Impact Analysis and Change Management of UML Models

L. C. Briand, Y. Labiche, L. O’Sullivan
Software Quality Engineering Laboratory
Systems and Computer Engineering Department
Carleton University, Ottawa, Ontario, Canada

ABSTRACT

The use of Unified Model Language (UML) analysis/design models on large projects
leads to a large number of interdependent UML diagrams. As software systems evolve,
those diagrams undergo changes to, for instance, correct errors or address changes in the
requirements. Those changes can in turn lead to subsequent changes to other elements in
the UML diagrams. Impact analysis is then defined as the process of identifying the
potential consequences (side-effects) of a change, and estimating what needs to be
modified to accomplish a change. In this article, we propose a UML model-based
approach to impact analysis that can be applied before any implementation of the
changes, thus allowing an early decision-making and change planning process. We first
verify that the UML diagrams are consistent (consistency check). Then changes between
two different versions of a UML model are identified according to a change taxonomy,
and model elements that are directly or indirectly impacted by those changes (i.e., may
undergo changes) are determined using formally defined impact analysis rules (written
with Object Constraint Language). A measure of distance between a changed element
and potentially impacted elements is also proposed to prioritize the results of impact
analysis according to their likelihood of occurrence. We also present a prototype tool that
provides automated support for our impact analysis strategy, that we then apply on a case

study to validate both the implementation and methodology.

TABLE OF CONTENTS

ADSITACE oot et et b ettt e bt et he e 1
TABLE OF CONTENTS ...ttt ettt s aeeneas 2
Lo INEOAUCTION . .ttt ettt ettt sttt ettt e enees 3
2. Related WOTKS.oiiiiieeee et 5
3. Problem definition and ODJECHIVEScccuieriieiiieiiieiieieeieee e 6
4. Overview of the APPrOacCh........cccviiiiiiiiiiiieiiie et 7
5. Tool architecture and OVEIVIEW..........ccccuierieriiieniieeiieriie ettt eiee e sete e sreeeees 9
6. MOdEl ChANGESooeiiieeiiie ettt e e e e et e e et e e eba e e enreeesnraeenns 11
7. Impact ANALYSIS TULES....cccuiiiuiieiieiie ettt ene 15
8. DIStANCE IMEASUTE. ...ccuuiiiitieiiiiiiieite ettt ettt ettt ettt ettt e st ebeesaeeeeeas 18
L O T TC] 1 1 1¢ | O ETUSUUOR U SRRPRR 19
LO. CONCIUSIONS ...ttt ettt et e bt e et e s it e et e e nbeeenbeeee 21
ACKNOWIEAZEIMENLS......c..eiiiiiiiieeiiieiie ettt ettt at e s aeeteeeabeenseessneenseenneaans 22
RETEIEIICES ittt ettt ettt e sttt e st ens 23
Appendix A System MOlooouiiiiiiiiiiiieieee e 24
Appendix B Change DeteCtion..........ccuiieiiieeiiieeieeeie et evee e seveeeeaveeeeaee s 41

B.l Change TaXONOMYcceeriiiiiieniieeiieiieeteentiesteeieesteeseesiaeesseesssesseessseenseenens 41

B.2 Change Detection RUIES.........cccoiiiiiiiiiiiciieceeceeeeeee e 51
Appendix C Consistency VerifiCation.........c.eevieriierieniiieiiieeieeiieseeeiee e evee e eseesieeens 69
Appendix D Impact Analysis (Side Effect) Rules.........cccccvvveviiieiiiiniiiieeeeeeeee, 75
AppendixX E Case StUAYcooouieriiieiieiieeieee ettt 110

E.1 Logical Changes.........cccuiiiiiieiiieeeiieeciteeetee et et eeive e e teeesvaeeeaeeesseeeennee s 110

E.2 Change DiStribDUtiOncceeiiiiiieniieiiesie ettt 113

E.3 Impacts Vs Distance Graphs.........ccccoeccviieiiieeiiieeiiieciee e 113

E.4 UML Model (Original)ccoeviiiiiiieiiiee et 115

1. INTRODUCTION

The use of UML (Unified Model Language) analysis/design models [7] on large projects
leads to a large number of inter-dependent UML diagrams'. Those diagrams undergo
changes as the software systems are evolving. Such changes to a diagram may lead to
subsequent changes to other elements of the same diagram or in other related diagrams.
In this context, several issues require attention. The (potential) side effects of a change to
the unchanged diagrams should be automatically identified to help (1) keep those
diagrams up-to-date and consistent and (2) assess the potential impact of changes in the
system. This can in turn help predict the cost and complexity of changes and help decide

whether to implement them in a new release [2].

In the context of large software development teams, the above problems are even more
acute as diagrams may undergo changes in a concurrent manner and different people may
be involved in those changes. Support is therefore required to help a team assess the
complexity of changes, identify their side effects, and communicate that information to
each of the affected team members. In order to address the above issues, the work
presented here focuses on impact analysis of UML analysis or design models. Impact
analysis is defined as the process of identifying the potential consequences (side-effects)

of a change, and estimating what needs to be modified to accomplish a change [2].

Most of the research on impact analysis is based on the program code (implementation).
However, in the context of UML-based development, it becomes clear that the
complexity of changing Analysis and Design models is also very high. Therefore, we
seek to provide automated support to identify changes made to UML model elements and

the impact of these changes on other model elements.

While code-based impact analysis methods have the advantage of identifying impacts in
the final product — the code, they require the implementation of these changes (or a very
precise implementation plan) before the impact analysis can be performed. However, a

UML model-based approach to impact analysis looks at impacts to the system before the

' That may also contain OCL [13] constraints, e.g., contracts, guard conditions.

implementation of such changes. Then a proper decision can be made earlie—before any
change detailed implementation is considered—on whether to implement a particular (set
of) change(s) based on what design elements are likely to get impacted and thus on the
likely change cost. Earlier decision-making and change planning is clearly important in
the context of rigorous change management. On the other hand, since UML models
describe the system at a higher level of abstraction than the code, model-based
approaches may provide less precise results than code-based ones. For example, it may
be possible that new, unexpected impacts show up at implementation time. This is an

issue that requires further investigation but that will not be addressed in this report.

Another assumption made by any model-based impact analysis method is that the model
is consistent with the code and up-to-date. This is often an issue in many software
development organizations. However, the functionality to manage traceability and
consistency between design models and code is now available in many UML CASE
tools. For example, Together®, by TogetherSoft™ [11], updates the class diagram when
changes are made to the code and checks some consistency aspects of the updated class

diagram with other UML diagrams in the design model.

Our work contributes in several complementary ways to providing support for the impact

analysis of UML models:

It defines a methodological framework.

— It provides a set of change detection and impact analysis (side effect) rules, that
were derived by systematically analyzing components of UML models (including
constraints in the Object Constraint Language [13]) and analyzing changes in

actual case studies.

— A prototype tool implements the above principles using a carefully thought-out

architecture and an extensible design.

— Case studies have been performed to assess the feasibility and practical

challenges of our approach.

This report describes the methodological framework and the fundamental principles
underlying the change detection and impact analysis rules, presents our tool’s architecture
at a high level, and reports on a case study. Section 2 discusses related works. Section 3
provides a precise description of the problems we addressed and the objectives of our
research. An overview of the approach, along with some justifications, is given in Section
4. The next Sections, up to Section 9, which presents a case study, then details each of the
most important aspects of the approach and provides examples. Section 10 outlines our

main conclusions and future work.

2. RELATED WORKS

Bohner [1] examines the general issues involved in change impact analysis, and provides
structured guidelines to help find solutions to such issues. For instance, if one considers
both direct and indirect (transitive closure) impacts, the results of the impact analysis
shows an enormous number of impacts, thus (possibly) over-estimating the impact. This
advocates tool support, as well as the use of semantic (related to the impacts) and
structural (e.g., distance between a change and an impact) constraints to structure analysis

results.

A large portion of the change impact analysis strategies require source code analysis (see
for instance the strategies reported in [3]), where as a few of them are model-based. Kung
et al. [9] describes how change impact analysis can be performed from a class diagram,
introducing the notion of class firewall (i.e., classes that may be impacted by a change in
a given class), and discuss the impact of object-oriented characteristics (e.g.,
encapsulation, inheritance, polymorphism, dynamic binding) on such an analysis. In [12],
the authors use a functional model (referred to as "domain model") of the system under
consideration to generate test cases, and build a mapping between changes to the domain
model and the impact it has on test cases, to classify them. Another method for regression
test selection, based on UML models (class and sequence diagrams), is presented in [5].
In this method, a rough impact analysis is performed with the sole purpose of classifying
the regression test cases as obsolete, retestable, or reusable. The current work is a

significant extension and performs impact analysis at a much more refined level so that it

can be applied to a variety of problems, including change effort estimates and support to

identify ripple effects.

3. PROBLEM DEFINITION AND OBJECTIVES

The support of impact analysis of UML design models can be decomposed into several

sub-problems:

1. Automatically detect and classify changes across different versions of UML
models. Ideally, one modifies a UML model and then uses the impact analysis
tool to automatically identify all the changes performed since the last version. We
do not want software engineers to have to specify each and every change as we
want to avoid the overhead that would prevent the practice of impact analysis. As
seen below, changes have to be classified to be able to perform a precise impact

analysis.

2. Verify the consistency of changed diagrams. The modified model must be self-
consistent for any impact analysis algorithm to provide correct results. Since
consistency in complex UML models is not always easy to achieve, verifying
consistency must be supported by tools. Note that this is different from impact
analysis as it does not focus on finding (potentially) impacted elements (i.e.,
whose implementation may require change) but structural inconsistencies between
UML diagrams, e.g., a class instance (classifier role”) in a sequence diagram

whose class is not in the class diagram.

3. Perform an impact analysis to determine the potential side effects of changes in
the design. In most cases, for reasons described below, side effects cannot be
identified with certainty as there is no way to ascertain whether a change is really
necessary based on the UML analysis or design only. As a result, an impacted
element is a UML model element whose properties or implementation may

require modification as a result of changing another model element (i.e., one of its

? In the UML standard terminology, a classifier role identifies an object in a sequence diagram, and the
base class of the classifier role is the class of this object (the term base does not relate to inheritance).

properties may change)’. To clarify the terminology we employ, changes to UML
diagrams are the result of logical changes corresponding to error corrections,
design improvements, or requirement changes. We refer to changes to model
elements when a property of an element has changed from one version of a
diagram to another, e.g., the visibility of an operation. A logical change usually
results in a set of changes to model elements. Impact analysis can be performed

for each logical change independently or for an entire, new UML model.

4. Prioritize the results of impact analysis according to the likelihood of occurrence
of predicted impacted elements. In object-oriented designs, when considering all
direct and indirect dependencies among model elements, impact analysis often
results in a large number of (potentially) impacted model elements, thus making
their verification impractical. Addressing this issue requires a way to order side
effects according to criteria that can be easily evaluated and which are good
indicators of the probability of a side effect, for a given change. For example,
Briand et al. [6] have explored the use of coupling measures and predictive

statistical model for that purpose.

4. OVERVIEW OF THE APPROACH

In this section, we do not present all the details of our change impact analysis strategy.
Further details are presented in the next sections. Rather we concentrate on the important
notions, providing excerpts for all the four steps that are involved in the strategy:

consistency checking, change impact analysis, prioritization of impacts.

As mentioned above, the identification of model inconsistencies is important to ensure
that the impact analysis algorithms we use yield correct results. Inconsistencies may be
automatically modeled and detected by a set of consistency rules. Each rule corresponds

to one type of inconsistency and must be implemented in any tool supporting impact

? Even when no model property changes, the model element implementation may require change.

analysis on UML diagrams. We have identified 120 consistency rules*. For example, one

simple rule we use can be described informally’ as:

Each operation that is invoked in a sequence message must be defined in

the class diagram, in the specific class of the target object of the message.

Each model element in a UML design is defined by a set of properties, e.g., a class has
attributes. Thus, the identification of a change to a model element requires checking if
any of its properties has changed. Each model element change is classified according to a
change taxonomy in order to associate impact analysis rules with each type of change.
The change taxonomy reflects changes to class diagrams, sequence diagrams, and
statecharts. More details are provided, for some examples, in Section 6, and the complete

change taxonomy contains 97 change categories® (leaf nodes).

Once we have verified that the diagrams of a UML design model are consistent, and
model element changes have been detected, the next step is to automatically perform
impact analysis using impact analysis rules, that is, rules that determine what model
elements could be directly or indirectly (through transitive closure) impacted by each
model element change (Section 7). As rules tend to depend on the type of change for
which we perform impact analysis, we define one such rule for each change category in

the change taxonomy, thus resulting in 97 rules”.

