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Abstract

The use of Unified Modeling Language (UML)
analysis/design models on large projects leads to a large
number of interdependent UML diagrams. As software
systems evolve, those diagrams undergo changes to, for
instance, correct errors or address changes in the
requirements. Those changes can in turn lead to
subsequent changes to other elements in the UML
diagrams. Impact analysis is then defined as the process
of identifying the potential consequences (side-effects) of
a change, and estimating what needs to be modified to
accomplish a change. In this article, we propose a UML
model-based approach to impact analysis that can be
applied before any implementation of the changes, thus
allowing an early decision-making and change planning
process. We first verify that the UML diagrams are
consistent (consistency check). Then changes between two
different versions of a UML model are identified
according to a change taxonomy, and model elements
that are directly or indirectly impacted by those changes
(i.e., may undergo changes) are determined using
formally defined impact analysis rules (written with
Object Constraint Language). A measure of distance
between a changed element and potentially impacted
elements is also proposed to prioritize the results of
impact analysis according to their likelihood of
occurrence. We also present a prototype tool that
provides automated support for our impact analysis
strategy, that we then apply on a case study to validate
both the implementation and methodology.

1. Introduction

The use of UML (Unified Modeling Language)
analysis/design models [8] on large projects leads to a
large number of inter-dependent UML diagrams (that may
also contain OCL [14] constraints, e.g., contracts, guard
conditions). Those diagrams undergo changes as the
software systems are evolving. Such changes to a diagram
may lead to subsequent changes to other elements of the
same diagram or in other related diagrams. In this context,
several issues require attention. The (potential) side

effects of a change to the unchanged diagrams should be
automatically identified to help (1) keep those diagrams
up-to-date and consistent and (2) assess the potential
impact of changes in the system. This can in turn help
predict the cost and complexity of changes and help
decide whether to implement them in a new release [2].

In the context of large software development teams,
the above problems are even more acute as diagrams may
undergo changes in a concurrent manner and different
people may be involved in those changes. Support is
therefore required to help a team assess the complexity of
changes, identify their side effects, and communicate that
information to each of the affected team members. In
order to address the above issues, the work presented here
focuses on impact analysis of UML analysis or design
models. Impact analysis is defined as the process of
identifying the potential consequences (side-effects) of a
change, and estimating what needs to be modified to
accomplish a change [2].

Most of the research on impact analysis is based on the
program code (implementation). However, in the context
of UML-based development, it becomes clear that the
complexity of changing Analysis and Design models is
also very high. Therefore, we seek to provide automated
support to identify changes made to UML model elements
and the impact of these changes on other model elements.

While code-based impact analysis methods have the
advantage of identifying impacts in the final product — the
code, they require the implementation of these changes (or
a very precise implementation plan) before the impact
analysis can be performed. However, a UML model-based
approach to impact analysis looks at impacts to the system
before the implementation of such changes. Then a proper
decision can be made earlie—before any change detailed
implementation is considered—on whether to implement a
particular (set of) change(s) based on what design
elements are likely to get impacted and thus on the likely
change cost. Earlier decision-making and change planning
is clearly important in the context of rigorous change
management. On the other hand, since UML models
describe the system at a higher level of abstraction than
the code, model-based approaches may provide less
precise results than code-based ones. For example, it may
be possible that new, unexpected impacts appear at
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implementation time. This is an issue that requires further
investigation but will not be addressed in this article.

Another assumption made by any model-based impact
analysis method is that the model is consistent with the
code and up-to-date. This is often an issue in many
software development organizations. However, the
functionality to manage traceability and consistency
between design models and code is now available in many
UML CASE tools. For example, Together®, by
TogetherSoft™ [12], updates the class diagram when
changes are made to the code and checks some
consistency aspects of the updated class diagram with
other UML diagrams in the design model.

Our work contributes in several complementary ways
to providing support for the impact analysis of UML
models:

- It defines a methodological framework.

