
ZML: XML Support for Standard Z

Mark Utting1, Ian Toyn2, Jing Sun4, Andrew Martin3, Jin Song Dong4,
Nicholas Daley1, and David Currie5

1 The University of Waikato, Hamilton, NZ
{marku,ntd1}@cs.waikato.ac.nz

2 The University of York
ian@cs.york.ac.uk
3 Oxford University

Andrew.Martin@comlab.ox.ac.uk
4 The National University of Singapore

{sunjing,dongjs}@comp.nus.edu.sg
5 IBM UK Labs, Hursley Park, Winchester, Hants, UK

david currie@uk.ibm.com

Abstract. This paper proposes an XML format for standard Z.We describe several
earlier XML proposals for Z, the problems and issues that arose, and the rationales
behind our new proposal. The new proposal is based upon a comparison of various
existing Z annotated syntaxes, to ensure that the mark-up will be widely usable.
This XML format is expected to become a central feature of the CZT (Community
Z Tools) initiative.

1 Why an XML format for Z?

The publication during 2002 of the ISO Z Standard [3] represents a significant milestone
for the development and interoperability of Z tools. It has established what notation
should be exchanged, but not necessarily how. Technology has advanced during the
development of the standard, so it now seems most natural for tools to interact using an
XML mark-up [9].

This paper describes such a mark-up, intended to be a development of the Stan-
dard’s work, as a contribution to the Community Z Tools1 (CZT) initiative. CZT has
been proposed in response to the observation that many interesting Z tools have been
developed, but few have built large user communities, and many have found it necessary
to invest disproportionately large amounts of effort in the relatively mundane activities
of parser and pretty-printer development. The initiative aims to define interfaces and
interchange facilities (and later, code libraries) which Z tool developers can draw on in
an open-source spirit, with the aim both of promoting interoperability and of relieving
those wishing to develop novel tools for visualisation, animation, refinement, proof, and
so on, from the need to invest effort in the user interface code.

XML is a development, like HTML, from the SGML [4]. Early drafts of the Z
Standard included an SGML mark-up, but it was found hard to maintain. XML now

1 See http://web.comlab.ox.ac.uk/oucl/work/andrew.martin/CZT.

D. Bert et al. (Eds.): ZB 2003, LNCS 2651, pp. 437–456, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



438 M. Utting et al.

enjoys a much wider take-up than SGML, having quickly become a new standard for
structured information interchange between tools.

Without such a mark-up, Standard Z allows specifications to be exchanged using
Unicode (UCS[1,2]). However, this representation is suitable only for interchanging
raw (unparsed) Z specifications, without annotation. Tools (and sometimes authors)
benefit from being able to annotate terms with type information, anticipated usage and
refinement targets, free-form comments, and so on. A particular presentation (on paper,
on screen, or within program data structures) may make use of some of these annotations
and discard others. An XML format facilitates the inclusion of such annotations, with
as little or as much structure as is appropriate. In the longer term, when this use of XML
reaches greater maturity, we would expect the format described here to become part of
the ISO Z Standard.

1.1 Requirements of a Z Interchange Mark-Up

We have three requirements for an XML mark-up for Z.

Annotations. The already mentioned annotations should be accommodated in the inter-
change mark-up wherever tools wish to put them. The forms of individual annotations
should not be constrained. There should be some pre-defined annotations for types and
for source-file locations (so that error messages can refer to the source of an error), but
it should also be possible for tools to define additional annotations. Tools that do not
understand such annotations should simply ignore them.

Injectivity. The concrete syntax of Z provides different ways of writing the same things.
For example, a boxed schema paragraph may be written in an equivalent definitional
form, without the box. After a specification has been transferred between tools, the
user wants to be reassured as much as possible (by avoiding unexpected changes of
presentation) that their specification document has not been changed. Consequently,
the interchange mark-up for Z should capture sufficient information from the concrete
representation to be able to resurrect the same concrete phrases (though not necessarily
the same layout). In other words, we want the conversion of a textual Z specification into
XML format to be one-to-one (injective), so that the concrete representation before and
after interchange, ignoring annotations, remains recognisably the same. For the schema
paragraph example, this means keeping a note of whether or not the boxed representation
is used. In this paper, we avoid using the traditional term abstract syntax because of this
avoidance of loss of information from the concrete form.

Commonality. Conversely, for reasons of simplicity and demonstrable soundness, tools
should need to deal with as few cases as possible. This implies that we should merge
equivalent concrete constructs whenever possible (the Z standard has a large number of
transformation rules that do exactly this). For example, a tool might offer to display the
signature of a schema paragraph regardless of whether or not it is boxed. This is easier
if a common annotated syntax is used for both of the concrete representations of the
schema paragraph. Interchange will be eased if the mark-up is based on an annotated
syntax that identifies similar commonalities to those exploited by tools. In this paper,
we use two approaches to merging constructs while preserving injectivity:



ZML: XML Support for Standard Z 439

1. using a common XML tag for two similar constructs, but adding attributes to dis-
tinguish between the constructs;

2. using distinct XML tags and adding a common type hierarchy above them to reflect
their commonality.

The second approach has an additional advantage: the type hierarchy of commonality
is similar to a typical inheritance hierarchy in object-oriented programs, which makes
it easier to map between the XML structure and Java or C++ classes. This is useful,
because one of the CZT aims is to develop a Java library for building Z tools.