In order for impact analysis to be useful and practical, we need to find ways to indicate
what model elements should be checked first as they, and their code counterpart, are
more likely to require change. To do so, we define measures of distance between the
changed elements and potentially impacted elements (Section 8) where the assumption is

that the larger the distance, the less likely is the model element to be impacted.

Figure 1 is a conceptual model (using a class diagram) that provides a useful overview of

all the concepts presented above.

* Though we made a conscious effort to be as exhaustive as possible, this number may change as we gain
more experience, especially by applying our change impact analysis strategy to different case studies.
> It can also be expressed using OCL on the meta-model

versionl Q/ 1 version2
\ UML Model Design

‘ Consistency Verification |

*
Prope
@ Change L—w Logical Change
*

<>

causes

Figure 1 — Conceptual Model

5. TOOL ARCHITECTURE AND OVERVIEW

Our impact analysis tool (IACMTool) reads two versions of a UML model (composed of
a number of diagrams and associated OCL constraints) and produces an impact analysis
report as well as a consistency verification report. After each version of the model is read,
its consistency is first verified. When both versions have been read and checked for
internal consistency, change detection is done to identify all the changes between the two
versions of the model, and classify them according to the taxonomy we defined
(Section 6). These changes are then used to perform impact analysis on the model using

the impact analysis rules relevant to each change type.

There are seven main packages in the system, namely: par ser, nodel , nodel Changes,
consi stencyVeri fication, i npact Anal ysi s, report Generation, and control . The
subsystem decomposition is shown in Figure 2 with packages and dependencies among
them. More architectural details can be found in Appendix A. In particular, the packages
contain 99 classes, 69 of which are in the nodel package (the UML meta-model), and the

current implementation consists of 9064 lines of Java source code, excluding comments.

The parser subsystem has two main functions: (1) parsing XMI (XML Metadata
Interchange [8]) files that describe the UML models, (2) parsing OCL expressions
associated with the models. Parsed model information is then stored in the nodel
subsystem, which also handles persistency. The nodel subsystem is a UML meta-model

adapted to our requirements (e.g., it has been modified to improve information retrieval

efficiency). This meta-model is based on the official UML meta-model [10] and supports
features related to three views of the meta-model: static (class diagram) view, interaction
(sequence diagram) view, and the statechart diagram view. This includes classes,
interfaces, sequence messages, state machines, but also class invariants, state invariants
as well as pre- and post-conditions. It is designed so that it can later be upgraded to
include other features of UML such as use case and activity diagrams. The modified
UML meta-model is presented in Appendix A and an excerpt is presented in Section 7.
The nodel Changes subsystem is responsible for change detection by analyzing the two
versions of a UML design model. The main class in this package, ChangeDet ect or,
implements the change detection rules corresponding to the change taxonomy introduced
previously and further detailed in Section 6. The consi st encyVeri fi cati on subsystem
is responsible for checking consistency in each version of the model, using the set of
rules discussed above. The cont rol subsystem is responsible for the overall control flow
of the application. The i npact Anal ysi s subsystem is responsible for performing the
impact analysis related to a set of model element changes. This subsystem implements
the impact analysis rules discussed above and further detailed in Section 7. The
report Gener at i on subsystem is responsible for generating the different types of reports
required by the system, including a consistency verification report, and an impact
analysis report. Different flavors of the reports may be generated to meet the

requirements of the user.

iACMTool

«subsystem» «subsystem» «subsystem»

parser model _ ‘ modelChanges

«subsystemy
«subsystem» ' | impactAnalysis
consistencyVerification P
«subsy:;ter]m ! «subsystem
contro reportGeneration

Figure 2 — Impact Analysis Tool Subsystems

10

6. MODEL CHANGES

To derive the change taxonomy, we analyzed each property of each model element (in
the UML meta-model) to determine the possible changes that can occur. An element
property is modeled as an attribute or an aggregation link to another element. In the latter
case, linked elements are termed impact related elements since a change to one of these
component elements affects the composite element to which it belongs. For example, if
an attribute is changed then the class to which it belongs is considered impacted. A
changed element property is defined as a changed attribute of the element, or an added or
deleted link to an impact related element in the meta-model. For example, using an
excerpt of the meta-model in Figure 3, we see that an association end has several
properties, some modeled as a link to model elements (qualifier modeled as a link to zero
or several attributes) and others as attributes (e.g., i sNavi gabl e to model whether an

association end is navigable).

AssociationEnd

-aggregation : AggregationKind
-changeability : ChangeableKind

-isNavigable : boolean +qualifier Attribute
-multiplicity : Multiplicity . -initialValue : Expression
-ordering : OrderingKind 1

-targetScope : ScopeKind
-visibility : VisibilityKind

Figure 3 — Example of impact related element from the meta-model

Some element properties uniquely identify the element among the set of all elements
instantiating a meta-model class. These properties are not included in the change
taxonomy but the element is considered deleted and a new element added if a change to
such a property occurs. For example, a class is uniquely identified by its name within its
package’s namespace, and thus a changed class name is regarded as the deletion of the
original class and the addition of a new class. Using such key attributes is the way any
impact analysis system can keep track of the identity of model elements across design

versions.

We provide below a set of definitions regarding the basic terminology and concepts used

throughout the report.

11

Definition 1:Model element changes
Let e € E, where E is the set of all model elements (i.e., meta-model
instances) in the UML design model. Let P be the set of all the properties
of e. Let Py c P be the set of properties that uniquely identify e. If any one

p € (P —Py) is changed, then e is changed.

Definition 2:Impact related elements
Given two different model elements e¢; and e, (¢; € E and e, € E such that
e; # e2), ey 1s said to be an impact related element of e; if when e, is

changed then e; is considered changed.

Using definitions above, a change taxonomy is provided in Appendix B. The UML class
diagram notation is used to describe the taxonomy, as illustrated in Figure 5. Each non-
terminal node in the taxonomy represents an abstract change category of a model

element. The leaf nodes correspond to one changed element property.

For example, let us look at a simple change example: Adding a message in a sequence
diagram. We provide in Figure 4 a description of the change. Each change category has
an acronym, a short textual description, and an OCL expression that shows how, based on
the model subsystem class diagram (which is instantiated by the par ser subsystem),
such changes can be automatically detected. In our example, the OCL expression returns
a collection of added messages in a given Sequence Diagram View (we always assume
the context of the OCL expression is the modified view). Such OCL expressions are
logical specifications that ensure our meta-model (in nodel), and the nodel Change class

diagram, are appropriate to implement a workable change retrieval algorithm.

Figure 6 shows an excerpt of the model subsystem class diagram (with a link to the
Change class in modelChange) that is navigated by the OCL expression of our example in
Figure 4. Since the OCL expression does produce the added messages we wish to obtain
and is consistent with the class diagram, we know that the meta-model is sufficient for

this particular change detection rule.

12

Figure 5 shows an excerpt of the change taxonomy where our example change type
(added message) is located. We see it is in the changed Sequence Diagram View, which
may itself be composed (note the composition) of added messages but also added
classifier roles, changed message actions, among others. Changed C assifi er Rol e and
Changed Message Acti on are further decomposed into subcategories that are not shown
here and are available in Appendix B. The taxonomy has been designed so that we could

define precise impact analysis rules for every leaf change category.

Changed Sequence Diagram View — Added Message
Change Code: CSDVAM

Description: In the modified model version there exists a message that does not exist in the original
version.

OCL Expression:

cont ext nodel :: behavi oural El ements: : col | aborati ons: : SequenceDi agr anVi ew
sel f. nessage- >sel ect (
exi sts(
mNew. Message | not sel f.nodel.application.original Model .
sequenceDi agr anVi ew. message- >exi st s(
nmO d: Message | mNew. getIDStr() = nmO d.getlIDStr()
)

)
)

Figure 4 — Example Change Type

13

Changed Model

Changed Class Diagram View|

—|Changed Sequence Diagram View|
Added Classifier Role|

—|Changed Classifier Role|

'

—|De|eted Classifier Role|

Added Message

—|Changed Message Action|

Deleted Message

—|Changed Statechart Diagram View|

Figure 5 — Excerpt of Change Taxonomy

+application

1 1 | +changedModel Postcondition

Change

(from control) (from modelChanges)

-propertyID : String

+application
+changedElement
>ModelElement

ModelView
AN

‘ SequenceDiagramView ‘

+view 1 1¢) +view +action
&
* M g
. +getIDStr() : Strin 1] +activator
* * *
ClassifierRole 1
-multiplicity : Multiplicity| +Teceiver
* 1 | +sender
1 ClassClassifier
+base

Figure 6 — Excerpt from the iACMTool Class diagram

14

7. IMPACT ANALYSIS RULES

Each impact analysis rule is a specification (using OCL) of how to derive several
collections (i.e., OCL bags®) of elements, corresponding to elements of different types
(e.g., classes, operations), that are potentially impacted by a particular change (e.g., added
message). A model element is considered impacted by a change if a modification to that
element or its implementation may be needed to accomplish a change (this cannot always
be decided with certainty). There is one impact analysis rule for each type of change in

the taxonomy.

Definition 3:Bag of impacted elements
Let E and E’ be the set of all model elements in the original and modified
model version, respectively. Then I is the bag of impacted elements (in the
modified model version) resulting from that change such that Vi € I, 3
ecENE’ such that e # i and there is a navigation path from e to i in the

object diagram corresponding to the modified model version.

Though this is rare, note that the bag of impacted elements I may be empty, i.e., it is
certain that no resulting changes are necessary to accomplish the change that caused the
impact. The resulting changes to be made to an impacted model element must be of a

type defined in the change taxonomy for the impacted element type.

Impact analysis rules are described in a structured and precise manner so that it is easy to
review, refine, and change them, for example as the UML standard is evolving. A sample
impact analysis rule is presented in Figure 7 by elaborating on our change detection rule
example above (adding a message to a sequence diagram). The change title is presented
first, followed by the corresponding change code (CSDVAM), after which the pathname of
the changed/added/deleted model element class is presented, followed by the property
that has changed. In this case an instance of sequencebiagramview (located inside the

model subsystem) has been changed and one of its property has been changed: an

® A collection with possibly several occurrences of an element [13]. Bags are derived because it is possible
that an element is impacted in several ways by a particular change.
’ See example of change detection rule in Figure 4.

15

instance of Message has been added and linked to it. After the property is listed, the
pathname of the impacted element class(es) is stated (ClassClassifier, Operation, and
Postcondition in this case). A brief discussion follows that states the elements
impacted, and under what conditions. The rationale for the change then states the reasons
for the impacts. The changes potentially resulting from the impacts are then described
and they translate into additional impact analysis rules being invoked. This is the way the
transitive closure of impacts is explicitly modeled here: some rules invoke others as
direct impacts lead to indirect ones [1]. These descriptions are followed by the OCL
expression(s) describing the formal derivation of the impacted elements based on our
meta-model (for the rule example in Figure 7, see meta-model excerpt in Figure 6). The
first expression in our example (each expression being expressed in a cont ext) uses the
| et operator to define two placeholders (variables) for navigation expressions capturing
the added message and the sending operation in the class diagram, respectively. The
added message is identified as the message having the | DSt r (string uniquely identifying
each model element and returned by the getIDstr () operation) corresponding to the

changed property of the view associated with the change (pr opertyl D in Change).

16

Change Title: Changed Sequence Diagram — Added Message
Change Code: CSDVAM

Changed Element: model: :behaviouralElements::collaborations::
SequenceDiagramView

Added Property: model: :behaviouralElements: :collaborations: :Message

Impacted Elements: model: :foundation::core::ClassClassifier
model::foundation::core::Operation
model: :foundation::core::Postcondition

Description: The base class of the classifier role that sends the added message is impacted. The operation
that sends the added message is impacted and its postcondition is also impacted.

Rationale: The sending/source class now sends a new message and one of its operations, actually
sending the added message, is impacted. This operation is known or not, depending on whether the
message triggering the added message corresponds to an invoked operation. If, for example, it is a
signal then we may not know the operation, just by looking at the sequence diagram. The impacted
postcondition may now not represent the effect (what is true on completion) of its operation.

Resulting Changes: The implementation of the base class may have to be modified. The method of the
impacted operation may have to be modified. The impacted postcondition should be checked to
ensure that it is still valid.