- It provides a set of change detection and impact
analysis (side effect) rules, that were derived by
systematically analyzing components of UML
models (including constraints in the Object
Constraint Language [14]) and analyzing changes in
actual case studies.

- A prototype tool implements the above principles
using a carefully thought-out architecture and an
extensible design.

- Case studies have been performed to assess the
feasibility and practical challenges of our approach.

This paper describes the methodological framework
and the fundamental principles underlying the change
detection and impact analysis rules, presents our tool’s
architecture at a high level, and reports on a case study.
Section 2 discusses related works. Section 3 provides a
precise description of the problems we addressed and the
objectives of our research. An overview of the approach,
along with some justifications, is given in Section 4. The
next Sections, up to Section 9, which presents a case
study, then detail each of the most important aspects of the
approach and provide examples. Section 10 outlines our
main conclusions and future work.

2. Related works

Bohner [1] examines the general issues involved in
change impact analysis, and provides structured guidelines
to help find solutions to such issues. For instance, if one
considers both direct and indirect (transitive closure)
impacts, the results of the impact analysis shows an
enormous number of impacts, thus (possibly) over-
estimating the impact. This advocates tool support, as well
as the use of semantic (related to the impacts) and
structural (e.g., distance between a change and an impact)
constraints to structure analysis results.

A large portion of the change impact analysis
strategies require source code analysis (see for instance
the strategies reported in [3]), whereas a few of them are
model-based. Kung et al. [10] describes how change
impact analysis can be performed from a class diagram,
introducing the notion of class firewall (i.e., classes that
may be impacted by a change in a given class), and
discusses the impact of object-oriented characteristics
(e.g., encapsulation, inheritance, polymorphism, dynamic
binding) on such an analysis. In [13], the authors use a
functional model (referred to as "domain model") of the
system under consideration to generate test cases, and
build a mapping between changes to the domain model
and the impact it has on test cases, to classify them.
Another method for regression test selection, based on
UML models (class and sequence diagrams), is presented
in [6]. In this method, a rough impact analysis is
performed with the sole purpose of classifying the
regression test cases as obsolete, retestable, or reusable.
The current work is a significant extension and performs
impact analysis at a much more refined level so that it can
be applied to a variety of problems, including change
effort estimates and support to identify ripple effects.

3. Problem definition and objectives

The support of impact analysis of UML design models
can be decomposed into several sub-problems:

1. Automatically detect and classify changes across
different versions of UML models. Ideally, one
modifies a UML model and then uses the impact
analysis tool to automatically identify all the
changes performed since the last version. We do
not want software engineers to have to specify
each and every change as we want to avoid the
overhead that would prevent the practice of
impact analysis. As seen below, changes have to
be classified to be able to perform a precise
impact analysis.

2. Verify the consistency of changed diagrams. The
modified model must be self-consistent for any
impact analysis algorithm to provide correct
results. Since consistency in complex UML
models is not always easy to achieve, verifying
consistency must be supported by tools. Note that
this is different from impact analysis as it does not
focus on finding (potentially) impacted elements
(i.e., whose implementation may require change)
but structural inconsistencies between UML
diagrams, e.g., a class instance (classifier role') in

! In the UML standard terminology, a classifier role identifies an object
in a sequence diagram, and the base class of the classifier role is the
class of this object (the term base does not relate to inheritance).
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a sequence diagram whose class is not in the class
diagram.

3. Perform an impact analysis to determine the
potential side effects of changes in the design. In
most cases, for reasons described below, side
effects cannot be identified with certainty as there
is no way to ascertain whether a change is really
necessary based on the UML analysis or design
only. As a result, an impacted element is a UML
model element whose properties or
implementation may require modification as a
result of changing another model element (i.e.,
one of its properties may change)®. To clarify the
terminology we employ, changes to UML
diagrams are the result of logical changes
corresponding to error corrections, design
improvements, or requirement changes. We refer
to changes to model elements when a property of
an element has changed from one version of a
diagram to another, e.g., the visibility of an
operation. A logical change usually results in a set
of changes to model elements. Impact analysis can
be performed for each logical change
independently or for an entire, new UML model.