The annotated syntaxes used within existing tools have already addressed these
issues of annotations, injectivity and commonalities. The annotated syntax used within
Standard Z addresses some of these issues. An interchange mark-up for Z will be easier
for a tool to use if the mark-up is similar to the tool’s own annotated syntax, but there is
considerable variation between existing tools.

This paper compares some existing annotated syntaxes and describes an XML mark-
up based on their common features or best features. We aim to define a mark-up that will
be usable not only by proposed CZT developments but also by developments of existing
tools. Hence, we are interested to receive feedback from other tool builders.

1.2 Specifying the XML Structure: DTD or XML Schema?

There are many different ways in which Z specifications could be expressed in XML. To
specify exactly which structures of XML we propose to use, and the well-formedness
conditions on those structures, we need to specify a particular subset of XML. Such
a specification is typically written in either of two languages: as a Document Type
Definition (DTD), or as an XML Schema. The provision of such a specification allows a
validating parser to perform more accurate well-formedness checking, and is useful to
toolbuilders for defining what tools should be able to interchange.

The DTD notation is older and simpler than the XML Schema notation, and more
human-readable, but the XML Schema language allows better specification of the data
types of elements than the DTD language. XML Schema has many built-in datatypes
such as string, integer, boolean, float, date, time and so on, and provides mechanisms
to constrain the allowable content of an element or attribute, such as setting a valid
range of values or defining a regular expression to which the content must conform.
New types can be defined from scratch or by constraining or extending an existing type.
This allows hierarchies of complex types to be constructed. Furthermore, XML Schemas
are themselves written in XML. This makes the document descriptions more verbose,
but also far more extensible than they were in the original DTD syntax. Declarations
can have richer and more complex internal structures than declarations in DTDs. Thus
XML Schemas can be stored along with other XML documents in XML-oriented data
stores, referenced, and even styled, using tools like XLink, XPointer, and XSLT2. For
our purposes, we prefer to use XML schema notation, to obtain a tighter specification
of the structure, and to take advantage of XML tools, such as XSLT.

2 See www.w3.org.



440 M. Utting et al.

2 Previous Work

There were earlier attempts to define XML mark-ups for Z [16,13] but these did not
support the interchange of annotations such as the types of expressions, and were based
on an earlier version of Z, described by Spivey [12]. For example, Z/EVES [11] supports
an XML mark-up for communication between tools, based on Spivey Z.

Before ZB2002, Toyn wrote a DTD for Standard Z, influenced by the abstract syn-
taxes of CADiZ and Zeta. This DTD has heavily influenced our proposal in this paper.

For example, here is the top-level element declaration from that DTD:

<!ELEMENT Z:Spec; (((Z:Sect;*), Z:SpecAnns;?) | Z:PCDATA)>

This defines a Z specification to be either a sequence of sections followed by an
optional specification annotations element, or a PCDATA alternative, which is another
element that is defined to contain just #PCDATA (parsed character data). Every element
in the DTD includes a Z:PCDATA alternative, so that if one part of a specification contains
an error, the whole specification can still be passed between tools. For example, a fully-
parsed specification might be passed to an editor, and after editing is complete, the editor
might pass it back with unchanged portions still in parsed form, but the edited portions
in Z:PCDATA form.

During 2002, David Currie validated the DTD, and Utting and Daley manually
derived a Java class hierarchy from it [5]. During this process, we identified several
difficulties with the DTD structure:

1. The presence of an ‘unparsed’ alternative for every element allowed extremely fine-
grained portions of the specification to be left unparsed, but dramatically complicated
the Java class hierarchy. Basically, every element E of the DTD had to be translated
into three Java classes: an abstract class E and two concrete subclasses, EParsed
and EUnparsed, where EParsed contained fields that matched the parsed structure
and EUnparsed contained just an unparsed string. The real disadvantage of this was
that every piece of Java code that accessed an E object had to immediately check
whether it was parsed or unparsed. This issue was not specific to Java, but would
affect processing in every language.
To solve this problem, our new proposal in this paper limits the granularity of
the unparsed portions so that an entire paragraph (for example, one schema) is the
smallest unparsed portion allowable. This simplifies processing, because it means
that only the top-level of processing needs to consider unparsed portions and once
we see a parsed paragraph, we know that everything inside it will also be parsed.

2. Each element in the DTD has its own kind of annotation, as illustrated in the example
above (SpecAnns). Each kind of annotation is given a default definition in the
DTD (expression annotations contain just a type, schema annotations contain a
signature etc.), but can be overridden by providing an extended DTD that adds extra
fields. However, because each kind of expression has its own kind of annotation,
it is necessary to override all 23 kinds of expressions to add a new annotation to
expressions (or 7 kinds for predicates, 5 kinds for paragraphs, etc.).
To solve this problem, and make it easier to add new kinds of annotations, we have
changed to a more loosely-typed view of annotations that is similar to the annotations



ZML: XML Support for Standard Z 441

in Zeta. Each Z construct can contain a list of arbitrary annotations. This means that
a tool could attach an annotation to an inappropriate construct (such as putting a
type annotation on a predicate), but such annotations do no harm and can simply be
ignored. On the other hand, there are many kinds of annotations (such as hyperlinks,
source-code positions and comments), that we want to be able to attach to arbitrary
constructs, and this is easier with these loosely-typed annotations.