Invoked Rule: Changed Class Operation — Changed Postcondition (CCOCPst)

OCL Expressions:

cont ext nodel Changes: : Change def:

| et addedMessage: Message = sel f. changedEl enent. ocl AsType(SequenceDi agr amVi ew) .
Message- >sel ect (m Message | mget| DStr()=sel f.propertyl D

| et sendi ngQperation: Operation = (
i f addedMessage. activator.action.ocl|sTypeOf(Call Action) then
addedMessage. sender. base. operati on- >sel ect (0: Operati on |
0. equal s(addedMessage. activator. cal | Acti on. operation))
el se
nul |
endi f)

cont ext nodel Changes: : Change - cl ass
addedMessage. sender . base

cont ext nodel Changes: : Change — operation
sendi ngQper ati on

cont ext nodel Changes: : Change — postcondition
sendi ngOper ati on. postcondi ti on

Figure 7 — Impact Analysis Rule Example

In our example, the changed property is an added message in the SequenceDi agr anVi ew.
Then, the operation that possibly sends the added message is identified. Note that the
navigation expression first identifies the base class of the classifier role” that sends the
added messages, as we want to identify the operation as described in the class diagram,
and not the operation as it is used in the sequence diagram®. This identification involves

selecting (the sel ect operator) the method declaration in the class that corresponds to the

8 In this case, the navigation is simply: addedMessage. acti vat or. cal | Acti on. oper ati on. As in the
official UML meta-model, operation invocations and declarations are modeled by the same operation
class.

17

invoked method in the sequence diagram, and is realized by the equal s() operation in
the OCL expression. This operation’s complexity stems from overloaded methods, as
described in [4, 5], since UML sequence diagrams do not show parameter (and return)
types. Once the added message and the sending operation have been identified, the
propagation of the impact, to the sending class, the sending operation, and the
postcondition of the sending operation, is described in three OCL expressions, each of
them starting with the cont ext keyword. Though they only return one element each in

this example, those expressions return bags in the general case.

8. DISTANCE MEASURE

When impacts between model elements are indirect, following the general guidelines in
[1], we suggest using a distance measure between the changed model elements and the
impacted elements. In [1], it is stated that a common assumption’ is that “If direct
impacts have a high potential for being true, then those farther away will be less likely.”
Even with a carefully designed set of impact analysis rules and change taxonomies, the
number of impacts may be very large. Using a distance measure to filter/order impacts is
therefore often necessary in practice. The main related question then becomes how to

define such a distance measure.

Recall that impact analysis rules determine impacted elements and then, in some cases, a
number of impact analysis rules are invoked again on some of the directly impacted
elements. We define the distance between a changed element and a given impacted
element to be the number of impact analysis rules that had to be invoked to identify this
impacted element. If we use Figure 8§ as an example, we can see that the sets of impacted
elements can be represented as the nodes of a tree whose arcs are impact analysis
invocation rules. We reuse here the rule example in Figure 7 when a message is added to
a sequence diagram. This rule triggers, for the impacted postcondition (p1), the changed
postcondition rule (CCOCPst), thus leading to the identification of other impacted
postconditions and operations. Only the first two depth levels of the tree are shown. The

level in the tree of a given impacted element is the distance associated with this element,

? This fundamental assumption seems reasonable, but empirical investigations are warranted to validate it.

18

e.g., distance(p,) = 2. Such a distance measure could then be used to either sort impacts
according to their distance from a given changed element or even to exclude impacted
elements further than a certain distance set by the tool’s user. If a model element is

impacted several times, then the minimum distance can be used (i.e., the strongest

impact).
{s,} Nodes: model elements
CSDVAM . .
m (Added message) Edges: invocation of rules
Level 1 {c;} {0y} {p;} s,€S, where S is the set of sequence
CCOCPst diagram views
(Changed postcondition) c;eC, where C is the set of class classifiers
Level2 {py, D3, --s Pu} {02, 03, ..., 05} 0,€0, where O is the set of operations

p,€P, where P is the set of postconditions

Figure 8 — Example distance between a changed element and an impacted element
9. CASE STUDY

We have selected an Automated Teller Machine (ATM) as a case study: The customer
inserts his/her card, enters a PIN and then can performs transactions such as withdrawal
and deposit before a receipt is issued by the ATM at the end of all the transactions. The
first version of UML documents contains a class diagram (19 classes such as ATM Bank,
W t hdrawal) and a use case diagram (15 use cases such as Transacti on, Wt hdr anal ,
Get PI N, Car dNot Readabl e) — each use case being associated with a sequence diagram.
Most of the sequence diagrams contain from 3 to 7 messages (e.g., sequence diagrams for
use cases ATMBtartUp and ATMBhut OF f contain 7 and 3 messages respectively), the
sequence diagram for use case Transacti on being the most complicated one with 22
messages. 15 attributes and 18 operations appear in the class diagram, and classes are

related by inheritance (4), association (11) and dependency (3) relationships.

We made 10 realistic, logical changes to the original version of the UML diagrams.
These logical changes are of three types: requirements changes (5), design improvements
(2), and error corrections (3). They result in 70 model element changes'® (described in
Appendix E), out of which 54 have shown impacted elements. Let us take a few

examples of logical changes and describe them. One logical change stems from our need

1 The distribution of these changes for the elements in the taxonomy can be found in Appendix E.

19

to be able to keep track of how many times per session a user attempts to enter the PIN —
after 3 invalid PIN’s the card will be retained. This logical change translates into 11
model element changes. Another logical change is to change the ATM state’s
representation from an integer to an enumeration class, and results into 34 model element
changes. Two other logical changes concern changes in the legal states of the system and
translate into new association end multiplicities in the class diagram: (1) An account can
be owned by at most two customers and at least one customer (a multiplicity is changed
from 1. . * to 1, 2); (2) A customer must belong to a bank and a customer can only belong
to one bank (a multiplicity is changed from 0. .* to 1). A last logical change example
(design) consists in making class Account abstract since only its subclasses are
instantiated (e.g., Savi ng). A complete description of all logical changes can be found in

Appendix E.

Let us consider the impacted operations, when accounting for all changed model
elements taken together, and their distance to the changed model elements. Figure 9 plots,
for each of the 54 model element changes, a curve/point representing the cumulative
number of impacted operations (y-axis) for each distance value (x-axis). A first, clearly
visible result is that only four curves are visible as only four changes propagate impacts
further than a distance of 2. The reason is that the impacted elements at distance one and
two that do not propagate are classes, and the class is not an impact related element of
any other element in a class diagram (see Definition 2). The rationale is that the
propagation of impacts from class to class is already addressed since operations and

attributes are impact related elements of the operations that call/use them.

More importantly, when there is propagation of impacts, Figure 9 clearly shows that the
curves are not exponential, as suggested in [1], but rather linear. This is important as it
suggests that our impact analysis rules rather precise. Also, the maximum distance for
impacted elements is limited to six. Though more case studies are necessary to draw
definitive conclusions, we can state that these results are probably due to our use of
semantic-based impact rules, instead of connectivity graphs (see [1]), that allow a more

refined identification of impacted elements and reduce false-positives.

20

20

N
o
|

-
o
|

Cumulative number of
impacted operations

Distance

Figure 9 — Cumulative number of impacted operations vs. distance

In the analysis above we perform an overall impact analysis for all logical changes but, if
we were in a situation where we would have to decide on which logical changes to
implement in a next release, we might want to perform the same analysis for each logical
change in isolation to evaluate its individual cost. Also, we only looked at the cumulative
number of operations but the same graph could be plotted for classes or even for all
model elements impacted together. We provide such diagrams in Appendix E and the
results clearly show that the curves are very similar to the one in Figure 9 (though with

significantly different scales on the Y-axis).

10. CONCLUSIONS

We present in this report a methodology supported by a prototype tool (IACMTool) to
tackle the impact analysis and change management of analysis/design documents in the
context of UML-based development. Consistency rules between UML diagrams,
automated change identification and classification between two versions of a UML
model, as well as impact analysis rules have been formally defined by means of OCL

constraints on an adaptation of the UML meta-model.

Our impact analysis methodology and tool are assessed through a case study, thus
providing an initial demonstration of its feasibility and practicality. Results are

encouraging as it is shown that, with impact rules based carefully on UML diagram

21

semantics and assumptions on the way the notation is used, the number of elements
impacted by changes grows linearly (and not exponentially) when accounting for indirect
impacts. This suggests that the impact analysis rules are rather precise, an important
result given that a refined identification of impacted elements and the reduction of false-

positives is known to be a major challenge when automating impact analysis.

We also define a distance measure to be able to sort impacts, according to their likelihood
of occurrence, based on the distance between changed model elements and impacted

elements. Whether this measure is a good heuristic will have to be empirically validated.

Though we made a conscious effort to be as exhaustive as possible when identifying
consistency rules, possible changes to UML models, and impact analysis rules, the
strategy may be refined as we gain more experience, especially by applying our change
impact analysis strategy to additional case studies. All three types of rules have been
defined using OCL on the UML metamodel and we expect that such precise and formal

definitions will help refine and evolve our methodology.

ACKNOWLEDGEMENTS

This work was partly supported by Telcordia Technologies. Lionel Briand and Yvan
Labiche were further supported by NSERC operational grants. This work is part of a
larger project (TOTEM) on testing object-oriented systems with the UML (TOTEM:
www.sce.carleton.ca/Squall/Totem). We would like to thank Karin Buist for her help in

defining and implementing (in the UML diagrams) the logical changes.

22

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]
[12]

[13]

S. A. Bohner, “Software Change Impacts - An Evolving Perspective,” Proc. IEEE
International Conference on Software Maintenance, Montreal, Canada, pp. 263-
272, 3-6 October, 2002.

S. A. Bohner and R. S. Arnold, “An Introduction to Software Change Impact
Analysis,” in S. A. Bohner and R. S. Arnold, Eds., Software Change Impact
Analysis, IEEE Computer Society, 1996, pp. 1-25.

S. A. Bohner and R. S. Arnold, Software Change Impact Analysis, IEEE Computer
Society Press, 1996.

L. Briand, Y. Labiche and G. Soccar, “Automating Impact Analysis and Regression
Test Selection Based on UML Designs,” Carleton University, Technical Report
SCE-02-04, http://www.sce.carleton.ca/Squall/Articles/TR SCE-02-04.pdf, March,
2002, a short version appeared in the proceedings of ICSM 2002.

L. C. Briand, Y. Labiche and G. Soccar, “Automating Impact Analysis and
Regression Test Selection Base on UML Designs,” Proc. IEEE International
Conference on Software Maintenance (ICSM), Montreal (Canada), IEEE Computer
Society, pp. 252-261, October 3-6, 2002.

L. C. Briand, J. Wust and H. Lounis, “Using Coupling Measurement for Impact
Analysis in Object-Oriented Systems,” Proc. IEEE International Conference on
Software Maintenance, Oxford, England, pp. 475-482, September, 1999.

B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering - Conquering
Complex and Chalenging Systems, Prentice Hall, 2000.

T.J. Grose, S. A. Brodsky and G. C. Doney, Mastering XMI: Java Programming
with XMI, XML, and UML, John Wiley & Sons, 2002.

D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima and C. Chen, “Change Impact
Identification in Object Oriented Software Maintenance,” Proc. IEEE International
Conference on Software Maintenance, IEEE, pp. 202-211, 1994.

OMG, “Unified Modeling Language (UML),” Object Management Group V1.4,
www.omg.org/technology/uml/, 2001.

TogetherSoft™, “Together”, www.togethersoft.com.

A. Von Mayrhauser and N. Zhang, “Automated Regression Testing using DBT and
Sleuth,” Journal of Software Maintenance, vol. 11 (2), pp. 93-116, 1999.

J. Warmer and A. Kleppe, The Object Constraint Language, Addison-Wesley,
1999.

23

Appendix A System Model

The system models are presented in Figure A1l to Figure A22 below.

iACMTool

—

-3 «subsystem» |-——————

parser

[1

—

«subsystem»
consistencyVerification

/N

- «subsystem» K—————————————-

1

«subsystem»

model K- modelChanges
I
T 7 | (NIZONEVAN
I I | P it T
o | o
| | | ! .
| | |
| | | | |
- ! - «subsystem» [
| . f | !
| impactAnalysis | |
I [
' ZON ZON -
|] o
! | S
: | I I :
| I I |
I
I ! : : I
| | :
femmm - Tomm - v = «subsystem» [
! | reportGeneration | |
I ! I
_ | |
I
| ! | :
: —— ! [
! l
«subsystem» |F——————————-—-—-—- ! I
___________________ control | ______________________|

Figure Al: 1ACMTool — Main packages.

24

control

IACMTool

#application

-userinterface

Applicationinterface

1

1 | #application

1 | -controller

ApplicationController

-currentState

1

ApplicationControllerState

1

DetectingChangesState

InitialState

AnalyzinglmpactState

LoadingModelState

LoadingOriginalModelState

Figure A2: iACMTool: :control package.

25

model

1 1

«subsystem» «subsystem»
behaviouralElements modelManagement
T T
\ \
[[
\ \
\ \
- - - ________________ J

IACMTool
(from control) «subsystem»
foundation
application+ |1 1 | +application
changedModel+ |1 1 | +originalModel

Model ModelElement
‘+model *telement [ome : String

1 * |#id : String

Figure A3: 1ACMTool: :model package.