4. Prioritize the results of impact analysis according
to the likelihood of occurrence of predicted
impacted elements. In object-oriented designs,
when considering all direct and indirect
dependencies among model elements, impact
analysis often results in a large number of
(potentially) impacted model elements, thus
making their verification impractical. Addressing
this issue requires a way to order side effects
according to criteria that can be easily evaluated
and which are good indicators of the probability
of a side effect, for a given change. For example,
Briand et al. [7] have explored the use of coupling
measures and predictive statistical model for that

purpose.
4. Overview of the approach

First note that, due to space constraints, we do not
present all the details of our change impact analysis
strategy. Rather we concentrate on the important notions,
providing excerpts for all the four steps that are involved
in the strategy: consistency checking, change detection,
change impact analysis, prioritization of impacts. Further
details can be found in [5].

As mentioned above, the identification of model
inconsistencies is important to ensure that the impact
analysis algorithms we use yield correct results.

2 Even when no model property changes, the model element
implementation may require change.

Inconsistencies may be automatically modeled and
detected by a set of consistency rules. Each rule
corresponds to one type of inconsistency and must be
implemented in any tool supporting impact analysis on
UML diagrams. We have identified 120 consistency
rules’. For example, one simple rule we use can be
described informally as*:

Each operation that is invoked in a sequence

message must be defined in the class diagram,

in the specific class of the target object of the

message.

Each model element in a UML design is defined by a
set of properties, e.g., a class has attributes. Thus, the
identification of a change to a model element requires
checking if any of its properties has changed. Each model
element change is classified according to a change
taxonomy in order to associate impact analysis rules with
each type of change. The change taxonomy reflects
changes to class diagrams, sequence diagrams, and
statecharts. More details are provided, for some examples,
in Section 6, and the complete change taxonomy contains

97 change categories3 (leaf nodes).

Once we have verified that the diagrams of a UML
design model are consistent, and model element changes
have been detected, the next step is to automatically
perform impact analysis using impact analysis rules, that
is, rules that determine what model elements could be
directly or indirectly (through transitive closure) impacted
by each model element change (Section 7). As rules tend
to depend on the type of change for which we perform
impact analysis, we define one such rule for each change
category in the change taxonomy, thus resulting in 97
rules’.

In order for impact analysis to be useful and practical,
we need to find ways to indicate what model elements
should be checked first as they, and their code
counterpart, are more likely to require change. To do so,
we define a measure of distance between the changed
elements and potentially impacted elements (Section 8)
where the assumption is that the larger the distance, the
less likely is the model element to be impacted.

Figure 1 is a conceptual model (using a class diagram)
that provides a useful overview of all the concepts
presented above.

3 Though we made a conscious effort to be as exhaustive as possible,
this number may change as we gain more experience, especially by
applying our change impact analysis strategy to different case studies.

# Note that it can also be expressed using OCL on the meta-model.
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version l\l/ 1

| UML Model Design

version2

| Consistency Verification |

features related to three views of the
meta-model: static (class diagram)
view, interaction (sequence diagram)
view, and the statechart diagram
view. This includes classes,
interfaces, sequence messages, state

Property

1.*

machines, but also class invariants,

<

Figure 1 Conceptual model

5. Tool architecture and overview

Our impact analysis tool (IACMTool) reads two
versions of a UML model (composed of a number of
diagrams and associated OCL constraints) and produces
an impact analysis report as well as a consistency
verification report. After each version of the model is
read, its consistency is first verified. When both versions
have been read and checked for internal consistency,
change detection is done to identify all the changes
between the two versions of the model, and classify them
according to the taxonomy we defined (Section 6). These
changes are then used to perform impact analysis on the
model using the impact analysis rules relevant to each
change type.