3. In an object-oriented class hierarchy, it is possible to organise the hierarchy to
reflect commonality, so that common fields and methods can be inherited. This is
more flexible than the DTD structure, which does not have any kind of inheritance.
This resulted in more differences between the DTD structure and our ideal Java class
hierarchy than we would have liked.
Our new proposal solves this problem by using XML Schema to specify the structure
of the Z mark-up. XML Schema offers a rich set of (single) inheritance features
between types, as well as a substitution group facility which is similar to subtyping
in object-oriented languages.

Also in 2002, at the National University of Singapore, Dong and Sun developed a
new version of their XML Schema, based more closely on the annotated syntax structure
of the Z standard. This did not support unparsed alternatives or annotations, and made
less use of commonalities than Toyn’s DTD, but it included extensions for supporting
Object-Z and TCOZ (Timed Communicating Object Z) [10]. They demonstrated that
it is possible to use the XSLT transformation language to transform the XML form of
Z into elegant HTML with proper boxes and mathematical symbols.3 The generated
HTML includes cross-references, and buttons for expanding schema expressions and
folding them again. The impressive feature is that this transformation system actually
runs in your own browser, using standard technologies (XML, XSLT and Unicode).

This shows the promise of our XML proposal—it allows one to download a parsed
and type-checked Z specification in an XML format that is ideal for importing into
tools, yet still view it and explore it (following cross references etc.) with a standard web
browser.

Furthermore, Dong and Sun have defined an XSLT stylesheet for automatically trans-
forming the Object-Z/TCOZ models in XML into UML class diagrams [14]. The XSLT
encodes the projection rules from the formal notations into their corresponding UML
counterparts. Recently this work has been extended to support the auto-generation of
UML statechart diagrams from Object-Z/TCOZ specifications via Java XML parser [6].
Both implementations take the customized XML format as a standard input and performs
XML transformation into XMI (XML Metadata Interchange) format for visualization. In
addition, an XML-based type checker was built for the static type checking of Z/Object-
Z/TCOZ specifications in XML format.

3 Influences on Our Design

The structure of our proposed XML mark-up is based on Toyn’s DTD, which was
designed by comparing and merging the best features of three annotated syntaxes used

3 See http://nt-appn.comp.nus.edu.sg/fm/zml for a demonstration of this system. It re-
quires an appropriate Unicode font on your computer, such as Microsoft Arial Unicode.



442 M. Utting et al.

by the Z standard, CADiZ and Zeta. This section briefly describes each of these systems
and how they differ from our goals.

3.1 Standard Z

Standard Z’s annotated syntax provides the basis for its definition of the type system
and semantics of Z. These are the only functions defined on its annotated syntax. In
particular, the standard has no need to resurrect concrete syntax. It has annotations
for types of expressions, signatures of paragraphs, and section-type environments of
sections. Commonalities are identified by syntactic transformation rules, which define
the translation of concrete syntax to equivalent annotated syntax. Some of these rules
are quoted below.

XML mark-up differs from Standard Z’s annotated syntax because of the need to
resurrect concrete syntax and the need to support a greater variety of functions and
annotations.

3.2 CADiZ

CADiZ’s annotated syntax supports typechecking, prettyprinting (i.e. resurrection of
concrete syntax), interactive browsing (i.e. tracking of references to declarations and
inspection of types, signatures and environments), and logical inference (i.e. transfor-
mation to equivalent notation, as in the course of proofs). Z notation is also used as
patterns in tactics for automated reasoning.

In CADiZ’s annotated syntax, the representation of declarations plays many roles.
As well as representing the name and expression of a declaration, it records the de-
clared variable’s type, allowing signatures to be represented as lists of declarations,
and it records which expressions refer to it. An inclusion declaration brings new copies
of a declaration into scope, so that uses of the included declaration are not confused
with uses of the original declaration. Expressions record the declarations to which they
refer—this supports interactive browsing. They also support logical inference rules, cor-
rectly handling variable capture side-conditions: the inference rules maintain bindings
of references to declarations, and the prettyprinter does renaming wherever variable cap-
ture would otherwise seem to occur. The representation of declarations causes CADiZ’s
annotated syntax to be not a tree structure but a more general graph, which would be
inconvenient for a textual interchange mark-up such as XML (but more on this later).

CADiZ[15] can be said to support Standard Z—the deviations are very minor. (It
does have some extensions to Standard Z, but we will ignore those.) CADiZ’s annotated
syntax is not fixed, and has changed frequently in the past (and may change in the future
to be closer to this proposal).

3.3 Zeta

Zeta’s annotated syntax supports typechecking, prettyprinting (i.e. resurrection of con-
crete syntax), and animation (i.e. automatic reduction of expressions). Those are the
functions of the core edition of Zeta.

XML mark-up differs from Zeta’s annotated syntax wherever Zeta[8] deviates from
Standard Z.



ZML: XML Support for Standard Z 443

3.4 Standard Terminology

The main syntactic rules (Specification, Section, Paragraph, Predicate and Expression)
are present in all annotated syntaxes for Z, though not with the same names. In some
tools, this renaming reflects the widening of syntactic rules to include non-Z phrases.
The following table summarises these names, and suggests names to be used for the
elements in XML. The Z: prefix is just a namespace prefix, and can be omitted in XML
documents whose default namespace is our XML Schema. We use a postfix * symbol
to indicate possible repetition of a construct (zero or more times) and + to indicate one
or more repetitions.