26

foundation

—

«subsystem»
core

]

«subsystem»
extensionMechanisms

********* «subsystem» [

dataTypes

Figure A4: 1ACMTool: :model: :

27

foundation package.

* 1 ; / towner

ModelElement

NamespaceOwnee
(from model)

+constrainedElement

N\

* {ordered}

Feature

#visibility : VisibilityKind

#ownerScope : ScopeKind

JAN

GeneralizableElement

-isAbstract : boolean

Parameter

-isLeaf : boolean
-isRoot : boolean

-defaultValue : Expression
-direction : ParameterDirectionKind

+constraint

StructuralFeature

<>

#isQuery : boolean

#multiplicity : Multiplicity

#changeability : ChangeableKind
#targetScope : ScopeKind

#ordering : OrderingKind

Attribute

-initialValue : Expression

Operation

-concurrency : CallConcurrencyKind
-isPolymorphic : boolean

Figure AS: iACMTool: :model: :foundation: :core —main.

28

* | +feature * * | +parameter
{ordered}
Classifier +type Constraint
-body : BooleanExpression
+classifier 1
1f \ +type
BehaviouralFeature

ClassClassifier

-isActive : boolean Classifier
ModelElement -visibility : VisibilityKind 4{>
(from model) -multiplicity : Multiplicity
VAN
171 +classClassifier
1| +invariant
Invariant Interface DataType
-expression : BooleanExpression
1
+attribute \|/* N\
Attribute
-initialValue : Expression
Operation

Parameter

-concurrency : CallConcurrencyKind
-isPolymorphic : boolean

-defaultValue : Expression
-direction : ParameterDirectionKind

+parameter | *

0.2
OperationContract

1 | +operation

+precondition | 1

Precondition

+postcondition

N

Postcondition

Figure A6: iACMTool

::model: : foundation: :core — classifiers.

29

Attribute
-initialValue : Expression

+qualifier | *

1

¢

AssociationEnd

-aggregation : AggregationKind
-changeability : ChangeableKind
-isNavigable : boolean
-multiplicity : Multiplicity
-ordering : OrderingKind
-targetScope : ScopeKind

+clientDependency | * *
+supplier |1 1| +client
- Classifier | *child
+specifiedEnd 1
* 1
- +parent

+interfaceSpecifier

+associationEnd

Dependency

ModelElement

(from model)

Relationship

+supplierDependency

+generalization

*

Generalization

*

-discriminator : String

+specialization

Realization

+specificationRealization

+implementation

-visibility : VisibilityKind * ClassClassifier
1 |-isActive : boolean *

+end | 2 . -visibility : VisibilityKind

+participant |_yitiplicity : Multiplicity
1
Association 1 0.1 AssociationClass
+association
GeneralizableElement

-isAbstract : boolean
-isLeaf : boolean
-isRoot : boolean

*

+implementationRealization | 1..*

Interface

*

+specification

Figure A7: 1ACMTool: :model: :foundation: :core — relationships.

30

ModelView
(from model)

ClassDiagramView

1 T+view

*

*

*

*

*

*

Association

ClassClassifier

Dependency

Generalization

Interface

Realization

-isActive : boolean
-visibility : VisibilityKind
-multiplicity : Multiplicity

Figure A8: 1ACMTool: :model: : foundation: :core — class digram view.

«enumeration»
AggregationKind

-none :int=0
-aggregate : int =1
-composite : int = 2

«enumeration»
CallConcurrencyKind

-sequential : int=0
-guarded : int =1
-concurrent : int = 2

«enumeration»
ChangeableKind

-changeable : int=0
-frozen : int=1
-addOnly : int =2

«enumeration»
ScopeKind

-instance :int=0
-classifier : int=1

«enumeration»
OrderingKind

-ordered : int =1

-unordered : int=0

Expression

-language : String
-body : String

Multiplicity

-lowerRange : String
-upperRange : String

«enumeration»
VisibilityKind

-public : int=0
-protected : int =1
-package : int =2
-private : int =3

«enumeration»
ParameterDirectionKind

-in:int=0
-out:int=1
-inout : int=2

-return :int=3

ActionExpression

IterationExpression

BooleanExpression

Figure A9: iACMTool: :model: : foundation: :dataTypes package.

31

+extendedElement

+constrainedElement

{ordered} *

GeneralizableElement
(from core)

7AN

* | +constraint ‘

+referenceValue

ModelElement *
(from model)

1

*

AN

Constraint

*

0..1| +constrainedStereotype
Stereot
* ype +owner +defindedTag
-baseClass : String (@

+stereotype

% (from core)

+stereotypeConstraint

*

+taggedValue

TaggedValue

-dataValue : String

*

+typedValue | *

TagDefinition

1

*

-tagType : String
-multiplicity : Multiplicity

’
+type

behaviouralElements

1]

«subsystem»
collaborations

[]

1

«subsystem»
stateMachines

«subsystem»
commonBehaviour

Figure A11:

1ACMTool: :

32

+referenceTag

Figure A10: iACMTool: :model: :foundation: :extensionMechanism package.

model: :behaviouralElements package.

ActionSequence

ModelElement
(from model)

T

+action
1 {ordered} *

+actualArgument

Argument

-value : Expression

r

Action

-recurrence : lterationExpression
-script : ActionExpression

T

JAN

{ordered}

CallAction

N

+operation

Operation
(from core)

UndefinedAction

Figure A12: iACMTool: :model: :behaviouralElements: :
commonBehaviour package.

33

Action

(from commonBehaviour)

+activator
0..1

*

+sentMessage | *

Operation
(from core)

*

+availableOperation

-

*

Message

+action

+predecessor
*

*

+successor

*| +receivedMessage

+sender | 1 1| +receiver

ClassifierRole

1.*

-multiplicity : Multiplicity

Collaboration

+ownedElement

+base |1

ClassClassifier
(from core)

Figure A13: iACMTool: :model: :behaviouralElements::
collaborations -roles.

34

NamespaceOwnee
(from core)

+representedOperation Operation
{\ 0.1 (from core)
*_| Collaboration | * :
. {xor}
+usedCollaboration * ‘
1 | +context +representedClassifier Classifier

0..1| (from core)

ModelElement
(from model)

T

Interaction)) Message
P +interaction +message

* ‘

1 1.%

Figure A14: iACMTool: :model: :behaviouralElements: :
collaborations - interactions.

ModelView
(from model)

SequenceDiagramView

1<f+view

* *

ClassifierRole Message

-multiplicity : Multiplicity

Figure A15: iACMTool: :model: :behaviouralElements::
collaborations - sequence diagram view.

35

+subvertex

ClassClassifier

(from core)

ModelElement
(from model)

0..1| +context

T

S

*

tateMachine

+behaviour

Guard

-expression : BooleanExpression

*

1 1 +guard | 0..1
+transition | *

StateVertex | *source +outgoing | Transition I+transition

1 * 1

1 * *

+target +incoming +transition

AN -internalTransition | *
1
L +topi1
*entry 0..1 | teffect
State ‘1—01)
‘1 +exit 0.1 Action
1 1 0..1| (from commonBehaviour)
"—. m
+state’ +doActivity
* | +invariant AN
Statelnvariant 0..1| +trigger
Event
Invariant
(from core)
CompositeState SimpleState FinalState

1

+container

Figure A16: iACMTool: :model: :behaviouralElements::
stateMachines - main.

36

ModelElement
(from model)

Event

Parameter * {ordered} *
(from core) | +parameter 1

CallEvent UndefinedEvent

* | +occurrence

1 | +operation

Operation
(from core)

Figure A17: iACMTool: :model: :behaviouralElements::
stateMachines - events.

ModelView
(from model)

T

StatechartDiagramView
1 T+view
CompositeState FinalState SimpleState Transition

Figure A18: iACMTool: :model: :behaviouralElements::
stateMachines — statechart diagram view.

37

+importedElement | pjodelElement
(from model)

*

NamespaceOwnee
(from core)

+elementimport | 1

Elementimport Package

+elementimport

1 *

Figure A19: iACMToo1l: :model: :modelManagement package.

38

modelChanges

ChangeDetector

IACMTool ‘+application +changeDetector
(from control) 1 1

determines

+ | +change

Change

*change -code : String *

+ 7~ |-propertylD : String

+logicalChange | 1 +changedElement | 1

LogicalChange «enumeration»
ChangeType

-added : int=0

ModelElement
(from model)

-changed : int=1
-deleted : int =2

ChangeDescription

DefinedChanges o -elementDesc[1] : String

+description_ |-propertyDesc[1] : String
1 1~ |-propertyChangeType[1] : ChangeType
-impactElementsType[*] : String

ChangeTaxonomy ElementChangeTaxonomy
+subTaxonom

1 "

Figure A20: iACMTool: :modelChanges package.

39

impactAnalysis

IACMTool
(from control)

1 T +application

1| +impactAnalyzer

* | +propagator

ImpactAnalyzer +impact Impact +change
>
1 - . 1
1 *
1 +configuration * +impactedElement
ImpactConfiguration
ModelElement

(from model)

Change
(from modelChanges)

Figure A21: iACMTool: : impactAnalysis package.

xmiParser

parser
«subsystem» «subsystem»
oclParser

Figure A22: iACMTool: :parser package.

40

Appendix B Change Detection

B.1 Change Taxonomy

A conceptual model of the change taxonomy is presented in Figure B1 to Figure B12
below. This is followed by the description of the changes (leaf nodes in the conceptual

model).

Changed Model

1
ﬁ{ Changed Class Diagram View ‘

ﬂ{ Changed Sequence Diagram View ‘

A Changed Statechart Diagram View ‘
Figure B1: Changed Model.

41

Changed Class Diagram View ‘

1

| AddedClass |
—*{ Changed Class |
| Deleted Class |
—*{ Added Dependency |
—*{ Changed Dependency |

4*{ Changed Generalization ‘
4*{ Deleted Generalization ‘
4*{ Added Interface ‘

——{ Added Realization |
4*{ Deleted Realization \

Figure B2: Changed Class Diagram View.

42

Changed Sequence Diagram View

10
—*{ Added Classifier Role |
—*{ Changed Classifier Role |
¢
4*{ Added Available Operation \

4*{ Deleted Available Operation ‘

ﬁ{ Changed Base Class Classifier }—D{ Changed Class

ﬁ{ Changed Multiplicity
4*{ Deleted Classifier Role |

M Changed Recurrence

4*{ Deleted Message ‘

Figure B3: Changed Sequence Diagram View.

43

Changed Statechart Diagram View

1

¢
4*{ Added Composite State ‘

4*{ Added Simple State \
4*{ Changed Simple State }—D{ Changed State
4*{ Deleted Simple State ‘
4*{ Added Transition ‘
4*{ Changed Transition ‘
¢
Changed Effect }—D{ Changed State Machine Action
Changed Guard ‘

4*{ Deleted Transition ‘

Figure B4: Changed Statechart Diagram View.

44

‘ Changed Association ‘

¢

% Changed Association End ‘

¢
ﬁ{ Changed Aggregation ‘

1

o
o

Changed Changeability ‘

Added Interface Specifier ‘

Changed Class ‘

Changed Interface Specifier

Changed Interface ‘

Deleted Interface Specifier ‘

Changed isNavigable ‘

Changed Multiplicity ‘

Changed Ordering ‘

Added Qualifier \

R A

Changed Qualifier ‘

0.1 Changed Type

Deleted Qualifier ‘

ﬁ{ Changed Stereotype ‘
0.1

4{ Changed Target Scope ‘
0.1 o

4{ Changed Visibility ‘

0.1 Changed Association Class }—D{ Changed Class

|

Figure BS: Changed Association.

45

Changed Class

1

| Added Attibute |
—{ Changed Atribute |
——| Deleted Attribute |
—24 Changed Invariant |
— 211" Changed isAbstract |
—2" Changed isActive |
%" Changed isLeaf |
—%4" Changed isRoot |

—*{ Changed Operation |
—*{ Deleted Operation |
ﬁ{ Changed Stereotype |
—21 Changed Visibility |

Figure B6: Changed Class.

46

‘ Changed Attribute ‘

1

—21 Changed Muliplicity |
0..1 .

4{ Changed Ordering ‘
0.1

4{ Changed Owner Scope ‘
0.1

4{ Changed Target Scope ‘

% Changed Type ‘
0..1 T

4{ Changed Visibility ‘

Figure B7: Changed Attribute.

‘ Changed Operation ‘

¢
.

% Changed Concurrency ‘
0.1 .

4{ Changed isAbstract ‘
0.1 . .
4{ Changed isPolymorphic ‘

0.1 .
4{ Changed isQuery ‘

0.1 Changed Precondition ‘
0.1

Changed Postcondition ‘
0.1

Figure B8: Changed Operation.

