level of verification and validation necessary for each
portion of the system during development or maintenance.

2. Using XML to Enhance Traceability
Across Life-Cycle Products

One of the goals of our current research project is to
add traceability between several disparate documents
created by the software engineering process. In particular,
we want to be able to trace object-oriented design
specifications to source code. Towards this goal we have
identified new technologies and designed a framework
where traceability is an integral part of software
development. In this framework, traceability links (and
other desirable software properties) are embedded across
life-cycle products by using an XML-derivative language.

2.1 The Extensible Markup Language (XML)

The Extensible Markup Language (XML) [7] is a new
markup language developed by the World Wide Web
Consortium [10]. XML technology is rapidly gaining
widespread use among companies and organizations, and
is changing the way they store and use Internet and
Intranet based information systems. The rush for moving
to XML is due to several advantages of the technology.
First, as any other Internet standard, it is open and
affordable. Second, XML is a multi-platform and non-
vendor dependent technology, which is a plus in a rapidly
changing environment. Third, XML is a natural outcome
of HTML and Web technologies since it adds the
advantage of being flexible enough to adapt to each
company’s business know-how. Fourth, XML easily
conforms to the object-oriented paradigm with its
elements, attributes, and hierarchical structure. Fifth, and
last, it is a continuation of client-server and three-tier

architectures that allows us to disaggregate content from
model, and data from format.

An XML file is a well-formed tagged file, where data
is included between tags indicating markup. Both data and
markup are included together in an XML file. The
markup tells us something about the meaning of the
marked up data. An XML file must be well-formed based
on a set of grammar rules called a Document Type
Definition (DTD) [7]. The extensibility of XML is based
on DTDs and Schemas, a new richer language for
defining XML document formats. This extensibility
allows us to define the format of any document including
software design specifications, source code, and any other
software life-cycle deliverable. In our particular case,
traceability, we are concerned with linking a design
specification with its current source code implementation,
so a DTD is necessary for the design specification and for
the source code specification, in order to be able to
represent design documents and source code documents in
XML markup.

2.2 SeaBASS: A Test-Platform Java
Application

SeaBASS stands for Certificate Based Authorization
Simulation System. It is a software application developed
at the Center for Secure and Dependable Software. Its
purpose is to allow us to explore ways to build distributed
authorization into computer systems. SeaBASS was
implemented, using the Java programming language, as a
distributed object system emulating file management, user
management, machine management, and other
applications to simulate a certificate based authorization
mechanism. The size of the system is about 3000 lines of
source code. Several reasons propelled us to use
SeaBASS as a test-platform for our software engineering
studies. First, the SeaBASS project was developed using
object-oriented design and programming methods.
Second, it is an internal development application so we
have both design and source code specifications. And last,
it is a relative small application suitable for the purposes
of this work.

Although, SeaBASS is a small application and our
final goal is to target large commercial systems, it is being
used for the purposes of this work as a proof-of-concept.
Our goal for large commercial systems is to be able to
differentiate which portions of the system need formal
verification and which ones can avoid that verification
and be rather subject to informal testing, based on the
criticality of the requirements. So we plan to develop an
environment where we can differentiate and qualify
portions of a small system and in the future port our work
to a larger scale.

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 2
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

3. XML Extensions

The use of XML based languages is a fast growing and
open technology that has the advantages of being non-
platform, non-vendor dependent, and can be applied to the
software engineering domain in order to improve software
engineering practices by the use of automated tools. We
aim to have an XML representation for each of the
software life-cycle deliverable from requirements to
source code, including links, comments, metrics and any
other information necessary for a software project. In
order to do this we need an XML-derivate language for
each type of document of a software project. In particular
we are looking for an XML representation of UML
designs and Java source code. Fortunately part of that
work is already completed and we currently can use the
XMI [14] specification and a recent JavaML [11]
specification with this purpose.