Standard Z CADiZ Zeta XML
Specification doc* UnitAbsy* Z:Spec
Section doc UnitAbsy.Section Z:Sect
Paragraph def Item Z:Para
Predicate pred Predicate Z:Pred
Expression term Expr Z:Expr

4 Our XML Schema Proposal

In this section, we go through each major construct of the Z notation, briefly comparing
the Z standard, CADiZ and Zeta, and describing our proposed XML structure. The XML
Schema was developed and validated using the XML-Spy tool4, and the diagrams were
also partly generated with XML-Spy. The diagrams use two connectors: the three-dots
connector defines a sequence of the elements on its right, while the three-way switch
connector defines a choice between the elements on its right. Dashed lines indicate
optional components–this is usually obvious from the repetition counts, like 0 . . .∞,
below the optional constructs.

4.1 Specifications and Sections

Standard Z specifications are either anonymous or sectioned. The standard syntactically
transforms anonymous specifications to sectioned specifications, as follows (Z standard,
clause 12.2.1.1).

D ... Dn =⇒ Math toolkit ZED section Specification parents standard toolkit END D ... Dn

The name Specification can be anything distinct (CADiZ uses the name of the file that
the specification came from). To allow the concrete syntax to be resurrected precisely,
it is necessary to know whether a section was originally anonymous—we do this by
associating a Boolean attribute Anon with each section.

So, a specification can be represented as just a sequence of sections, and both CADiZ
and Zeta use that representation. The following table lists the components of a Z section.

4 See www.xmlspy.com



444 M. Utting et al.

Standard Z CADiZ Zeta XML
Section doc UnitAbsy.Section Z:Sect
NAME word Name Z:Word
seq NAME parent* Name* Z:Word*
seq Paragraph def* Item* Z:Para*
SectTypeEnv Z:Anns/Z:SectTypeEnvAnn

Fig. 1. XML structure for an entire Specification. The arrows pointing towards Sect indicate that
ZSect, UnparsedZSect and NarrSect are in the Sect substitution group, so each Sect element
can be replaced by any one of them.

Fig. 1 shows a diagrammatic presentation of the corresponding XML structure,
omitting some details such as attributes. It shows that a specification is a sequence of
zero or more constructs, where each construct is either a parsed section (ZSect), an
unparsed section (UnparsedZSect), a narrative portion (NarrSect) or some other kind
of arbitrary (non Z-related) XML element (the any ##other). Each parsed ZSect
section must be a sequence of an optional set of annotations, then a name, then zero
or more parents, then zero or more paragraphs (or other XML elements). The top-level
Spec element also has three optional attributes (not shown) to record its Creator and the
Date and Time of the last modification. Note that inside an Anns tag, any XML elements
are allowed—our XML proposal pre-defines several annotations, but other tools are free
to define more. We have set processing = lax within the Anns element, which means
that Z tools and other validation tools should simply ignore any annotations they do not
understand.

Within a ZSect, the list of parent names need not include prelude, as that is implicitly
a parent of all sections. If there are no parents, theZSect element does not record whether
or not the keyword parents occurred in the concrete representation. This doesn’t matter
sufficiently to deserve the declaration of an attribute.



ZML: XML Support for Standard Z 445

Support for Z Extensions. There have been numerous extensions of Z in the past, and
this will probably continue. Furthermore, within a Z specification, we want to allow
complementary kinds of specification, such as CSP specifications, UML diagrams, or
new kinds of paragraphs defined by some extension of Z like Object-Z or TCOZ. Fig. 1
shows that, within specifications and sections, our XML mark-up allows arbitrary ele-
ments from other namespaces to be interspersed with Z constructs. This means that the
XML tags that belong to the standard Z namespace will be checked and processed by
Z tools, while text and unknown tags (from other namespaces) will be ignored. In other
words, the formal Z constructs (sections and paragraphs) are viewed as being part of
a larger narrative, which may contain other kinds of top-level mark-up. This is a more
permissive, egalitarian style of mark-up than allowing only standard Z constructs to
appear at the top level.

4.2 Paragraphs

Toyn’s DTD definedZ:Para to be a choice between six kinds of paragraph. XML Schema
gives us several different ways of doing this, and we have decided to use a newish XML
Schema feature, Substitution Groups, rather than choice groups, because substitution
groups are similar to an object-oriented subtyping structure (where a subtype object can
replace a supertype object), and can support inheritance of attributes and elements.

Substitution groups make it easy to extend the structure. For example, a Z ex-
tension can add a new kind of paragraph simply by defining a new element with
substitutionGroup="Para". It is also easy to add new features to one of the sub-
types, like AxPara, by declaring a new element whose type extends or restricts the type
of AxPara and says substitutionGroup="AxPara" (the substitution relationship is
transitive).

Here is the XML Schema definition for Para. It is declared to be abstract so that
XML files must contain a more specific kind of paragraph, wherever a Para element is
expected.

<xs:element name="Para" type="ParaType" abstract="true"/>

The following subsections go through each kind of paragraph, describing their struc-
ture.

Given Types Paragraph. The following table lists the components of a given types
paragraph.

Standard Z CADiZ Zeta XML
Given types Paragraph givdef Item.AxiomaticDef* Z:GivenPara
seq NAME dec* Expr.GivenType Z:DeclName*
Signature Z:Anns/Z:TypeEnvAnn

In CADiZ, all declarations (given types, generic parameters, variables) share the
same dec representation. This has the advantage of providing a basis for tracking all
references to each declaration.