47

Changed Interface ‘

¢
1 4*{ Added Operation ‘

4*{ Changed Operation ‘
¢

1

Changed Concurrency

Changed isQuery

4*{ Deleted Operation ‘

Figure B9: Changed Interface.

48

Changed State

— 21 Added Activity |
ﬁ{ Changed Activity }—D{ Changed State Machine Action
ﬁ{ Deleted Activity |
0..1 .
4{ Added Entry Action ‘
ﬁ{ Changed Entry Action }—D{ Changed State Machine Action
0..1 .
4{ Deleted Entry Action ‘
0..1 R .
4{ Added Exit Action ‘
ﬁ{ Changed Exit Action }—D{ Changed State Machine Action
0..1 . .
4{ Deleted Exit Action ‘
4*{ Added Internal Transition ‘
4*{ Changed Internal Transition }—D{ Changed Transition
4*{ Deleted Internal Transition ‘
0..1 .
4{ Changed State Invariant ‘

Figure B10: Changed State.

Changed Parameter ‘

¢
ﬁ{ Changed Default Value ‘

M Changed Direction ‘
% Changed Name ‘

Figure B11: Changed Parameter.

49

Changed State Machine Action ‘

¢
4*{ Added Discrete Action ‘
4*{ Changed Discrete Action ‘

M Changed Recurrence

4*{ Deleted Discrete Action ‘
0.1

4{ Changed Recurrence ‘
0.1 Changed Script

Figure B12: Changed State Machine Action.

50

B.2 Change Detection Rules

Here a brief discussion for each change is provided, followed by an OCL expression that

defines the change. The modified version of the model is the version context for the rules

below.

1. Changed Class Diagram View — Added Association

Change Code:
Description:

OCL Expression:

CCDVAA
In the modified model version there exists an association relationship that does
not exist in the original version.
context model::foundation::core::ClassDiagramView
self.association->exists (al:Association|not self.model.
application.originalModel.classDiagramView.
association->exists (a2:Association]|
al.getIDStr () = a2.getIDStr()))

2. Changed Class Diagram View — Deleted Association

Change Code:
Description:

OCL Expression:

CCDVDA

In the original model version there exists an association relationship that does

not exist in the modified version.

context model::foundation::core:ClassDiagramView
self.model.application.originalModel.classDiagramView.
association->exists (al:Association|not

self.association->exists (a2:Association]|
al.getIDStr () = a2.getIDStr())

3. Changed Class Diagram View — Added Class

Change Code:
Description:

OCL Expression:

CCDVAC

In the modified model version there exists a class that does not exist in the

original version.

context model::foundation::core::ClassDiagramView
self.classClassifier->exists(cl:ClassClassifier|not self.model.
application.originalModel.classDiagramView.
classClassifier->exists(c2:ClassClassifier|
cl.getPathname () = c2.getPathname()))

4. Changed Class Diagram View — Deleted Class

Change Code:
Description:

OCL Expression:

CCDVDC

In the original model version there exists a class that does not exist in the

modified version.

context model::foundation::core::ClassDiagramView
self.model.application.originalModel.classDiagramView.
classClassifier->exists(cl:ClassClassifier|not
self.classClassifier->exists(c2:ClassClassifier|
cl.getPathname () = c2.getPathname()))

5. Changed Class Diagram View — Added Dependency

Change Code:
Description:

OCL Expression:

CCDVAD
In the modified model version there exists a dependency relationship that does
not exist in the original version.

context model::foundation::core::ClassDiagramView
self.dependency->exists (dl:Dependency|not
self.model.application.originalModel.classDiagramView.
dependency->exists (d2:Dependency |
dl.getIDStr () = d2.getIDStr()))

51

10.

11.

Changed Class Diagram View — Deleted Dependency

Change Code: CCDVDD

Description: In the original model version there exists a dependency relationship that does
not exist in the modified version.

OCL Expression: context model::foundation::core::ClassDiagramView
self.model.application.originalModel.classDiagramView.
dependency->exists (dl:Dependency|not self.
dependency->exists (d2:Dependency |
dl.getIDStr () = d2.getIDStr()))

Changed Class Diagram View — Added Generalization

Change Code: CCDVAG

Description: In the modified model version there exists a generalization relationship that does
not exist in the original version.

OCL Expression: context model::foundation::core::ClassDiagramView
self.generalization->exists(gl:Generalization|not
self.model.application.originalModel.classDiagramView.
generalization->exists (g2:Generalization]|
gl.getIDStr() = g2.getIDStr()))

Changed Class Diagram View — Deleted Generalization

Change Code: CCDVDG

Description: In the original model version there exists a generalization relationship that does
not exist in the modified version.

OCL Expression: context model::foundation::core::ClassDiagramView
self.model.application.originalModel.classDiagramView.
generalization->exists(gl:Generalization|not
self.generalization->exists (g2:Generalization]
gl.getIDStr () = g2.getIDStr()))

Changed Class Diagram View — Added Interface

Change Code: CCDVAI

Description: In the modified model version there exists an interface that does not exist in the
original version.

OCL Expression: context model::foundation::core::ClassDiagramView
self.interface->exists (il:Interface|not self.model.application.
originalModel.classDiagramView.interface->exists (i2:Interface]
il.getPathname () = i2.getPathname()))

Changed Class Diagram View — Deleted Interface

Change Code: CCDVDI

Description: In the orginal model version there exists an interface that does not exist in the
modified version.

OCL Expression: context model::foundation::core::ClassDiagramView
self.model.application.originalModel.classDiagramView.
interface->exists (il:Interface|not self.
interface->exists (i2:Interface]|
il.getPathname () = i2.getPathname()))

Changed Class Diagram View — Added Realization

Change Code: CCDVAR

Description: In the modified model version there exists a realization relationship that does not
exist in the original version.

OCL Expression: context model::foundation::core::ClassDiagramView
self.realization->exists(rl:Realization|not self.model.
application.originalModel.classDiagramView.
realization->exists (r2:Realization|
rl.getIDStr () = r2.getIDStr()))

52

12.

13.

14.

15.

16.

Changed Class Diagram View — Deleted Realization
Change Code: CCDVDR
Description: In the original model version there exists a realization relationship that does not
exist in the modified version.
OCL Expression: context model::foundation::core::ClassDiagramView
self.model.application.originalModel.classDiagramView.
realization->exists(rl:Realization|not

self.realization->exists (r2:Realization]|
rl.getIDStr () = r2.getIDStr()))

Changed Sequence Diagram View — Added Classifier Role

Change Code: CSDVACR

Description: In the modified model version there exists a classifier role that does not exist in

the original version.
()CIJExpresﬁon: context model::behaviouralElements::collaborations:
SequenceDiagramView

self.classifierRole->exists(crl:ClassifierRole|not self.model.
application.originalModel.sequenceDiagramView.
classifierRoler->exists(cr2:ClassifierRole]|
crl.getIDStr() = cr2.getIDStr()))

Changed Sequence Diagram View — Deleted Classifier Role

Change Code: CSDVDCR

Description: In the original model version there exists a classifier role that does not exist in

the modified version.
()CIJExpresﬁon: context model::behaviouralElements::collaborations:
SequenceDiagramView

self.model.application.originalModel.sequenceDiagramView.
classifierRole->exists(crl:ClassifierRole|not self.
classifierRole->exists(cr2:ClassifierRole|
crl.getIDStr () = cr2.getIDStr()))

Changed Sequence Diagram View — Added Message

Change Code: CSDVAM

Description: In the modified model version there exists a message that does not exist in the
original version.

OCL Expression: context model::behaviouralElements::collaborations:
SequenceDiagramView
self.message->exists (ml:Message|not self.model.application.
originalModel.sequenceDiagramView.message->exists (m2:Message|
ml.getIDStr() = m2.getIDStr()))

Changed Sequence Diagram View — Deleted Message

Change Code: CSDVDM

Description: In the original model version there exists a message that does not exist in the
modified version.

OCL Expression: context model::behaviouralElements::collaborations:
SequenceDiagramView
self.model.application.originalModel.sequenceDiagramView.
message->exists (ml:Message|not self.message->exists (m2:Message]
ml.getIDStr () = m2.getIDStr()))

53

17.

18.

19.

20.

21.

Changed Statechart Diagram View — Added Composite State

Change Code:
Description:

OCL Expression:

CStDVACS
In the modified model version there exists a composite state that does not exist
in the original version.

context model::behaviouralElements::stateMachines::
StatechartDiagramView
self.compositeState->exists (csl:CompositeState|not self.model.
application.originalModel.statechartDiagramView.
compositeState->exists (cs2:CompositeStatel]
csl.getName () = cs2.getName()))

Changed Statechart Diagram View — Deleted Composite State

Change Code:
Description:

OCL Expression:

CStDVDCS
In the original model version there exists a composite state that does not exist in
the modified version.

context model::behaviouralElements::stateMachines::
StatechartDiagramView
self.model.application.originalModel.statechartDiagramView.
compositeState->exists (csl:CompositeState|not self.
compositeState->exists (cs2:CompositeStatel]
csl.getName () = cs2.getName()))

Changed Statechart Diagram View — Added Simple State

Change Code:
Description:

OCL Expression:

CStDVASS
In the modified model version there exists a simple state that does not exist in
the original version.

context model::behaviouralElements::stateMachines::
StatechartDiagramView
self.simpleState->exists (ssl:SimpleState|not self.model.
application.originalModel.statechartDiagramView.
simpleState->exists(ss2:SimpleState]
ssl.getName () = ss2.getName()))

Changed Statechart Diagram View — Deleted Simple State

Change Code:
Description:

OCL Expression:

CStDVDSS
In the original model version there exists a simple state that does not exist in the
modified version.

context model::behaviouralElements::stateMachines::
StatechartDiagramView
self.model.application.originalModel.statechartDiagramView.
simpleState->exists (ssl:SimpleState|not self.
simpleState->exists(ss2:SimpleState]
ssl.getName () = ss2.getName()))

Changed Statechart Diagram View — Added Transition

Change Code:
Description:

OCL Expression:

CStDVAT

In the modified model version there exists a transition that does not exist in the

original version.

context model::behaviouralElements::stateMachines::

StatechartDiagramView

self.transition->exists(tl:Transition|not self.model.
application.originalModel.statechartDiagramView.
transition->exists (t2:Transition|
tl.getIDStr() = t2.getIDStr()))

54

22.

23.

24.

25.

26.

Changed Statechart Diagram View — Deleted Transition

Change Code: CStDVDT

Description: In the original model version there exists a transition that does not exist in the
modified version.

OCL Expression: context model::behaviouralElements::stateMachines:
StatechartDiagramView
self.model.application.originalModel.statechartDiagramView.
transition->exists(tl:Transition|not self.
transition->exists (t2:Transition]|
tl.getIDStr () = t2.getlIDStr()))

Changed Association End — Changed Aggregation

Change Code: CAECA

Description: There exists an association end in the model such that its aggregation
property is not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::AssociationEnd
self.aggregation <> self.association.view.model.application.
originalModel.classDiagramView.getAssociation(self.association.
getIDStr()) .getEnd(self.getIDStr()) .aggregation

Changed Association End — Changed Changeability

Change Code: CAECC

Description: There exists an association end in the model such that its changeability
property is not the same in the two model versions.

OCL Expression: context model::foundation::core::AssociationEnd
self.changeability <> self.association.view.model.application.
originalModel.classDiagramView.getAssociation (self.association.
getIDStr()) .getEnd(self.getIDStr ()) .changeability

Changed Association End — Added Interface Specifier
Change Code: CAEAIS
Description: There exists an association end in the model such that in the modified version it
has an interfaceSpecifier thatit doesn’t have in the original version.
OCL Expression: context model::foundation::core::AssociationEnd
self.interfaceSspecifier->exists(sl:Classifier|
not self.association.view.model.application.
originalModel.classDiagramView.
getAssociation (self.association.getIDStr()).
getEnd (self.getIDStr()).
interfaceSpecifier->exists(s2:Classifier]|
sl.getPathname () = s2.getPathname()))

Changed Association End — Changed Interface Specifier

Change Code: CAECIS

Description: There exists an association end in the model such that it has an
interfaceSpecifier (interface or class) that is not the same in the two
model versions. Note that the implementation of this rule assumes that all the
changed interface and class classifiers in the model have been previously
identified.

OCL Expression: context model::foundation::core::AssociationEnd
self.interfaceSpecifier->exists(sl:Classifier|
self.association.view.model.application.changeDetector.
change.changedElement->exists (s2:Classifier|
sl.getPathname () = s2.getPathname()))

55

27.

28.

29.

30.

31.

32.

Changed Association End — Deleted Interface Specifier

Change Code: CAEDIS

Description: There exists an association end in the model such that in the original version it
has an interfaceSpecifier thatit doesn’t have in the modified version.