Our purpose in using this XML-based design and
source code specifications is three fold: First, to have
enhanced information about the source code such as
software metrics and criticality level. Second, to be able
to transform that information in other formats in order to
have several points of view of the same source code (i.e.:
software visualization). And third, to add traceability
links and use them to navigate the source code itself and
traverse from source code to design and vice-versa. XML
is extensible enough to allow us to implement these
objectives.

3.1 Using XMI and JavaML

The Object Management Group [15], lead by IBM
Corporation [9], and other companies such as Rational
Software Corporation [17], have developed a specification
for writing object-oriented design specifications in XML.
That language, called XML Metadata Interchange (XMI)
[14], allows you to write a marked-up-text based object-
oriented software design specification. For example, a
Unified Modeling Language (UML) [13] specification
can be serialized to an XMI file using Rational Rose [17]
or the IBM XMI Toolkit [16]. Moreover, Argo UML [20]
and MagicDraw UML design tools use XMI as native file
format. The new marked up specification is a text file
representing an object-oriented design of the software
project. We used the XMI Tolkit to extract a design
specification of our SeaBASS project. This design
specification is an XML representation of the detailed-
design of our software project and it is saved as an XMI
file. This XMI file, as we explain later, allows us to add
links to the source code since our detailed-design now is
represented in an XML-derivative format.

In a similar manner, source-code in a software project
can be represented using JavaML, a marked up
representation of Java source-code developed by Greg

Badros, at the University of Washington [4]. Also, Evan
Mamas at the University of Waterloo, Canada [11]
developed a newer and different JavaML specification,
along with a CppML (C++ markup language) and an
OOML (object-oriented markup language). However,
neither the XMI specification, nor Badros’ JavaML work,
nor Mama’s set of XML-based OO languages include
traceability links or any other information such as
criticality level or other software properties we would like
to specify in our markup language. Also, Luca Bompani,
et al. are using XML to represent software development
deliverables such as Z specifications [6]. Other authors
such as Nentwich [12] are using Xlink to add links to an
XMI file, though not to an XML representation of the
source code.

We represented the Java source code of our SeaBASS
project using Mamas’ JavaML specification. This JavaML
is saved as an XML file (cbass.javaml.xml) and allows us
to complete both sides of our XML-representation
requirements for the detailed-design and source code
linking. Now we are in condition of designing and
implementing our links between both.

4. Adding Traceability to Software
Specifications

Linking dissimilar documents in an efficient and
effective way can be achieved by using a common
language to represent them. We used XMI, JavaML, and
Xlink (all XML derivatives) to establish links between a
UML design specification and the Java source code
implementing it.

4.1 The XML Linking Language (XLink)

The World Wide Web Consortium is currently
developing three language derivatives from XML. They
are XLink, XPath, and XPointer. These languages allow
us to embed traceability links in our XMI design
specification and in our JavaML or CppML source code
specification.

In a software project several XML linking files can
relate design with source-code in different ways. All
those links can reside on a simple file or in several files.
The set of all links is a set of XML files, called a link-
base, that contains information on how to traverse the
project not just from design to source-code as expressed
before, but from any software life-cycle deliverable to any
other. Most important yet, since a computer can interpret
these links, an automated system for generating links and
checking project inconsistencies can be developed to do
this work. In fact, the Xlinkit tool [12] does this task
based in a proprietary rules language.

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 3
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

<!ELEMENT software-life-cycle-deliverables-links
 (requirements-to-high-level-design-links) ?
 (high-level-design-to-detailed-design-links) ?
 (detailed-design-to-sourcecode-links) ? >

<!ATTLIST software-life-cycle-deliverables-links
 xmlns:xsl CDATA #REQUIRED
 xmlns:fo CDATA #REQUIRED
 xmlns:xlink CDATA #REQUIRED
 xmlns:relylinks CDATA #REQUIRED >