There are seven main packages in the system, namely:
parser, model, modelChanges, reportGeneration,
consistencyVerification, impactAnalysis, and
control. The subsystem decomposition is shown in
Figure 2 with packages and dependencies

state invariants as well as pre- and
post-conditions. It is designed so
that it can later be upgraded to
include other features of UML such
as use case and activity diagrams.
The modified UML meta-model is
presented in [5] and, due to space
constraints, only an excerpt is
presented in Section 7. The modelChanges subsystem is
responsible for change detection by analyzing the two
versions of a UML design model. The main class in this
package, ChangeDetector, implements the change
detection rules corresponding to the change taxonomy
introduced previously and further detailed in Section 6.
The consistencyVerification  subsystem is
responsible for checking consistency in each version of
the model, using the set of rules discussed above. The
control subsystem is responsible for the overall control
flow of the application. The impactAnalysis subsystem
is responsible for performing the impact analysis related
to a set of model element changes. This subsystem
implements the impact analysis rules discussed above and
further detailed in Section 7. The reportGeneration
subsystem is responsible for generating the different types
of reports required by the system, including a consistency
verification report, and an impact analysis report.
Different flavors of the reports may be generated to meet
the requirements of the user.

Indirect

Direct

among them. More architectural details can be

found in [5]. In particular, the packages

iACMTool

contain 99 classes, 69 of which are in the
model package (the UML meta-model), and

—

] 1]

the current implementation consists of 9064
lines of Java source code, excluding
comments.

- «subsystem» —__> «subsystem» K- — — — ——— — — — — ]
parser

«subsystem»

model modelChanges

The parser subsystem has two main

[ 1

N

functions: (1) parsing XMI (XML Metadata
Interchange [9]) files that describe the UML
models, (2) parsing OCL expressions

«subsystem» -
consistency Verification

- «subsystem»
impactAnalysis

N
|
|
|
|
|
Ke ——— AN N |
|

associated with the models. Parsed model
information is then stored in the model
subsystem, which also handles persistency. The
subsystem is a UML meta-model
adapted to our requirements (e.g., it has been
modified to improve information retrieval

model

I -
i

1

_| «subsystem»

«subsystem»
control |- - reportGeneration

efficiency). This meta-model is based on the
official UML meta-model [11] and supports

Figure 2 Impact analysis tool subsystems
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6. Model changes

To derive the change taxonomy, we analyzed each
property of each model element (in the UML meta-model)
to determine the possible changes that can occur. An
element property is modeled as an attribute or an
aggregation link to another element. In the latter case,
linked elements are termed impact related elements since
a change to one of these component elements affects the
composite element to which it belongs. For example, if an
attribute is changed then the class to which it belongs is
considered impacted. A changed element property is
defined as a changed attribute of the element, or an added
or deleted link to an impact related element in the meta-
model. For example, using an excerpt of the meta-model
in Figure 3, we see that an association end has several
properties, some modeled as a link to model elements
(qualifier modeled as a link to zero or several attributes)
and others as attributes (e.g., isNavigable to model
whether an association end is navigable).

AssociationEnd

-aggregation : AggregationKind
-changeability : ChangeableKind Attribute
-isNavigable : boolean +qualifierf——
-multiplicity : Multiplicity 'R* -initialValue
-ordering : OrderingKind 1
-targetScope : ScopeKind
-visibility : VisibilityKind

Figure 3 Example of impact related element from
the meta-model

Some element properties uniquely identify the element
among the set of all elements instantiating a meta-model
class. These properties are not included in the change
taxonomy but the element is considered deleted and a new
element added if a change to such a property occurs. For
example, a class is uniquely identified by its name within
its package’s namespace, and thus a changed class name is

regarded as the deletion of the original class and the
addition of a new class. Using such key attributes is the
way any impact analysis system can keep track of the
identity of model elements across design versions.

We provide below a set of definitions regarding the
basic terminology and concepts used throughout the
paper.

Definition 1: Model element changes

Let e € E, where E is the set of all model elements

(i.e., meta-model instances) in the UML design model.

Let P be the set of all the properties of e. Let P, — P be

the set of properties that uniquely identify e. If any one

p € (P—-P) is changed, then e is changed.