()CIJExpresﬁon: context model::foundation::core::AssociationEnd
self.association.view.model.application.originalModel.
classDiagramView.getAssociation(self.association.
getIDStr()) .getEnd(self.getIDStr()).
interfaceSpecifier->exists(sl:Classifier|not
self.interfaceSpecifier->exist (s2:Classifier]|
sl.getPathname () = s2.getPathname()))

Changed Association End — Changed isNavigable

Change Code: CAECIN

Description: There exists an association end in the model such that its isNavigable
property is not the same in the two model versions.

OCL Expression: context model::foundation::core:AssociationEnd
self.isNavigable <> self.association.view.model.application.
originalModel.classDiagramView.getAssociation (self.association.
getIDStr()) .getEnd(self.getIDStr ()) .isNavigable

Changed Association End — Changed Multiplicity

Change Code: CAECM

Description: There exists an association end in the model such that its multiplicity is
not the same in the two model versions.

OCL Expression: context model::foundation::core::AssociationEnd
not self.multiplicity.equals(self.association.view.model.
application.originalModel.classDiagramView.getAssociation (self.
association.getIDStr()) .getEnd(self.getIDStr()) .multiplicity)

Changed Association End — Changed Ordering

Change Code: CAECO

Description: There exists an association end in the model such that its ordering property is
not the same in the two model versions.

OCL Expression: context model::foundation::core::AssociationEnd
self.ordering <> self.association.view.model.application.
originalModel.classDiagramView.getAssociation(self.association.
getIDStr()) .getEnd(self.getIDStr ()) .ordering

Changed Association End — Added Qualifier

Change Code: CAEAQ

Description: There exists an association end in the model such that in the modified version it
has a qualifier that it doesn’t have in the original version.

OCL Expression: context model::foundation::core::AssociationEnd
self.qualifier->exists(gl:Attribute|not self.association.view.
model.application.originalModel.classDiagramView.

getAssociation(self.association.getIDStr ()) .getEnd(self.
getIDStr()) .qualifier->exists (g2:Attribute]
gl.getName () = g2.getName()))

Changed Association End — Changed Qualifier Type

Change Code: CAECQT

Description: There exists an association end in the model such that the type property of one

of its qualifiers is not the same in the two model versions.

OCL Expression: context model::foundation::core::AssociationEnd
self.qualifier->exists (g:Attribute|not g.type.equals (self.
association.view.model.application.originalModel.
classDiagramView.getAssociation (self.association.getIDStr()) .
getEnd(self.getIDStr()) .qualifier->asSequence->at (self.
getQualifierPosition(q)) .type))

56

33.

34.

35.

36.

37.

38.

Changed Association End — Deleted Qualifier

Change Code: CAEDQ

Description: There exists an association end in the model such that in the original version it
has a qualifier that it doesn’t have in the modified version.

()CIJExpresﬁon: context model::foundation::core:AssociationEnd
self.association.view.model.application.originalModel.
classDiagramView.getAssociation (self.association.getIDStr()).
getEnd (self.getIDStr()) .qualifier->exists(gl:Attribute|not
self.qualifier->exists (g2:Attribute]
gl.getName () = g2.getName()))

Changed Association End — Changed Target Scope

Change Code: CAECTS

Description: There exists an association end in the model such that its targetScope is not
the same in the two model versions.

OCL Expression: context model::foundation::core:AssociationEnd
self.targetScope <> self.association.view.model.application.
originalModel.classDiagramView.getAssociation(self.association.
getIDStr()) .getEnd(self.getIDStr()) .targetScope

Changed Association End — Changed Visibility

Change Code: CAECV

Description: There exists an association end in the model such that its visibility is not
the same in the two model versions.

OCL Expression: context model::foundation::core:AssociationEnd
self.visibility <> self.association.view.model.application.
originalModel.classDiagramView.getAssociation(self.association.
getIDStr()) .getEnd(self.getIDStr()) .visibility

Changed Class — Added Attribute

Change Code: CCAA

Description: There exists a class in the model such that in the modified version it has an
attribute that it doesn’t have in the original version.

OCL Expression: context model::foundation::core::ClassClassifier
self.getAttributes () ->exists (al:Attribute|not self.view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getPathname()) .
getAttributes () ->exists (a2:Attribute]
al.getIDStr () = a2.getIDStr())

Changed Class — Deleted Attribute

Change Code: CCDA

Description: There exists a class in the model such that in the original version it has an
attribute that it doesn’t have in the modified version.

OCL Expression: context model::foundation::core::ClassClassifier
self.view.model.application.originalModel.classDiagramView.
getClassClassifier (self.getPathname()) .
getAttributes () ->exists (al:Attribute|not self.
getAttributes () ->exists (a2:Attribute]
al.getIDStr () = a2.getIDStr()))

Changed Class — Changed Invariant

Change Code: CCCI

Description: There exists a class in the model such that its invariant is not the same in the two
model versions.

OCL Expression: context model::foundation::core::ClassClassifier
not self.invariant.equals(self.view.model.application.
originalModel.classDiagramView.getClassClassifier (self.
getPathname ()) .invariant)

57

39.

40.

41.

42.

43.

44,

Changed Class — Changed isAbstract

Change Code: CCCiAbs

Description: There exists a class in the model such that its i sAbstract property is not the
same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::ClassClassifier
self.isAbstract <> self.view.model.application.originalModel.
classDiagramView.getClassClassifier (self.getPathname()) .
isAbstract

Changed Class — Changed isActive

Change Code: CCCiA

Description: There exists a class in the model such that its i sActive property is not the
same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::ClassClassifier
self.isActive <> self.view.model.application.originalModel.
classDiagramView.getClassClassifier (self.getPathname()) .
isActive

Changed Class — Changed isLeaf

Change Code: CCCiL

Description: There exists a class in the model such that its i sLeaf property is not the same
in the two model versions.

OCL Expression: context model::foundation::core::ClassClassifier
self.isLeaf <> self.view.model.application.originalModel.
classDiagramView.getClassClassifier (self.getPathname()) .isLeaf

Changed Class — Changed isRoot

Change Code: CCCiR

Description: There exists a class in the model such that its 1 sRoot property is not the same
in the two model versions.

OCL Expression: context model::foundation::core::ClassClassifier
self.isRoot <> self.view.model.application.originalModel.
classDiagramView.getClassClassifier (self.getPathname()) .isRoot

Changed Class — Changed Multiplicity

Change Code: CCCM

Description: There exists a class in the model such that its multiplicity property is not
the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::ClassClassifier
not self.multiplicity.equals(self.view.model.application.
originalModel.classDiagramView.getClassClassifier (self.
getPathname ()) .multiplicity)

Changed Class — Added Operation

Change Code: CCAO

Description: There exists a class in the model such that in the modified version it has an
operation that it doesn’t have in the original version.

OCL Expression: context model::foundation::core::ClassClassifier
self.getOperations () ->exists (ol:0Operation|not self.view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getPathname()) .
getOperations () ->exists (02:0peration]|
ol.getSignature () = o2.getSignature()))

58

45.

46.

47.

48.

49.

Changed Class — Deleted Operation

Change Code: CCDO

Description: There exists a class in the model such that in the original version it has an
operation that it doesn’t have in the modified version.

OCL Expression: context model::foundation::core::ClassClassifier
self.view.model.application.originalModel.classDiagramView.
getClassClassifier (self.getPathname()) .

getOperations () ->exists (ol:0peration|not self.
getOperations () ->exists (02:0peration]|
ol.getSignature () = o2.getSignature()))

Changed Class — Changed Visibility

Change Code: CCCV

Description: There exists a class in the model such that its visibility property is not the
same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::ClassClassifier
self.visibility <> self.view.model.application.originalModel.
classDiagramView.getClassClassifier (self.getPathname()) .
visibility

Changed Interface — Added Operation

Change Code: CIAO

Description: There exists an interface in the model such that in the modified version it has an
operation that it doesn’t have in the original version.

()CIJExpresﬁon: context model::foundation::core::Interface
self.getOperations () ->exists (ol:0peration|not self.view.model.
application.originalModel.classDiagramView.getInterface (self.
getPathname ()) .getOperations () ->exists (02:0peration]
ol.getSignature() = o2.getSignature()))

Changed Interface — Deleted Operation

Change Code: CIDO

Description: There exists an interface in the model such that in the original version it has an
operation that it doesn’t have in the modified version.

()CIJExpresﬁon: context model::foundation::core::Interface
self.view.model.application.originalModel.classDiagramView.
getInterface (self.getPathname()) .

getOperations () ->exists (ol:0Operation|not self.
getOperations () ->exists (02:0peration|
ol.getSignature() = o2.getSignature()))

Changed Classifier Role — Added Available Operation

Change Code: CCRAAO

Description: There exists a classifier role in the model such that in the modified version it has
an available operation that it doesn’t have in the original version.

OCL Expression: context model::behaviouralElements::collaborations::ClassifierRole
self.availableOperation->exists (aol:Operation|not
self.view.model.application.originalModel.sequenceDiagramView.
getClassifierRole (self.getIDStr()) .
availableOperation->exists (ao2:0peration]|
aol.getSignature () = ao2.getSignature()))

59

50. Changed Classifier Role — Deleted Available Operation

51.

52.

Change Code:
Description:

OCL Expression:

CCRDAO
There exists a classifier role in the model such that in the original version it has
an available operation that it doesn’t have in the modified version.

context model: :behaviouralElements::collaborations::ClassifierRole
self.view.model.application.originalModel.sequenceDiagramView.
getClassifierRole (self.getIDStr()).
availableOperation->exists (aol:0Operation|not self.
availableOperation->exists (ao2:0peration]
aol.getSignature() = ao2.getSignature()))

Changed Classifier Role — Changed Base Class Classifier

Change Code:
Description:

OCL Expression:

CCRCBCC

There exists a classifier role in the model such that its base class classifier is
not the same in the two model versions. Note that the implementation of this
rule assumes that all the changed class classifiers in the model have been
previously identified.

context model::behaviouralElements::collaborations::ClassifierRole
self.base->exists(bl:ClassClassifier|self.view.model.
application.changeDetector.change.
changedElement->exists (b2:ClassClassifier]|
bl.getPathname () = b2.getPathname()))

Changed Classifier Role — Changed Multiplicity

Change Code:
Description:

OCL Expression:

CCRCM
There exists a classifier role in the model such that its multiplicity
property is not the same in the two model versions.

context model::behaviouralElements::collaborations::ClassifierRole
not self.multiplicity.equals(self.view.model.application.
originalModel.sequenceDiagramView.getClassifierRole (self.
getIDStr()) .multiplicity)

The following definition is used in rule 53 below:

context model::behaviouralElements::collaborations: :Message def:
let originalMessageAction:Action = self.view.model.application.originalModel.
sequenceDiagramView.getMessage (self.getIDStr ()) .action

53. Changed Message Action — Changed Recurrence

54.

Change Code:
Description:

OCL Expression:

CMACR
There exists a message in the model such that the recurrence property of its
action is not the same in the two model versions.

context model::behaviouralElements::collaborations: :Message
not self.action.oclIsTypeOf (ActionSequence) and
not originalMessageAction.oclIsTypeOf (ActionSequence) and
not self.action.recurrence.equals (originalMessageAction.
recurrence)

Changed Composite State — Added Subvertex

Change Code:
Description:

OCL Expression:

CCSAS
There exists a composite state in the model such that in the modified version it
has a subvertex that it doesn’t have in the original version.

context model::behaviouralElements::stateMachines::CompositeState
self.subvertex->exists(svl:StateVertex|not self.view.model.
application.originalModel.statechartDiagramView.
getState (self.getPathname ()) .subvertex->exists (sv2:StateVertex|
svl.getName () = sv2.getName()))

60

55.

56.

57.

58.

59.

60.

Changed Composite State — Deleted Subvertex

Change Code: CCSDS

Description: There exists a composite state in the model such that in the original version it
has a subvertex that it doesn’t have in the modified version.

()CIJExpresﬁon: context model::behaviouralElements::stateMachines::CompositeState
self.view.model.application.originalModel.
statechartDiagramView.getState (self.getPathname()) .
subvertex->exists (svl:StateVertex|not self.
subvertex->exists (sv2:StateVertex|
svl.getName () = sv2.getName()))

Changed Transition — Changed Guard

Change Code: CTCG

Description: There exists a transition in the model such that its guard condition is not the
same in the two model versions.

()CIJExpresﬁon: context model::behaviouralElements::stateMachines::Transition
not self.guard.equals(self.view.model.originalModel.
statechartDiagramView.getTransition(self.getIDStr ()) .guard)

Changed Attribute — Changed Changeability

Change Code: CACC

Description: There exists an attribute in the model such that its changeability property
is not the same in the two model versions.