<!ELEMENT design-to-sourcecode-links

(xlink-extended-link)* >

<!ELEMENTxlink-extended-link

((resource)+ ,(locator) + ,(go)+) >

<!ATTLIST xlink-extended-link

xlink:type CDATA #REQUIRED
xlink:title CDATA #REQUIRED >…

Figure 1. Link-base DTD excerpt

4.2 Stating Linking Information Using Xlink

We used Xlink [8], a W3C recommendation, to design
a link-base, which contains linking information between a
UML design specification and its implementing Java
source code. Our link-base is currently an XML file with
the following structure: The document tag is called
software-life-cycle-deliverables-links, under this tag
different categories of links can be defined using new
XML elements such as links between requirements and
high-level design or links between detailed-design to
source code. A tag called design-to-sourcecode-links will
contain the elements that define links between our XMI
design specification and our JavaML source code
specification. These linking elements are Xlink extended
links and are added as an element defined by the tag xlink-
extended-link. The structure of this extended link
elements is similar to the examples found in [8].

Figure 1 shows the general structure of a link-base file
given by an excerpt of its document type definition
(DTD). Each extended link states information on the
resources and locators we want to link and the arcs that
link them. In the case of our detailed-design to source
code links resource is our XMI design specification and
our locators are the JavaML files corresponding to each of
the Java classes. Arcs define which links are defined from
the detailed-design to the source code.

Figure 2 shows a sample of a manually developed link-
base containing links form our SeaBASS design
specification to its implementing Java source code. This
link-base indicates what documents belong to the
detailed-design specification and what documents belong
to the source code specification, and how these resources
are linked to indicate what portions of the source code are
implementing their corresponding design specification.

<software-life-cycle-deliverables-links

 xmlns:xsl=http://www.w3.org/1999/XSL/Transform
 xmlns:fo=http://www.w3.org/1999/XSL/Format
 xmlns:xlink=http://www.w3.org/1999/xlink
 xmlns:relylinks=

http://www.einstein.csds.uidaho.edu/Rely/Linking >

<design-to-sourcecode-links>

 <xlink-extended-link
 xlink:typ e="extended“
 xlink:title ="DesignToSourceCodeLinks“ >
 <!– Resources are the design specification and
 source code specifications -->
 <resource
 xlink:type ="resource“
 xlink:label ="desingSpecification“
 xlink:title ="Sea BASS Design Specification“
 xlink:href ="desingspec.xmi.xml">
 </resource> …
 <!-- There are many target locators

determined for all the files
 composing the source code specification -->
 <locator
 xlink:type ="locator“
 xlink:label ="CBassInterface“
 xlink:title ="CBassInterface Source Code“
 xlink:href ="CBassInterface.javaml.xml“ >
 </locator> …
 <locator
 xlink:type ="locator“
 xlink:label ="CD“
 xlink:title ="Class CD Source Code Spec.“
 xlink:href ="CD.javaml.xml">
 </locator>

<!-- Following arc definitions determine links
between the design specification and
each of the files that contains a section of the
source code for the project or package -->

 <go
 xlink:type ="arc“
 xlink:from ="desingSpecification“
 xlink:to ="CBassInterface“
 xlink:title =

"Go to CBassInterface-classSourceCode“
xlink:show ="replace"
xlink:actuate="onRequest“ >

 </go>…
 <go
 xlink:type ="arc“
 xlink:from ="desingSpecification“
 xlink:to ="CD"

 xlink:title ="Go to CD-classSourceCode“
 xlink:show ="replace“
 xlink:actuate="onRequest">
 </go>…

 </xlink-extended-link>

 </design-to-sourcecode-links>

</software-life-cycle-deliverables-links>

Figure 2: Sample link-base excerpt

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 4
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

5. Navigating Software Specifications

The W3C, along with previously mentioned XML and
Xlink specifications, have developed a transformation
language called Extensible Stylesheet Language (XSL)
[1]. XSL can be applied to our XML software life-cycle
deliverables representation in order to transform
documents, including design specifications and source
code, into renderable files (i.e.: HyperText Markup
Language - HTML or Scalable Vector Graphics - SVG)
that can be viewed in different ways by different users.