Definition 2: Impact related elements

Given two different model elements ¢, and e, (¢, € E

and e, € E such that e, # ¢,), e, is said to be an impact

related element of e, if when e, is changed then e, is
considered changed.

Using definitions above, a change taxonomy is
provided in [5]. The UML class diagram notation is used
to describe the taxonomy, as illustrated in Figure 5. Each
non-terminal node in the taxonomy represents an abstract
change category of a model element. The leaf nodes
correspond to one changed element property.

For example, let us look at a simple change example:
Adding a message in a sequence diagram. We provide in
Figure 4 a description of the change. Each change
category has an acronym, a short textual description, and
an OCL expression that shows how, based on the model
subsystem class diagram (which is instantiated by the
parser subsystem), such changes can be automatically
detected. In our example, the OCL expression returns a
collection of added messages in a given Sequence
Diagram View (we always assume the context of the OCL
expression is the modified view). Such OCL expressions
are logical specifications that ensure our meta-model (in
model), and the modelChange class diagram, are
appropriate to implement a workable change retrieval
algorithm.

Change Code: CSDVAM

OCL Expression:

self .message->select (
exists(

Changed Sequence Diagram View — Added Message
Description: In the modified model version there exists a message that does not exist in the original version.

context model: :behaviouralElements::collaborations: :SequenceDiagramView

mNew:Message | not self.model.application.originalModel.
sequenceDiagramView.message->exists (

mOld:Message | mNew.getIDStr () = mOld.getIDStr()
)

Figure 4 Example change type
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Changed Model .
7. Impact analysis rules

Changed Class Diagram View |

Changed Sequence Diagram View | Each impact analysis rule is a spec'ificatif)n (using
OCL) of how to derive several collections (i.e., OCL

Added Classifier Role | bags) of elements, corresponding to elements of different

Changed Classifier Role | pres (e.g., classes, operations), that are potentially

impacted by a particular change (e.g., added message).

? These collections are bags, i.e., collections with possibly

several occurrences of an element [14], because it is
_| Deleted Classifier Change | possible that an element is impacted in several ways by a
particular change. A model element is considered

Added Message impacted by a change if a modification to that element or

Changed Message Action | its implementation may be needed to accomplish a change
(this cannot always be decided with certainty). There is
? one impact analysis rule for each type of change in the

taxonomy.
Definition 3: Bag of impacted elements
Let E and E’ be the set of all model elements in the
—| Changed Statechart Diagram View | original and modified model version, respectively.
Then I is the bag of impacted elements (in the
modified model version) resulting from that change

Figure 5 Excerpt of Change Taxonomy

Figure 6 shows an excerpt of the model subsystem such that Vi € I, 3 ee ENE’ such that e # i and there is
class diagram (with a link to the Change class in a navigation path from e to i in the object diagram
modelChanges) that is navigated by the OCL expression corresponding to the modified model version.
of our example in Figure 4. Since the OCL expression Though this is rare, note that the bag of impacted
does produce the added messages we wish to obtain and is elements I may be empty, i.e., it is certain that no resulting
consistent with the class diagram, we know that the meta- changes are necessary to accomplish the change that
model is sufficient for this particular change detection caused the impact. The resulting changes to be made to an
rule. impacted model element must be of a type defined in the

Figure 5 shows an excerpt of the change taxonomy change taxonomy for the impacted element type.

where our example change type (added

message) is located. We. see it is in the 1 | +application | |schangedModel Postcondition
chqnged Seguence Diagram View, TACMTool OV Mode ] Ch;l;(g;l I
which may itself be composed (note | (from control) (from modelChanges) |

the composition) of added messages 1| +originalModel [ 1 4 1 -propertyID : String Operation |-
but also added classifier roles, changed — +model *

. +application 1
message actions, among others. +changedElement

Changed Classifier Role and
Changed Message Action are
further decomposed into subcategories
which are not shown here and are

CallAction

. . SequenceDiagramView |
available in [5]. The taxonomy has - . . -
been designed so that we could define Tview Fview
precise impact analysis rules for every . Message
leaf change category.