446 M. Utting et al.

In Zeta, a given types paragraph is represented as an Item.AxiomaticDefs se-
quence, in which each Item.AxiomaticDef’s expression is an Expr.GivenType con-
taining the name of a given type. This is an instance of a more general approach: Zeta
represents each Z global definition as an Item.AxiomaticDef, using additional kinds
of expressions beyond those of Standard Z to make this possible. Concretely, a given
types paragraph (or a single given type) is not an expression, and so Zeta’s representation
seems a bit forced.

In XML, a given types paragraph is marked-up using the Z:GivenPara element,
whose type is shown in Fig. 2. To save space, we do not show the annotation elements
(Anns) in this and future diagrams, because they appear on virtually all constructs.

Fig. 2. XML structure for Given Type paragraphs

Axiomatic Description Paragraph. The following table lists the components of an
axiomatic description paragraph.

Standard Z CADiZ Zeta XML
(Generic) axdef Paragraph axidef Item.AxiomaticDef Z:AxPara
seq NAME dec* NameDecl* Z:DeclName*
Expression sch Expr.Text Z:SchText
Signature Z:Anns/Z:TypeEnvAnn

In CADiZ and Zeta, non-generic axiomatic description paragraphs are represented
as generic ones with an empty list of generic parameters. Standard Z differs, as it was
thought that the semantics of generics would be easier to understand if the semantics of
non-generics were defined separately first.

The declarations and predicate parts of an axiomatic description paragraph are repre-
sented differently in the different annotated syntaxes. Standard Z transforms them to an
expression. CADiZ retains the schema text, represented by a distinct rule in the annotated
syntax. Zeta views the schema text as an expression. We believe that some annotations
can usefully be placed on schema texts, and that any single expression appearing where
a schema text is expected is best represented as an inclusion in a schema text, so that
there is somewhere to record those annotations.

Fig. 3 shows our XML structure for the AxPara element, as well as for schema text
and declarations. Note the three ‘subtypes’ of Decl. These are all declared as belonging
to the Decl substitution group so that they can appear wherever a Decl is required.



ZML: XML Support for Standard Z 447

The following definitions from the Z standard (syntactic transformations 12.2.3.1—
12.2.3.4) show how to represent (generic) schema definition paragraphs and (generic)
horizontal definition paragraphs as (generic) axiomatic description paragraphs. The
SCH , END etc. are box tokens, which abstract away from the exact appearances of
paragraph outlines.

SCH i t END =⇒ AX [i == t] END

GENSCH i [i, ..., in] t END =⇒ GENAX [i, ..., in] [i == t] END

ZED i == e END =⇒ AX [i == e] END

ZED i [i, ..., in] == e END =⇒ GENAX [i, ..., in] [i == e] END

Generic operator definition paragraphs have their operator names syntactically trans-
formed to ordinary names (syntactic transformations 12.2.9.1—12.2.9.4) and hence they
become generic horizontal definition paragraphs that can be represented as generic ax-
iomatic description paragraphs.

To support resurrection of the original concrete representation, we add an attribute
Box with values: OmitBox, AxBox (the default), or SchBox. A further Boolean attribute
called Mixfix, distinguishes whether mixfix syntax is used in the definition of a generic
operator e.g. ↔ [X, Y ] == P(X × Y).

Free Types Paragraph. The following tables list the components of a free types para-
graph.

Standard Z CADiZ Zeta XML
Free types Paragraph datdef Item.AxiomaticDef* Z:FreePara
seq Freetype fret+ Expr.FreeType Z:FreeType+
Signature Z:Anns/Z:TypeEnvAnn

In Zeta, the representation of free types paragraphs is similar to that of other global
definitions (see the earlier discussion in the Given Types section).

Standard Z CADiZ Zeta XML
Freetype fret Expr.FreeType Z:FreeType
NAME dec NameDecl Z:DeclName
seq Branch bra+ Branch+ Z:Branch+

The representation of a branch is very different in different tools, and so cannot
readily be tabulated.

Standard Z XML
Branch Z:Branch
NAME Z:DeclName
Expression Z:Expr?



448 M. Utting et al.

Fig. 3. XML structure for Axiomatic Definition paragraphs, Schema Text and Declarations. The
arrows pointing towards Decl indicate that VarDecl, ConstDecl and InclDecl are in the Decl
substitution group, so each Decl element can be replaced by any one of them.

In CADiZ, a Branch’s name and optional expression are both represented by a single
dec value, allowing references to the name to be tracked.

In Zeta, a Branch is either a Constant or a Function. A Constant has just a
NameDecl, whereas a Function has both a NameDecl and an Expr.

In XML, a free types paragraph is marked-up using the Z:FreePara element, whose
type is shown in Fig. 4.

Conjecture Paragraph. Standard Z conjectures have a single consequent predicate and
zero or more generic parameters.

Zeta does not support conjecture paragraphs.
In CADiZ, conjectures are represented as particular cases of a more general syntax

for sequents. Sequents allow for zero-or-more generic parameters, zero-or-more lev-
els of nested DeclParts, zero-or-more antecedent predicates, zero-or-more consequent
predicates, and a name for the sequent. This more general syntax assists humans doing
proofs interactively, but adds nothing semantically: any sequent can be rearranged into
an equivalent single-consequent form that conforms to the Z standard (ignoring the se-



ZML: XML Support for Standard Z 449

Fig. 4. XML structure for Free Type paragraphs

quent’s name, which can be thought of as an annotation). Other reasoning tools for Z
may use different representations for sequents. So it seems inappropriate to define an
XML mark-up for anything more complicated than a Standard Z (generic) conjecture.