5.1 Rendering an XMI Specification with
Links to the Source Code

We adapted an XSL stylesheet from ArgoUML [20],
also present in [15], which reads an XMI specification
and generates an HTML table view of the classes and
interfaces stated in the XMI specification. We manually
added to the stylesheet templates, which render the
previously added links in the XMI specification to html
links in the JavaML representation of the Java source
code. These links are generated in two different ways,
first one depending on the name of the class at the
detailed-design level and second one depending on the
information stated by links in our link-base. Those links
are explained in detail below.

The output of this stylesheet is an HTML file with
table format similar to the one obtained with the
ArgoUML stylesheet with the difference of the added
links to the source code.

Table 1: Section of an XSL-rendered XMI design
specification showing links to source code for
the SeaBASS CD (Certificate Database) class

Class CD

Attributes:

Visibility Type Name

private List certs

Operations:

Visibility ReturnType Name

public void CD

public boolean addCert

public boolean deleteCert

Source Code:

Go to CD-classSourceCode

Table 1 shows a section of the HTML output resultant
of rendering the SeaBASS XMI file using the previously
explained XSL stylesheet. The section of the table, has
now two links to the source code specification. Both
added links point to the JavaML representation of the Java
source code implementing the SeaBASS CD (Certificate
Database) class.

In Table 1 the first link (CD) corresponds to the
class/interface title and stands in the box near the Class
keyword. This link was generated by the modified
stylesheet upon rendering the SeaBASS XMI
specification and mapping the name of the class at
detailed-design level to a similar name file but using the
.javaml.xml extension. Figure 3 shows the portion of the
XSL stylesheet that adds the row with the link in the
HTML table.

<!-- Adds the name of the class / interface on first row

of the class / interface table and creates an hyperlink
to the JavaML source code file with same name of the
class / interface and “.javaml.xml” extension -->

<xsl:element name="td">
<xsl:attribute name="class">

<xsl:text>class-name</xsl:text>
</xsl:attribute>

<xsl:element name ="a">
 <xsl:attribute name ="name">
 <xsl:value-of select ="$element_name"/>
 </xsl:attribute>
 <xsl:attribute name ="href">
 <xsl:value-of select ="$element_name"/>
 <xsl:text>.javaml.xml</xsl:text>
 </xsl:attribute>
 <xsl:value-of select ="$element_name"/>

</xsl:element>
</xsl:element>

Figure 3. XSL template section, which adds an
HTML link from design to source code based on

class name

This kind of linking is limited to situations were there
is just one source code file for each class/interface like in
the Java language. Though, it has the advantage that can
be automatically generated without user intervention since
the information stated in the XMI specification link is
enough to find the corresponding JavaML source code
representation. No link-base is needed in this case. We
plan to implement this kind of automatic linking
functionality into a prototype of a software development
environment.

The second link, which appears in table 1 at the last
row, under the Source Code section, includes richer
information. It is generated as a result of parsing the
SeaBASS XMI specification along with the SeaBASS
link-base (an XML file named cbass.linkbase.xml for our
case). In this case the link is represented by a name taken
from the xlink:title attribute of an arc element, which
appeared in the link-base.

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 5
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

<!-- Organization : CSDS - Univesity of Idaho
Purpose : Reads arcs stated in the linkbase and
adds links using hrefs from locators/resources. -->

<xsl:template name="read-arcs">

<xsl:param name="class-name"/>
<xsl:for-each select="document('cbass.linkbase.xml')/

 software-life-cycle-deliverables-links/
 design-to-sourcecode-links/
 xlink-extended-link/go">
 <xsl:if test="@xlink:type='arc'">
 <xsl:variable name ="arc-from"

select ="@xlink:from"/>
 <xsl:variable name ="arc-to"

select="@xlink:to"/>
 <xsl:variable name ="arc-title"

select ="@xlink:title"/>
<xsl:for-each

select ="document('cbass.linkbase.xml')/
 software-life-cycle-deliverables-links/
 design-to-sourcecode-links/
 xlink-extended-link/resource">