& gory +getIDStr() : String .
* +activator
ClassifierRole 1 * * *
-multiplicity : Multiplicity trecetver

* 1| +sender

ClassClassifier

+base

Figure 6 Excerpt from the iACMTool class diagram
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Change Title:

Changed Sequence Diagram — Added Message

:behaviouralElements: :collaborations:: SequenceDiagramView
:behaviouralElements: :collaborations: :Message
:foundation: :core::ClassClassifier

Change Code: CSDVAM

Changed Element: model:

Added Property: model:

Impacted Elements: model:
model: :foundation: :core: :Operation
model: : foundation: :core: :Postcondition

Description: The base class of the classifier role that sends the added message is impacted. The operation that sends the
added message is impacted and its postcondition is also impacted.

Rationale: The sending/source class now sends a new message and one of its operations, actually sending the added
message, is impacted. This operation is known or not, depending on whether the message triggering the added
message corresponds to an invoked operation. If, for example, it is a signal then we may not know the operation, just
by looking at the sequence diagram. The impacted postcondition may now not represent the effect (what is true on

completion) of its operation.

Resulting Changes: The implementation of the base class may have to be modified. The method of the impacted
operation may have to be modified. The impacted postcondition should be checked to ensure that it is still valid.
Invoked Rule: Changed Class Operation — Changed Postcondition (CCOCPst)

OCL Expressions:

context modelChanges: :Change def:

let addedMessage:Message = self.changedElement.oclAsType (SequenceDiagramView) .
Message->select (m:Message | m.getIDStr()=self.propertyID)

let sendingOperation:Operation = (

if addedMessage.activator.action.oclIsTypeOf (CallAction) then
addedMessage . sender .base.operation->select (o:Operation |
o.equals (addedMessage.activator.callAction.operation))

else
null
endif)
context modelChanges::Change - class
addedMessage.sender.base
context modelChanges::Change - operation
sendingOperation
context modelChanges::Change - postcondition
sendingOperation.postcondition

Figure 7 Impact Analysis Rule Example

Impact analysis rules are described in a structured and
precise manner so that it is easy to review, refine, and
change them, for example as the UML standard is
evolving. A sample impact analysis rule is presented in
Figure 7 by elaborating on our change detection rule
example above (adding a message to a sequence diagram).
The change title is presented first, followed by the
corresponding change code (CSDVAM — see example of
change detection rule in Figure 4), after which the
pathname of the changed/added/deleted model element
class is presented, followed by the property that has
changed. In this case an instance of
SequenceDiagramView (located inside the model
subsystem) has been changed and one of its property has
been changed: an instance of Message has been added
and linked to it. After the property is listed, the pathname
of the impacted element class(es) is stated
(ClassClassifier, Operation, and Postcondition
in this case). A brief discussion follows that states the
elements impacted, and under what conditions. The
rationale for the change then states the reasons for the
impacts. The changes potentially resulting from the

impacts are then described and they translate into
additional impact analysis rules being invoked. This is the
way the transitive closure of impacts is explicitly modeled
here: some rules invoke others as direct impacts lead to
indirect ones [1]. These descriptions are followed by the
OCL expression(s) describing the formal derivation of the
impacted elements based on our meta-model (for the rule
example in Figure 7, see meta-model excerpt in Figure 6).
The first expression in our example (each expression
being expressed in a context) uses the let operator to
define two placeholders (variables) for navigation
expressions capturing the added message and the sending
operation in the class diagram, respectively. The added
message is identified as the message having the IDStr
(string uniquely identifying each model element and
returned by the getIDStr () operation) corresponding to
the changed property of the view associated with the
change (propertyID in Change).