OCL Expression: context model::foundation::core::Attribute
self.changeability <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getAttribute (self.name) .changeability

Changed Attribute — Changed Initial Value

Change Code: CACIV

Description: There exists an attribute in the model such that its initialValue property is
not the same in the two model versions.

OCL Expression: context model::foundation::core::Attribute
not self.initialValue.equals(self.getClassClassifier () .view.
model.application.originalModel.classDiagramView.
getClassClassifier(self.getClassClassifier () .getPathname()) .
getAttribute (self.name) .initialValue)

Changed Attribute — Changed Multiplicity

Change Code: CACM

Description: There exists an attribute in the model such that its multiplicity property is
not the same in the two model versions.

OCL Expression: context model::foundation::core::Attribute
not self.multiplicity.equals(self.getClassClassifier () .view.
model.application.originalModel.classDiagramView.
getClassClassifier(self.getClassClassifier () .getPathname()) .
getAttribute (self.name) .multiplicity)

Changed Attribute — Changed Ordering

Change Code: CACO

Description: There exists an attribute in the model such that its ordering property is not
the same in the two model versions.

OCL Expression: context model::foundation::core::Attribute
self.ordering <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier(self.getClassClassifier () .getPathname()) .
getAttribute (self.name) .ordering

61

61.

62.

63.

64.

65.

66.

Changed Attribute — Changed Owner Scope

Change Code: CACOS

Description: There exists an attribute in the model such that its ownerScope is not the same
in the two model versions.

()CIJExpresﬁon: context model::foundation::core::Attribute
self.ownerScope <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getAttribute (self.name) .ownerScope

Changed Attribute — Changed Target Scope

Change Code: CACTS

Description: There exists an attribute in the model such that its targetScope is not the
same in the two model versions.

OCL Expression: context model::foundation::core::Attribute
self.targetScope <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getAttribute (self.name) .targetScope

Changed Attribute — Changed Type

Change Code: CACT

Description: There exists an attribute in the model such that its type is not the same in the
two model versions.

OCL Expression: context model::foundation::core::Attribute
self.type.getPathname () <> self.getClassClassifier().view.
model.application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getAttribute (self.name) .type.getPathname ()

Changed Attribute — Changed Visibility

Change Code: CACV

Description: There exists an attribute in the model such that its visibility is not the same
in the two model versions.

OCL Expression: context model::foundation::core::Attribute
self.visibility <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getAttribute (self.name) .visibility

Changed Class Operation — Changed Concurrency

Change Code: CCOCC

Description: There exists a class operation in the model such that its concurrency
property is not the same in the two model versions.

OCL Expression: context model::foundation::core::Operation
self.concurrency <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getOperation(self.getSignature()) .concurrency

Changed Class Operation — Changed isAbstract

Change Code: CCOCiAbs

Description: There exists a class operation in the model such that its i sAbstract property
is not the same in the two model versions.

OCL Expression: context model::foundation::core::0Operation
self.isAbstract <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier(self.getClassClassifier () .getPathname()) .
getOperation(self.getSignature()) .isAbstract

62

67.

68.

69.

70.

71.

72.

Changed Class Operation — Changed isPolymorphic

Change Code: CCOCiP

Description: There exists a class operation in the model such that its isPolymorphic
property is not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::0Operation
self.isPolymorphic <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getOperation (self.getSignature()) .isPolymorphic

Changed Class Operation — Changed isQuery

Change Code: CCOCiQ

Description: There exists a class operation in the model such that its i sQuery property is
not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::0Operation
self.isQuery <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getOperation (self.getSignature()) .isQuery

Changed Class Operation — Changed Owner Scope

Change Code: CCOCOS

Description: There exists a class operation in the model such that its ownerScope is not the
same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::0Operation
self.ownerScope <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getOperation (self.getSignature()) .ownerScope

Changed Class Operation — Changed Precondition

Change Code: CCOCPre

Description: There exists a class operation in the model such that its precondition is not
the same in the two model versions.

OCL Expression: context model::foundation::core::0Operation
not self.precondition.equals(self.getClassClassifier().view.
model.application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getOperation(self.getSignature()) .precondition)

Changed Class Operation — Changed Postcondition

Change Code: CCOCPst

Description: There exists a class operation in the model such that its postcondition is
not the same in the two model versions.

OCL Expression: context model::foundation::core::Operation
not self.postcondition.equals (self.getClassClassifier () .view.
model.application.originalModel.classDiagramView.
getClassClassifier (self.getClassClassifier () .getPathname()).
getOperation(self.getSignature()) .postcondition)

Changed Class Operation — Changed Visibility

Change Code: CCOCV

Description: There exists a class operation in the model such that its visibility is not the
same in the two model versions.

OCL Expression: context model::foundation::core::0Operation
self.visibility <> self.getClassClassifier().view.model.
application.originalModel.classDiagramView.
getClassClassifier(self.getClassClassifier () .getPathname()) .
getOperation(self.getSignature()) .visibility

63

73.

74.

75.

76.

T7.

78.

Changed Interface Operation — Changed Concurrency

Change Code: CIOCC

Description: There exists an interface operation in the model such that its concurrency is
not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::0Operation
self.concurrency <> self.getlInterface().view.model.application.
originalModel.classDiagramView.getInterface (self.
getInterface () .getPathname ()) .getOperation (self.
getSignature ()) .concurrency

Changed Interface Operation — Changed isPolymorphic

Change Code: CIOCiP

Description: There exists an interface operation in the model such that its isPolymorphic
property is not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::0Operation
self.isPolymorphic <> self.getInterface().view.model.
application.originalModel.classDiagramView.getInterface (self.
getInterface () .getPathname ()) .getOperation(self.
getSignature()) .isPolymorphic

Changed Interface Operation — Changed isQuery

Change Code: CIOCiQ

Description: There exists an interface operation in the model such that its 1 sQuery property
is not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::0Operation
self.isQuery <> self.getInterface().view.model.application.
originalModel.classDiagramView.getInterface (self.
getInterface () .getPathname ()) .getOperation(self.
getSignature()) .isQuery

Changed Interface Operation — Changed Owner Scope

Change Code: CIOCOS

Description: There exists an interface operation in the model such that its ownerScope is
not the same in the two model versions.

OCL Expression: context model::foundation::core::0Operation
self.ownerScope <> self.getInterface().view.model.application.
originalModel.classDiagramView.getInterface (self.
getInterface () .getPathname ()) .getOperation(self.
getSignature ()) .ownerScope

Changed Interface Operation — Changed Precondition

Change Code: CIOCPre

Description: There exists an interface operation in the model such that its precondition
is not the same in the two model versions.

OCL Expression: context model::foundation::core::Operation
not self.precondition.equals(self.getInterface().view.model.
application.originalModel.classDiagramView.getInterface (self.
getInterface () .getPathname ()) .getOperation(self.
getSignature()) .precondition)

Changed Interface Operation — Changed Postcondition

Change Code: CIOCPst

Description: There exists an interface operation in the model such that its postcondition
is not the same in the two model versions.

OCL Expression: context model::foundation::core::0Operation
not self.postcondition.equals(self.getInterface().view.model.
application.originalModel.classDiagramView.getInterface (self.
getInterface () .getPathname ()) .getOperation(self.
getSignature()) .postcondition)

64

79.

80.

81.

82.

83.

Changed Class Operation Parameter — Changed Default Value

Change Code: CCOPCDV

Description: There exists a class operation parameter in the model such that its
defaultValue is not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::Parameter
not self.defaultValue.equals (self.getOperation() .
getClassClassifier().view.model.application.originalModel.
classDiagramView.getClassClassifier (self.getOperation() .
getClassClassifier () .getPathname ()) .getOperation(self.
getOperation () .getSignature()) .
parameter->asSequence->at (self.getOperation() .
getParameterPosition (self)) .defaultValue)

Changed Class Operation Parameter — Changed Direction

Change Code: CCOPCD

Description: There exists a class operation parameter in the model such that its direction

is not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::Parameter
self.direction <> self.getOperation () .getClassClassifier().
view.model.application.originalModel.classDiagramView.
getClassClassifier (self.getOperation() .getClassClassifier().
getPathname ()) .getOperation(self.getOperation() .
getSignature ()) .parameter->asSequence->at (self.getOperation() .
getParameterPosition (self)) .direction

Changed Class Operation Parameter — Changed Name

Change Code: CCOPCN

Description: There exists a class operation parameter in the model such that its name is not

the same in the two model versions.

OCL Expression: context model::foundation::core::Parameter
self.name <> self.getOperation().getClassClassifier().view.
model.application.originalModel.classDiagramView.
getClassClassifier (self.getOperation() .getClassClassifier().
getPathname ()) .getOperation(self.getOperation() .
getSignature ()) .parameter->asSequence->at (self.getOperation() .
getParameterPosition(self)) .name

Changed Interface Operation Parameter — Changed Default Value

Change Code: CIOPCDV

Description: There exists an interface operation parameter in the model such that its
defaultValue is not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::Parameter
not self.defaultValue.equals (self.getOperation().
getInterface() .view.model.application.originalModel.
classDiagramView.getInterface (self.getOperation ().
getInterface () .getPathname ()) .getOperation(self.
getOperation () .getSignature()) .
parameter->asSequence->at (self.getOperation() .
getParameterPosition (self)) .defaultValue)

Changed Interface Operation Parameter — Changed Direction

Change Code: CIOPCD

Description: There exists an interface operation parameter in the model such that its

direction is not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::Parameter
self.direction <> self.getOperation () .getInterface() .view.
model.application.originalModel.classDiagramView.
getInterface (self.getOperation() .getInterface() .
getPathname ()) .getOperation(self.getOperation() .
getSignature ()) .parameter->asSequence->at (self.getOperation() .
getParameterPosition (self)) .direction

65

84. Changed Interface Operation Parameter — Changed Name
Change Code: CIOPCN
Description: There exists an interface operation parameter in the model such that its name is
not the same in the two model versions.

()CIJExpresﬁon: context model::foundation::core::Parameter
self.name <> self.getOperation().getInterface() .view.
model.application.originalModel.classDiagramView.
getInterface (self.getOperation () .getInterface() .
getPathname ()) .getOperation(self.getOperation() .
getSignature ()) .parameter->asSequence->at (self.getOperation() .
getParameterPosition (self)) .name

85. Changed State — Added Activity
Change Code: CSAA
Description: There exists a state in the model such that in the modified version it has a
doActivity property and it doesn’t have this property in the original version.

OCL Expression: context model::behaviouralElements::stateMachines::State
self.doActivity->size = 1 and self.view.model.application.
originalModel.statechartDiagramView.getState (self.
getPathname ()) .doActivity->size = 0

86. Changed State — Deleted Activity

Change Code: CSDA

Description: There exists a state in the model such that in the original version it has a
doActivity property and it doesn’t have this property in the modified
version.

OCL Expression: context model::behaviouralElements::stateMachines::State
self.doActivity->size = 0 and self.view.model.application.
originalModel.statechartDiagramView.getState (self.
getPathname ()) .doActivity->size = 1

87. Changed State — Added Entry Action
Change Code: CSAEA
Description: There exists a state in the model such that in the modified version it has an
entry action and it doesn’t have this property in the original version.
OCL Expression: context model::behaviouralElements::stateMachines::State

self.entry->size = 1 and self.view.model.application.
originalModel.statechartDiagramView.getState (self.
getPathname ()) .entry->size = 0

88. Changed State — Deleted Entry Action
Change Code: CSDEA
Description: There exists a state in the model such that in the original version it has an
entry action and it doesn’t have this property in the modified version.
()CIJExpresﬁon: context model::behaviouralElements::stateMachines::State

self.entry->size = 0 and self.view.model.application.
originalModel.statechartDiagramView.getState (self.
getPathname ()) .entry->size = 1

89. Changed State — Added Exit Action
Change Code: CSAExA
Description: There exists a state in the model such that in the modified version it has an
exit action and it doesn’t have this property in the original version.

()CIJExpresﬁon: context model::behaviouralElements::stateMachines::State
self.exit->size = 1 and self.view.model.application.
originalModel.statechartDiagramView.getState (self.
getPathname ()) .exit->size = 0

66

90. Changed State — Deleted Exit Action
Change Code: CSDExA
Description: There exists a state in the model such that in the original version it has an exit
action and it doesn’t have this property in the modified version.

()CIJExpresﬁon: context model::behaviouralElements::stateMachines::State
self.exit->size = 0 and self.view.model.application.
originalModel.statechartDiagramView.getState (self.
getPathname ()) .exit->size =1

91. Changed State — Added Internal Transition
Change Code: CSAIT
Description: There exists a state in the model such that in the modified version it has an
internalTransition that it doesn’t have in the original version.