<xsl:variable name ="resource-label"
select="@xlink:label"/>

 <xsl:variable name ="resource-title"
select ="@xlink:title"/>

 <xsl:variable name ="resource-href"
select="@xlink:href"/>

<xsl:for-each
select ="document('cbass.linkbase.xml')/

 software-life-cycle-deliverables-links/
 design-to-sourcecode-links/
 xlink-extended-link/locator">

 <xsl:variable name ="locator-label"
select="@xlink:label"/>

<xsl:variable name ="locator-title"
 select="@xlink:title"/>

 <xsl:variable name ="locator-href
select="@xlink:href"/>

 <xsl:if test="$locator-label=$arc-to">
 <xsl:if test="$resource-label=$arc-from">

 <xsl:if test="$locator-label=$class-name">
 <xsl:element name="tr">
 <xsl:element name="td">
 <xsl:attribute name="class">
 <xsl:text>feature-detail</xsl:text>
 </xsl:attribute>
 <xsl:element name="a">

 <xsl:attribute name="href">
 <xsl:value-of

select="$locator-href"/>
</xsl:attribute>

 <xsl:value-of
select="$arc-title"/>

 </xsl:element>
 </xsl:element>
 </xsl:element>
 </xsl:if>
 <xsl:if>

</xsl:if>
 </xsl:for-each>
 </xsl:for-each>
</xsl:if>
</xsl:for-each>

</xsl:template>

Figure 4: XSL Template to render extended links
to the corresponding HTML class table.

In this case all arcs (see go elements in Figure 2) in the
link-base are parsed and placed under this section if they
belong to the corresponding defined resource (see
resource elements in Figure 2) and locator (see locator
elements in Figure 2). Traversing any of these links
transfers us to the JavaML specification of the
corresponding Java source code.

Figure 4, shows the XSL template that reads a link-
base and an XMI specification, based on that information
adds a row, in the Source Code section of the HTML
table, for each arc defined in the link-base for the
corresponding resource and locator.

This latest links are the most powerful and they solely
depend on the information stated in the link-base. Also,
several links can be added to the same class/interface just
by adding more arcs to the link-base with the
corresponding resource and locator names.

6. Software Specifications with XML

Using XML to represent and link object-oriented
design specifications and source code is our first step
towards being able to represent all software life-cycle
deliverables using a common language (XML) that allows
us to include linking, as well as any other information
needed to apply formal verification or other software
engineering techniques, such as metrics or specification of
non-functional requirements. Neither UML specifications
nor source code today includes the rigorous and necessary
information we need to conduct formal verification and
apply other software engineering techniques to the
software piece as a whole. We need not just much more
information embedded in each specification at all stages
of software development; we also need to link all
documents to explicitly state relationships between all
life-cycle deliverables, and we need to be able to interpret
all this new information using our today’s computing
resources.

Research work is currently being done to develop new
XML-based formal specification languages. For example,
Bompani et al. [6] developed an XML-derivate for
expressing Z language requirement specifications; also
Barnett and Schulte at Microsoft Research developed an
executable specification language called AsmL [5] based
on abstract state machines. We plan to use and extend
these languages with linking, metrics, and all necessary
information to conduct verification along all life-cycle
deliverables.

7. Conclusions

We successfully used Xlink to design and implement
links from a detailed-design specification to its
implementing source code for our SeaBASS project. An

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 6
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

XMI file represented this detailed-design specification
and a JavaML file did it for our SeaBASS source code.
These XML-derivative representations were linked using
an Xlink link-base containing our linking information.
This link-base states which portions of our SeaBASS Java
source code implement which portions of our SeaBASS
design specification.

We modified a version of an XSL stylesheet that
transforms an XMI design into an HTML table format.
The new stylesheet transforms the XMI file and, at the
same time, parses the links stated in our link-base. The
result of this new stylesheet is an HTML file showing the
design of our SeaBASS project in the same previous table
format but now containing links to each of the source
code files implementing the class at design level.