In our example, the changed property is an added
message in the SequenceDiagramView. Then, the
operation that possibly sends the added message is
identified. Note that the navigation expression first
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{s1}
m CSDVAM
(Added message)

Level1 {c;} f{o} ({p,}

/\ CCOCPst
(Changed postcondition)

Level 2 {P2 P3> ---» P} {0,,05, ..., 0.}

Nodes: model elements

Edges: invocation of rules

s,€ S, where S is the set of sequence
diagram views

CE C, where C is the set of class classifiers

0,€ O, where O is the set of operations

p,€ P, where P is the set of postconditions

Figure 8 Example distance between a changed element and an impacted element

identifies the base class of the classifier role that sends the
added messages, as we want to identify the operation as
described in the class diagram, and not the operation as it
is used in the sequence diagram’. This identification
involves selecting (the select operator) the operation
declaration in the class that corresponds to the invoked
operation in the sequence diagram, and is realized by the
equals () operation in the OCL expression. This
operation’s complexity stems from overloaded operations,
as described in [4, 6], since UML sequence diagrams do
not show parameter (and return) types. Once the added
message and the sending operation have been identified,
the propagation of the impact, to the sending class, the
sending operation, and the postcondition of the sending
operation, is described in three OCL expressions, each of
them starting with the context keyword. Though they
only return one element each in this example, those
expressions return bags in the general case.

8. Distance measure

When impacts between model elements are indirect,
following the general guidelines in [1], we suggest using a
distance measure between the changed model elements
and the impacted elements. In [1], it is stated that a
common assumption® is that “If direct impacts have a high
potential for being true, then those farther away will be
less likely.” Even with a carefully designed set of impact
analysis rules and change taxonomies, the number of
impacts may be very large. Using a distance measure to
filter/order impacts is therefore often necessary in
practice. The main related question then becomes how to
define such a distance measure.

Recall that impact analysis rules determine impacted
elements and then, in some cases, a number of impact
analysis rules are invoked again on some of the directly
impacted elements. We define the distance between a

5> In this case, the navigation is simply: addedMessage.
activator.callAction.operation. As in the official UML
meta-model, operation invocations and declarations are modeled by the
same Operation class.

6 . . .
This fundamental assumption seems reasonable, but empirical

investigations are warranted to validate it.

changed element and a given impacted element to be the
number of impact analysis rules that had to be invoked to
identify this impacted element. If we use Figure 8 as an
example, we can see that the sets of impacted elements
can be represented as the nodes of a tree whose arcs are
impact analysis invocation rules. We reuse here the rule
example in Figure 7 when a message is added to a
sequence diagram. This rule triggers, for the impacted
postcondition (pl), the changed postcondition rule
(ccocpst), thus leading to the identification of other
impacted postconditions and operations. Only the first two
depth levels of the tree are shown. The level in the tree of
a given impacted element is the distance associated with
this element, e.g., distance(p,) = 2. Such a distance
measure could then be used to either sort impacts
according to their distance from a given changed element
or even to exclude impacted elements further than a
certain distance set by the tool’s user. If a model element
is impacted several times, then the minimum distance can
be used (i.e., the strongest impact).

9. Case study

We have selected an Automated Teller Machine
(ATM) as a case study: The customer inserts his/her card,
enters a PIN and then can perform transactions such as
withdrawal and deposit before a receipt is issued by the
ATM at the end of all the transactions. The first version of
UML documents (see [5] for all the diagrams) contains a
class diagram (19 classes such as ATM, Bank,
Withdrawal) and a use case diagram (15 use cases such
as Transaction, Withdrawal, CardNotReadable,
GetPIN) — each use case being associated with a sequence
diagram. Most of the sequence diagrams contain between
3 and 7 messages (e.g., sequence diagrams for use cases
ATMStartUp and ATMShutOff contain 7 and 3 messages
respectively), the sequence diagram for use case
Transaction being the most complicated one with 22
messages. 15 attributes and 18 operations appear in the
class diagram, and classes are related by inheritance (4),
association (11) and dependency (3) relationships.