The following table lists the components of a conjecture paragraph.

Standard Z XML
(Generic) conjecture Paragraph Z:ConjPara
seq NAME Z:DeclName*
Predicate Z:Pred
Signature Z:Anns/Z:TypeEnvAnn

In XML, a conjecture paragraph is marked-up using the Z:ConjPara element
(Fig. 5). This representation suffices for both generic and non-generic conjecture para-
graphs: the sequence of generic parameters is empty in the non-generic case.

Fig. 5. XML structure for Conjecture paragraphs

Operator Template Paragraph. Standard Z has operator template paragraphs in its
concrete syntax but not in its annotated syntax, because they affect how the specification
is parsed but have no further meaning themselves. To be able to interchange them and
resurrect their concrete syntax, and the concrete syntax of the operators they define, the
XML mark-up must provide a representation of them.



450 M. Utting et al.

Operator templates are one of the innovations of Standard Z and were subject to some
late changes, so tools are unlikely to support operator templates exactly as in Standard Z
(excepting CADiZ). The concrete syntax allows explicit declaration of precedence and
associativity only for infix function and infix generic operators. Other operators have
implicit precedences and associativities, which it is convenient to make explicit in the
annotated syntax.

The following table lists the components of an operator template paragraph.

Standard Z CADiZ Zeta XML
Operator template Paragraph fixdef Fixity Z:OptempPara
Category cat isGeneric Z:Cat (Attr)
Prec nat prio Z:Prec (Attr)
Assoc boole ? Z:Assoc (Attr)
Template (nat,word)+ Component* See Fig. 6

In CADiZ, aTemplate is represented as a list of pairs.While this enforces alternation
of operators and operands, it may unfortunately appear to add an unwanted operand at
the beginning and/or an unwanted operator at the end, for which distinguishable values
are needed to avoid confusion.

In Zeta, a Template is represented as a list of Components. Each Component is
either a Keyword, Operand or OperandList. Zeta appears to parse declarations of
associativity, but it does not appear to keep a representation of associativity in its anno-
tated syntax. Its annotated syntax also appears not to distinguish relation and function
categories.

In XML, an operator template paragraph is marked-up using the Z:OptempPara
element (Fig. 6). In addition, each Z:OptempPara has three attributes:

Cat (category) which can equal Relation, Function or Generic.
Assoc which can be Left or Right.
Prec (precedence) which is a natural number.

Fig. 6. XML structure for Operator Template paragraphs

Narrative Paragraph. To allow natural language narrative to appear between Z para-
graphs, we define a NarrPara element, containing annotations and a Contents element
which contains arbitrary unicode and markup. This is similar to NarrSect in Fig. 1.



ZML: XML Support for Standard Z 451

Unparsed Paragraph. Our final kind of paragraph does not appear in Zeta or the Z
standard, because their annotated syntax representations are used only after an entire
specification has been successfully parsed. However, since our XML format may be our
source representation, we need to be able to represent erroneous (unparsable) specifica-
tions as well. Similar to the ErrorDef paragraph in CADiZ, we use a special paragraph
called UnparsedPara, whose structure is the same as UnparsedZSect (see Fig.1). If
a tool attempts to parse an UnparsedPara, it may return a parse error, or one or more
paragraphs (which will replace the UnparsedPara). Similarly, at the top level of a
specification, an UnparsedZSect may become one or more sections if it can be parsed.

4.3 Predicates and Expressions

We shall not go into details about the structure of predicates and expressions etc., but will
discuss some specific features and give a few short XML examples to give the flavour
of our approach.

As for paragraphs, declarations and strokes, we define Expr and Pred to be abstract
elements, and use substitution groups to allow specific concrete kinds of expressions
and predicates to be used in their place. To capture the commonalities between various
kinds of expressions, we define a hierarchy of XML types (Fig. 7). We expect that this
same hierarchy can be used in Z tools that are written in object-oriented languages. Then
the various concrete predicate and expression elements are defined as members of these
types, as the following examples illustrate (grp stands for substitutionGroup):

<element name="OrPred" type="Z:Pred2Type" grp="Z:Pred"/>
<element name="ImpliesPred" type="Z:Pred2Type" grp="Z:Pred"/>
<element name="ForallPred" type="Z:QntPredType" grp="Z:Pred"/>
<element name="ExistsPred" type="Z:QntPredType" grp="Z:Pred"/>
<element name="FalsePred" type="Z:FactType" grp="Z:Pred"/>
<element name="TruePred" type="Z:FactType" grp="Z:Pred"/>

<element name="LambdaExpr" type="Z:Qnt1ExprType" grp="Z:Expr"/>
<element name="MuExpr" type="Z:QntExprType" grp="Z:Expr"/>
<element name="LetExpr" type="Z:Qnt1ExprType" grp="Z:Expr"/>
<element name="SetCompExpr" type="Z:QntExprType" grp="Z:Expr"/>

Some expressions and predicates have special features to enable the concrete syntax
to be resurrected. Z has several conjunction operators (∧, ; , newline and the implicit
conjunctions within a < b < c), which are all represented by the AndPred element (of
type Pred2Type) with an attribute to record which kind of conjunction it came from.
The RefExpr, ApplExpr and MemPred elements have a Boolean attribute called Mixfix
to record whether the application uses mixfix notation or not.