The main advantage in using XML is that it allows us
to automate creation and management of links. In this
case-study links in our XMI specification and templates in
our XSL stylesheet were manually added. We plan to
develop a prototype of a software development
environment where links between object-oriented design
and source code would be automatically created and
maintained by the system based on implicit and explicit
information given by the software engineer. Using such a
tool would allow engineers to develop large software
systems while maintaining consistency between object-
oriented design specifications and its implementing
source code.

 We plan to use XML-derivates not just for detailed-
design and source code, though for all software life-cycle
deliverables, and this work is a proof-of concept that we
can implement traceability among those disparate
documents by means of XML and Xlink. Using XML for
representing software documentation enable us to:

• Use languages and tools that already exist

reducing the need for new tool development. For
example for this project we used Xerces [19],
Xalan [18], and StylusStudio, all tools previously
developed to work with XML files.

• Implement traceability among life-cycle
deliverables as done in this work using the Xlink
proposed recommendation.

• View documents such as design and source code
using several user-oriented views as the table
view of the design with links to the source code
explained in this paper.

• Answer questions with a query language similar
to SQL and do data mining on specification files
including combinations of requirements, design,
and source code files.

• Distribute a software specification across the
organization and implement Internet based
software engineering information systems to aid
the software engineering process.

• Adapt to different software platforms,
development paradigms, and different
programming languages.

This work may lead to a new open standard for

software life-cycle deliverables representation and
management, where life-cycle information can be
communicated, viewed, traced, and transformed in ways
not yet designed. All these characteristics are much
desired in a software engineering environment. The
representation of life-cycle deliverables with XML based
languages allows us to implement tools to achieve these
and other functionalities with the advantage of being a
well supported, non-platform dependent, non-vendor
dependent environment.

8. Future Work

Our current view of links stated in a link-base is using
simple HTML links. More work is needed to add different
behavior to the links and not to limit to today browsers’
simple links behavior. For example add behavior to a link
in a way that when we right-click on a class, in a
graphical UML design, options to see/edit the source code
appear or to navigate to the requirements that this class is
implementing. This can be done by means of XSL and/or
by means of an integrated software development
environment.

In our linking example we were able to traverse from a
detailed-design specification to its implementing source
code. We are looking for forward and backward linking
abilities; moreover our XML-based approach allows us to
add links into any life-cycle deliverable specification.
This work can be easily extended to include linking form
source code to detailed-design as long as we develop a
stylesheet for doing so.

The advantages of XSL as a formal language
transformation engine do not limit to rendering design
specifications to add navigable links from an XMI design
specification to a JavaML source code representation
using the HTML table representation we used here. An
XMI file can be rendered to an SVG-based UML
diagram. ArgoUML [20] uses this approach to save and
show a UML diagram. Future work is needed to add
graphically represented links in a UML diagram to its
implementing source code and vice-versa.

Software visualization can be improved, by means of
using XSL, adding graphical representations, of any
software life-cycle deliverable, from requirements to
source code. Using XSL we could show and visually link
different specifications or different views of the same
software system. Different fonts, colors, sound, etc. can
be used to enhance the way we see software today. In
essence, a combination of XML-derivates, XSL,

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 7
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

browsers, and applications can be used to implement
multimedia software development environments.

9. Acknowledgment

We would like to thank Jie Dai, Mohan Muppalanneni,
Carol Taylor, and Kevin Twitchell, members of the
RELY [2] project research group, for their contributions
to the project where this work came form. We would also
like to thank the U.S. Army Research Laboratory and the
U.S. Army Research Office for funding our project under
grant DDAD19-99-1-0088 and making this work possible.