We made 10 realistic, logical changes to the original
version of the UML diagrams. These logical changes are
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of three types: requirements changes (5), design
improvements (2), and error corrections (3). They result in
70 model element changes, out of which 54 have shown
impacted elements (the distribution of these changes for
the elements in the taxonomy can be found in [5]). Let us
take a few examples of logical changes and describe them.
One logical change stems from our need to be able to keep
track of how many times per session a user attempts to
enter the PIN — after 3 invalid PIN’s the card will be
retained. This logical change translates into 11 model
element changes. Another logical change is to change the
ATM state’s representation from an integer to an
enumeration class, and results into 34 model element
changes. Two other logical changes concern changes in
the legal states of the system and translate into new
association end multiplicities in the class diagram: (1) An
account can be owned by at most two customers and at
least one customer (a multiplicity is changed from 1. . * to
1,2); (2) A customer must belong to a bank and a
customer can only belong to one bank (a multiplicity is
changed from 0. .* to 1). A last logical change example
(design) consists in making class Account abstract since
only its subclasses are instantiated (e.g., Saving). A
complete description of all logical changes can be found
in [5].

Let us consider the impacted operations, when
accounting for all changed model elements taken together,
and their distance to the changed model elements. Figure
9 plots, for each of the 54 model element changes, a
curve/point representing the cumulative number of
impacted operations (y-axis) for each distance value (x-
axis). A first, clearly visible result is that only four curves
are visible as only four changes propagate impacts farther
than a distance of 2. The reason is that the impacted
elements at distance one and two that do not propagate are
classes, and a class is not an impact related element of any
other element in a class diagram (see Definition 2). The
rationale is that the propagation of impacts from class to
class is already addressed since operations and attributes
are impact related elements of the operations that call/use
them.

More importantly, when there is propagation of
impacts, Figure 9 clearly shows that the curves are not
exponential, as suggested in [1], but rather linear. This is
important as it suggests that our impact analysis rules are
rather precise. Also, the maximum distance for impacted
elements is limited to six. Though more case studies are
necessary to draw definitive conclusions, we can state that
these results are probably due to our use of semantic-
based impact rules, instead of connectivity graphs (see
[1]), that allow a more refined identification of impacted
elements and reduce false-positives.

In the analysis above we perform an overall impact
analysis for all logical changes but, if we were in a
situation where we would have to decide on which logical
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Figure 9 Cumulative number of impacted
operations vs. distance

changes to implement in a next release, we might want to
perform the same analysis for each logical change in
isolation to evaluate its individual cost. Also, we only
looked at the cumulative number of operations but the
same graph could be plotted for classes or even for all
model elements impacted together. We provide such
diagrams in [5] and the results clearly show that the
curves are very similar to the one in Figure 9 (though with
significantly different scales on the Y-axis).

10. Conclusions

We present in this paper a methodology supported by a
prototype tool (IACMTool) to tackle the impact analysis
and change management of analysis/design documents in
the context of UML-based development. Consistency
rules between UML diagrams, automated change
identification and classification between two versions of a
UML model, as well as impact analysis rules have been
formally defined by means of OCL constraints on an
adaptation of the UML meta-model.

Our impact analysis methodology and tool are assessed
through a case study, thus providing an initial
demonstration of its feasibility and practicality. Results
are encouraging as it is shown that, with impact rules
based carefully on UML diagram semantics and
assumptions on the way the notation is used, the number
of elements impacted by changes grows linearly (and not
exponentially) when accounting for indirect impacts. This
suggests that the impact analysis rules are rather precise,
an important result given that a refined identification of
impacted elements and the reduction of false-positives is
known to be a major challenge when automating impact
analysis.

We also define a distance measure to be able to sort
impacts, according to their likelihood of occurrence,
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based on the distance between changed model elements
and impacted elements. Whether this measure is a good
heuristic will have to be empirically validated.

Though we made a conscious effort to be as exhaustive
as possible when identifying consistency rules, possible
changes to UML models, and impact analysis rules, the
strategy may be refined as we gain more experience,
especially by applying our change impact analysis strategy
to additional case studies. All three types of rules have
been defined using OCL on the UML metamodel and we
expect that such precise and formal definitions will help
refine and evolve our methodology.
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