The Challenge of Nested Identical Names. In Z it is quite common to have several levels
of declarations nested inside one another. If two levels declare the same name X, then
expressions inside the inner’s scope cannot normally refer to the outer X. However, there
are situations like the following example, where the instantiation of generic operators
during type checking must introduce references to the outer X (the #{a} becomes



452 M. Utting et al.

TermType supertype of all Z constructs
StrokeType supertype of the 4 kinds of name decorations
AnnType supertype of all annotations
TermAType supertype of all annotatable constructs

Spec
SectType supertype of all section types

ZSectType
UnparsedZSectType
NarrSectType

ParaType supertype of all paragraph types
GivenParaType
AxParaType
FreeParaType
ConjParaType
OptempParaType
UnparsedParaType

DeclType supertype of all declarations
VarDecl
ConstDecl
InclDecl

PredType
Pred2Type supertype of all binary predicates
QntPredType supertype of all quantifier predicates
FactPredType supertype of the true/false predicates

ExprType
Expr1Type supertype of all unary expressions
Expr2Type supertype of all binary expressions

LogExprType supertype of all binary schema operators
QntExprType supertype of all quantifier exprs

Qnt1ExprType supertype of quantifier exprs with compulsory body
ExistsExprType supertype of existential schema exprs

Expr0NType supertype of exprs with 0 or more subexprs
Expr2NType supertype of exprs with 2 or more subexprs

TypeType supertype of all Z base types used in annotations
ParentType
FreeTypeType
BranchType
SchTextType
NameType

Fig. 7. The hierarchy of XML complex types in ZML.

#[X]{a}). This creates a problem, because naively introducing X at this point causes it
to bind to the inner X rather than the outer X.

[X]

a : X

∃ X : N • #{a} = X

None of the previous DTD or XML Schema proposals solve this problem. The
traditional solution is to rename the bound X. But to allow exact resurrection of concrete
syntax we do not want to rename bound variables. The Z standard solves this problem
by creating suit-decorated synonyms of type names (e.g., X♥) and making implicit
instantiations refer to those synonyms. We want a more general solution than this, so
that tools can perform a variety of transformations, then produce correct XML using the
original names, even though the scopes of those names may have changed.



ZML: XML Support for Standard Z 453

CADiZ solves this problem by using references to link each name to a corresponding
declaration. We do the same thing in XML, by using the ID and IDREF cross-reference
features of XML to allow a variable reference to point to a specific variable declaration
(which may not be the nearest nested name). Declarations of names may have an ID-
valued attribute calledId, while references to names may have an IDREF-valued attribute
called Decl which links to a declaration. Since soundness relies on following these
references correctly, every Z tool must be capable of following them, and pretty printers
must display the output unambiguously (either by renaming one of the bound variables,
or by making the generic instantiations implicit again to hide the problem reference).

The full mark-up of the above example is shown in Appendix A. The XML for the
declaration of the global name X is:

<GivenPara><DeclName Id="X.3"><Word>X</Word></DeclName></GivenPara>

while an expression that references this X can be marked up as:

<RefExpr><RefName Decl="X.3"><Word>X</Word></RefName></RefExpr>

5 Conclusions

We have defined an XML mark-up format for standard Z, based on combining the
best features from the standard and several existing tools. The XML Schema has been
validated, and several small examples have been validated against the schema. We are
now seeking feedback and comments on the design, particularly on the following issues:

1. Two alternative approaches to annotations: the approach taken here is for each term
to have an optional Anns slot that can contain arbitrary XML (which is not validated
or checked in any way). An alternative approach would be to put new kinds of
annotations into separate documents (with their own XML Schema) and use IDREF
links to link each annotation to the appropriate Z term (which would have an ID
attribute).

2. Two alternative approaches to narrative and non-standard portions of Z specification
documents. Should narrative paragraphs and non-Z XML mark-up be viewed as
subordinate to the Z, or should it be mixed in with the Z constructs on an equal
basis (as in this paper)? The former approach allows stricter XML validation of the
document, because every top-level paragraph is of a known type and can be checked
(except that Narrative paragraphs would be allowed arbitrary contents). The latter
approach (which we have taken) makes it easy to add new kinds of paragraphs (e.g.,
for Z extensions), even without extending the XML Schema, but means that standard
Z tools will quietly ignore all unknown kinds of paragraphs.

3. Unparsed fragments. Is it really useful to be able to have some paragraphs or sections
unparsed? Would an even finer granularity be useful (Expr and Pred etc.)? Or should
we disallow unparsed portions and insist that this XML mark-up be used only for
syntactically correct specifications?

4. Mathematical Symbols. We expect that the special symbols used in Z will normally
be represented in XML documents using their binary Unicode representation (e.g.,
UTF8). However, this means that the documents are not ASCII-based and are only



454 M. Utting et al.

human-readable if you have a full Unicode font.Would it be useful to define symbolic
names for all the Z symbols (this can be done using DTD entities, or XML Schema
elements with fixed contents) so that the Z specifications can be pure ASCII? Or
will this be irrelevant once full Unicode fonts and Unicode editors become widely
available?

Combining the best features from the Z standard and several existing tools has been
worthwhile, as can be seen by considering the main influences on the XML structure. The
Specification representation is influenced mainly by the form of XML. The Section
representation is influenced mainly by Zeta. The Paragraph representation is influenced
mainly by Standard Z, with the commonality between generics and non-generics taken
from both CADiZ and Zeta, and the template representation in operator templates taken
from Zeta. The Predicate representation is influenced mainly by CADiZ and Zeta,
which use remarkably similar representations. The Expression representation falls
between those of CADiZ and Zeta. The representations of schema text and names are
influenced mainly by Zeta.