10. References

[1] S. Adler, A. Berglund, J. Caruso, S. Deach, P. Grosso, E.
Gutentag, A. Milowski, S. Parnell, J. Richman, and S. Zilles:
Editors. “Extensible Stylesheet Language (XSL) Version 1.0,”
W3C Proposed Recommendation, August 28, 2001, W3C 2001.
Web Page: http://www.w3.org/TR/xsl/.

[2] J. Alves-Foss, and P. Oman, “RELY: A Life-Cycle Based
Software Engineering Approach to the Design and
Implementation of Reliable Software Systems,” Research
Proposal, Center for Secure and Dependable Software, 1999.
Web Site: http://www.csds.uidaho.edu/RELY.html.

[3] Apache, “The Apache Software Foundation”, Web Site:
http://www.apache.org/.

[4] G. Badros, “JavaML: A Markup Language for Java Source
Code,” University of Washington, 2000. Web Site:
http://www.cs.washington.edu/homes/gjb/papers/javaml/javaml.
html.

[5] M. Barnett and W. Schulte, “The ABCs of Specification:
AsmL, Behavior, and Components,” June 15, 2001. Microsoft
Research, Redmond, WA, 2001.
http://research.microsoft.com/foundations/#AsmL.

[6] L. Bompani, P. Ciancarini, F. Vitali, “Software Engineering
and The Internet: A Roadmap,” Department of Computer
Science, University of Bologna, 2000. (To be published).

[7] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler:
Editors, “Extensible Markup Language (XML) 1.0 (Second
Edition),” W3C Recommendation, October 6, 2000, W3C 2000.
Web Page: http://www.w3.org/TR/REC-xml/.

[8] S. DeRose, E. Maler, and D. Orchard: Editors, “XML
Linking Language (XLink) Version 1.0,” W3C
Recommendation, June 27, 2001, W3C 2000. Web Page:
http://www.w3.org/TR/xlink/.

[9] IBM, “International Business Machines Corporation”, Web
Site: http://www.ibm.com/.

[10] I. Jacobs, “About the World Wide Web Consortium
(W3C)”, The World Wide Web Consortium, March 2001. Web
Site: http://www.w3.org/.

[11] E. Mamas, and K. Kontogiannis, “Towards Portable Source
Code Representation Using XML,” Department of Electrical and
Computer Engineering, University of Waterloo, Canada, 2001.
(To be published).

[12] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein,
“Xlinkit: A Consistency Checking and Smart Link Generation
Service,” (Research Note,) Department of Computer Science -
University College London, London, UK 2000. Web Site:
http://www.xlinkit.com/.

[13] Object Management Group, “OMG Unified Modeling
Language Specification”, Version 1.4, September 07, 2001,
OMG 2001. Web Page:
http://www.omg.org/technology/documents/formal/uml.htm.

[14] Object Management Group, “OMG XML Metadata
Interchange Specification (XMI)”, Version 1.1, November 02,
2000, OMG 2001. Web Page: http://www.omg.org/cgi-
bin/doc?formal/2000-11-02.

[15] OMG, “Object Management Group”, Web Site:
http://www.omg.org/.

[16] K. Poole, S. Brodsky, G. Doney, A. Gleboy, M. Golding, T.
Grose, H. Huang, C. Rich, C. Tung, and S. Wang, “The XMI
Toolkit,” April 25, 2000, IBM Alphaworks 2000. Web Site:
http://www.alphaworks.ibm.com/aw.nsf/techmain/xmitoolkit.

[17] Rational, “Rational Software Corporation”, Web Site:
http://www.rational.com/.

[18] The Apache XML Project, “The Xalan XSLT Processor,”
The Apache Software Foundation, 2001. Web Site:
http://xml.apache.org/xalan-j/.

[19] The Apache XML Project, “The Xerces XML Parser for
Java,” The Apache Software Foundation, 2001. Web Site:
http://xml.apache.org/xerces-j/.

[20] University of California, “ArgoUML: An Object Oriented
UML Design Tool”, Tigris Open Source 2001. Web Site:
http://argouml.tigris.org/.

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 8
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
0-7695-1435-9/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