Next we plan to derive a set of open-source Java classes from this XML schema,
preferably by using either JAXB5 or XSLT to transform the schema into Java source.
These Java classes will support the visitor design pattern [7], so that functionality such as
type checkers, transformation tools, simplifiers and pretty printers can easily be written
as add-on packages. This will dramatically reduce the usual initial barriers of creating
new Z tools (parsing, type-checking etc.) and make it easier for student projects and
other researchers to experiment with building new Z tools.

Another important step is for existing Z tools to support this XML format, by adding
import and export functions that read and write it. CADiZ already exports an XML
format that is close to this one.

References

1. ISO/IEC 10646-1. Information Technology – Universal Multiple-Octet Coded Character Set
(UCS) – Part 1: Architecture and Basic Multilingual Plane. 2000.

2. ISO/IEC 10646-2. Information Technology – Universal Multiple-Octet Coded Character Set
(UCS) – Part 2: Supplementary Planes. 2001.

3. ISO/IEC 13568. Information Technology – Z Formal Specification Notation – Syntax, Type
System and Semantics. 2002. First Edition 2002-07-01.

4. ISO 8879-1986. Information Processing – Text and Office Systems – Standard Generalized
Mark-up Language (SGML). ISO, 1986.

5. Nicholas Daley. Abstract syntax tree for Z. 591 Project Report, The Department of Com-
puter Science, Waikato University, Hamilton, New Zealand, October 2002. Available from
marku@cs.waikato.ac.nz.

6. Jin Song Dong, Yuan Fang Li, Jing Sun, Jun Sun, and Hai Wang. XML-based static type
checking and dynamic visualization for TCOZ. In 4th International Conference on Formal
Engineering Methods, pages 311–322. Springer-Verlag, October 2002.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, USA, 1995.

5 See http://java.sun.com/xml/jaxb.



ZML: XML Support for Standard Z 455

8. W. Grieskamp. ZETA. http://uebb.cs.tu-berlin.de/zeta, 2000.
9. E.R. Harold and W.S. Means. XML in a Nutshell. O’Reilly, 2001.

10. B. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Transactions on Software
Engineering, 26(2), February 2000.

11. M. Saaltink. The Z/EVES system. In J. Bowen, M. Hinchey, and D. Till, editors, Proc.
10th Int. Conf. on the Z Formal Method (ZUM), volume 1212 of Lecture Notes in Computer
Science, pages 72–88, Reading, UK, April 1997. Springer-Verlag, Berlin.

12. J. Michael Spivey. The Z Notation: A Reference Manual. International Series in Computer
Science. Prentice-Hall International (UK) Ltd, second edition, 1992.

13. J. Sun, J.S. Dong, J. Liu, and H. Wang. An XML Schema for Z family.
http://nt-appn.comp.nus.edu.sg/fm/zml/zml.xsd, 2001.

14. Jing Sun, Jin Song Dong, Jing Liu, and Hai Wang. A Formal Object Approach to the Design
of ZML. Annals of Software Engineering, 13(1-4):329–356, June 2002.

15. I. Toyn. CADiZ. http://www-users.cs.york.ac.uk/˜ian/cadiz/, 2001.
16. J. Wordsworth. An XML DTD for Z, October 1999.

A XML Mark-Up of Example from Sect. 4.3

<NarrPara>
<Content>First we declare X to be a given set.</Content>

</NarrPara>
<GivenPara>
<DeclName Id="X.3"> <Word>X</Word> </DeclName>

</GivenPara>

<NarrPara>
<Content>This axiomatic definition declares a:X, with the
constraint: (∃ X:N @ #{a} = X)</Content>

<NarrPara>
<AxPara>
<SchText>
<VarDecl>
<DeclName> <Word>a</Word> </DeclName>
<RefExpr><RefName><Word>X</Word></RefName></RefExpr>

</VarDecl>

<ExistsPred>
<SchText>
<VarDecl>
<DeclName> <Word>X</Word> </DeclName>
<RefExpr><RefName><Word>N</Word></RefName></RefExpr>

</VarDecl>
</SchText>
<MemPred>
<TupleExpr>
<ApplExpr>
<RefExpr>
<RefName><Word>#</Word></RefName>
<RefExpr>



456 M. Utting et al.

<RefName Decl="X.3"> <Word>X</Word>
</RefName>

</RefExpr>
</RefExpr>
<SetExpr>
<RefExpr><RefName><Word>a</Word></RefName></RefExpr>

</SetExpr>
</ApplExpr>
<NumExpr Value="1"/>

</TupleExpr>
<RefExpr><RefName><Word>=</Word></RefName></RefExpr>

</MemPred>
</ExistsPred>

</SchText>
</AxPara>


	Why an XML format for Z?
	Requirements of a Z Interchange Mark-Up
	Specifying the XML Structure: DTD or XML Schema?

	Previous Work
	Influences on Our Design
	Standard Z
	CADiZ
	Zeta
	Standard Terminology

	Our XML Schema Proposal
	Specifications and Sections
	Paragraphs
	Predicates and Expressions

	Conclusions
	XML Mark-Up of Example from Sect. T @ref {sec:expr}