()CIJExpresﬁon: context model::behaviouralElements::stateMachines::State
self.internalTransition->exists (tl:Transition|not
self.view.model.application.originalModel.
statechartDiagramView.getState (self.getPathname()) .
internalTransition->exists (t2:Transition]|
tl.getIDStr() = t2.getIDStr()))

92. Changed State — Deleted Internal Transition
Change Code: CSDIT
Description: There exists a state in the model such that in the original version it has an
internalTransition that it doesn’t have in the modified version.

()CIJExpresﬁon: context model::behaviouralElements::stateMachines::State
self.view.model.application.originalModel.
statechartDiagramView.getState (self.getPathname()) .
internalTransition->exists (tl:Transition|not
self.internalTransition->exists (t2:Transition|
tl.getIDStr () = t2.getIDStr()))

93. Changed State — Changed State Invariant
Change Code: CSCSI
Description: There exists a state in the model such that its state invariant is not the same in
the two model versions.

()CIJExpresﬁon: context model::behaviouralElements::statecharts::State
not self.invariant.equals(self.view.model.application.
originalModel.statechartDiagramView.getState (self.
getPathname ()) .invariant)

67

The following definition is used in rules 94 to 97 inclusive:

context model::commonBehaviour::Action def:

94.

95.

96.

97.

let originalSMAction:Action =

(if Action.alllInstances.transition->size = 1 then
Action.alllInstances.transition.view.model.application.originalModel.
statechartDiagramView.getTransition (Action.allInstances.transition.
getIDStr()) .effect

else -- the else clause assumes that Action.alllInstances.state->size =1
Action.alllInstances.state.view.model.application.originalModel.
statechartDiagramView.getState (Action.allInstances.state.getPathname()) .
action
-- here the action returned by the expression refers to
-- the entry, exit and doActivity properties of State.

endif)

Changed State Machine Action — Added Discrete Action

Change Code: CSMAADA

Description: There exists an action in the model such that in the modified version it has a

discrete action that it doesn’t have in the original version.

OCL Expression: context model::commonBehaviour::Action
Action.alllInstances.oclIsTypeOf (ActionSequence) and
originalSMAction.oclIsTypeOf (ActionSequence) and
Action.allInstances.action->exists (al:Action|not

originalSMAction.action->exists (a2:Action]|
al.getIDStr () = a2.getIDStr()))

Changed State Machine Action — Deleted Discrete Action

Change Code: CSMADDA

Description: There exists an action in the model such that in the original version it has a
discrete action that it doesn’t have in the modified version.

OCL Expression: context model::commonBehaviour::Action
Action.alllInstances.oclIsTypeOf (ActionSequence) and
originalSMAction.oclIsTypeOf (ActionSequence) and
originalSMAction.action->exists (al:Action]|not
Action.alllInstances.action->exists (a2:Action]|
al.getIDStr () = a2.getIDStr())

Changed State Machine Action — Changed Recurrence

Change Code: CSMACR

Description: There exists an action in the model such that its recurrence property is not
the same in the two model versions.

OCL Expression: context model::commonBehaviour: :Action
not Action.alllInstances.oclIsTypeOf (ActionSequence) and
not originalSMAction.oclIsTypeOf (ActionSequence) and
not Action.allInstances.recurrence.
equals (originalSMAction.recurrence)

Changed State Machine Action — Changed Script

Change Code: CSMACS

Description: There exists an action in the model such that its script property is not the
same in the two model versions.

OCL Expression: context model::commonBehaviour: :Action
not Action.alllInstances.oclIsTypeOf (ActionSequence) and
not originalSMAction.oclIsTypeOf (ActionSequence) and
not Action.alllInstances.script.equals(originalSMAction.script)

68

Appendix C Consistency Verification

Each consistency rule is briefly described in Natural Language. The rules are being

formalized using OCL. Each of the rules is a Boolean expression. There are also some

consistency warnings listed below, these indicate consistency conditions that should be

checked. These arise because further work is needed to make extract the required

information from the model so that they can be consistency rules.

10.
11.
12.
13.
14.

15.

16.

17.

No protected operation can be called (in a sequence diagram) by an operation
belonging to a class that is not a descendent of the container class

No protected operation can be called (in a statechart) by an operation belonging to a
class that is not a descendent of the container class

No private operation can be called (in a sequence diagram) by an operation belonging
to another class

No private operation can be called (in a statechart) by an operation belonging to
another class

Each object (in a sequence diagram) must be an instantiation of a class in a class
diagram

If an operation appears in a pre or postcondition then it must have the property
‘Cquery’,

An attribute with the “frozen” property cannot be assigned a value in a sequence
diagram

An attribute with the “frozen” property cannot be assigned a value in a state transition
A class that has the “leaf” property cannot be extended

A class that has the “root” property cannot extend another class

The comparison types of the attributes in the class invariant must be compatible

The comparison types of attributes in a precondition must be compatible

The comparison types of attributes in a postcondition must be compatible

If an attribute’s type is a class then that class has to be visible to the class containing
the attribute

If the return type of an operation is a class then that class has to be visible to the class
containing the operation

In a sequence diagram, if an attribute is assigned the return value of an operation,
then the types have to be compatible

For each message between two objects (in a sequence diagram) there has to be a valid
path (navigable) between them

69

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

Each attribute in a precondition must appear in the class diagram

Each attribute in a postcondition must appear in the class diagram

Each precondition should not violate the class invariant

Each postcondition should not violate the class invariant

An abstract operation cannot be invoked in a sequence diagram

An abstract operation cannot be invoked in a statechart

A class that contains an abstract operation must be abstract

A descendant of an abstract class must implement each abstract operation of its parent
An operation that is not polymorphic may not be overridden by a descendant class
An operation that has the property “query” cannot be an event in a statechart

A static operation cannot access an instance attribute

A static operation cannot invoke an instance operation

No private attribute can be accessed by an operation of another class

No protected attribute can be accessed by an operation of a class that is not a
descendant of the class that owns the attribute

An operation with the “leaf” property may not be overridden

Each attribute that is called in a statechart transition must be defined in the
corresponding class diagram

Each operation that is invoked in a sequence message must be defined in a class
diagram
Each operation that is invoked in a state transition must be defined in a class diagram

There must be no cycles in the directed paths of aggregation links. A class cannot be a part in
an aggregation in which it is the whole. A class cannot be a part of an aggregation in which
its superclass is the whole.

There must not be two (or more) associations present in the static view of the model such that
they cannot be distinguished. That is, no two associations in the static view must connect the
same two classes, have the same name and the same rolenames.

A class cannot be a part in more than one composition — no composite part may be shared by
two composite objects.

Each base classifier that appears in a sequence diagram must be defined in the static view of
the model.

Each operation invoked on a classifier role in a sequence diagram must be defined in the
static view of the model.

No attribute of a class and a qualifier or rolename of an associated class can have the same
name.

If an association end has a private visibility, then its participant can only be accessed, via the
association, by the class at the other association end.

70

43.

44,

45.

46.

47.
48.
49.

50.

51.

52.
53.
54.
55.

56.
57.
8.
59.

60.

61.

62.
63.

64.

65.

If an association end has a protected visbility , then its participant can only be accessed, via
the association, by the class at the other association end and classes that are descendants of
the participant.

In a sequence diagram, a class role can only invoke an operation on another role if it has a
navigable association to the target role.

If a navigation expression occurs in an operation contract, then there must exist a navigable
association from the class that owns the contract’s operation to the target class in the
navigation expression.

For each operation that is invoked in a state transition, there must exist a navigable
association from the context class to the class that owns the invoked operation.

No two class in the same package can have the same name.
No two attributes in a class can have the same name.

A sequence message cannot update an attribute if the attribute’s changeability is not
“changeable”.

A transition’s action list cannot update an attribute if the attribute’s changeability is not
“changeable”.

The postcondition of an operation must not possibly update an attribute whose changeablity is
not “changeable”.

The multiplicity range for an attribute must be adhered to by all elements that access it.
A static operation cannot access an instance attribute
A static operation cannot invoke an instance operation

For every class in which operations use another class there must be a dependency
relationship between the two classes in the class diagram.

Each concrete class must implement all the abstract operations of its super class(es).
Each class that contains at least one abstract operation must be declared abstract.
An abstract class cannot be instantiated.

A class’s multiplicity must not be violated by the multiplicity of any association end
in which it is the participant.

A class’s multiplicity must not be violated by the multiplicity of any classifier role in
which it is the base.

A class’s package visibility should be observed, especially for associations between
classes of different packages.

A class that realizes an interface must declare all the operations in the interface.

A classifier role cannot have an available operation that is not declared in its base
class.

An operation cannot be invoked on a classifier role that is not present in its set of
available operations.

An abstract operation cannot be invoked.

71

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

&3.

If an operation is not polymorphic then it cannot be overriden in subclasses of its
class.

The directions of all the parameters of any class operation, that realizes an interface
operation, must match the directions of the parameters of the interface operation.

The default values of all the parameters of any class operation, that realizes an
interface operation, must match the default values of the parameters of the interface
operation.

For all the class operations that realize an interface operation, their concurrency
values must be the same as that of the interface operation.

For all the class operations that realize an interface operation, their polymorphic
properties must be the same as that of the interface operation.

For all the class operations that realize an interface operation, their query properties
must be the same as that of the interface operation.

For all the class operations that realize an interface operation, their owner scope
values must be the same as that of the interface operation.

For all the class operations that realize an interface operation, their precondition must
be the same as that of the interface operation.

For all the class operations that realize an interface operation, their postcondition
must be the same as that of the interface operation.

There must not exists two classifier roles in the sequence diagram view such that both
roles have the same pathnames.

There must be no cycles in the directed paths of aggregation links. A class cannot be a part in
an aggregation in which it is the whole. A class cannot be a part of an aggregation in which
its superclass is the whole.

There must not be two (or more) associations present in the static view of the model such that
they cannot be distinguished. That is, no two associations in the static view must connect the
same two classes, have the same name and the same rolenames.

A class cannot be a part in more than one composition — no composite part may be shared by
two composite objects.

Each base classifier that appears in a sequence diagram must be defined in the static view of
the model.

Each operation invoked on a classifier role in a sequence diagram must be defined in the
static view of the model.

No attribute of a class and a qualifier or rolename of an associated class can have the same
name.

If an association end has a private visibility, then its participant can only be accessed, via the
association, by the class at the other association end.

If an association end has a protected visbility , then its participant can only be accessed, via
the association, by the class at the other association end and classes that are descendants of
the participant.

72

84. In a sequence diagram, a class role can only invoke an operation on another role if it has a
navigable association to the target role.

85. If a navigation expression occurs in an operation contract, then there must exist a navigable
association from the class that owns the contract’s operation to the target class in the
navigation expression.

86. For each operation that is invoked in a state transition, there must exist a navigable
association from the context class to the class that owns the invoked operation.

87. No two class in the same package can have the same name.
88. No two attributes in a class can have the same name.

89. A sequence message cannot update an attribute if the attribute’s changeability is not
“changeable”.

90. A transition’s action list cannot update an attribute if the attribute’s changeability is not
“changeable”.

91. The postcondition of an operation must not possibly update an attribute whose changeablity is
not “changeable”.

92. The multiplicity range for an attribute must be adhered to by all elements that access it.
93. A static operation cannot access an instance attribute
94. A static operation cannot invoke an instance operation

95. For every class in which operations use another class there must be a dependency
relationship between the two classes in the class diagram.

96. Each concrete class must implement all the abstract operations of its super class(es).
97. Each class that contains at least one abstract operation must be declared abstract.
98. An abstract class cannot be instantiated.

99. A class’s multiplicity must not be violated by the multiplicity of any association end
in which it is the participant.

100. A class’s multiplicity must not be violated by the multiplicity of any classifier role in
which it is the base.

101. A class’s package visibility should be observed, especially for associations between
classes of different packages.

102. A class that realizes an interface must declare all the operations in the interface.

103. A classifier role cannot have an available operation that is not declared in its base
class.

104. An operation cannot be invoked on a classifier role that is not present in its set of
available operations.

105. An abstract operation cannot be invoked.

106. If an operation is not polymorphic then it cannot be overriden in subclasses of its
class.

73

107. The directions of all the parameters of any class operation, that realizes an interface
operation, must match the directions of the parameters of the interface operation.

108. The default values of all the parameters of any class operation, that realizes an
interface operation, must match the default values of the parameters of the interface
operation.

109. For all the class operations that realize an interface operation, their concurrency
values must be the same as that of the interface operation.

110. For all the class operations that realize an interface operation, their polymorphic
properties must be the same as that of the interface operation.

111. For all the class operations that realize an interface operation, their query properties
must be the same as that of the interface operation.

112. For all the class operations that realize an interface operation, their owner scope
values must be the same as that of the interface operation.

113. For all the class operations that realize an interface operation, their precondition must
be the same as that of the interface operation.

114. For all the class operations that realize an interface operation, their postcondition
must be the same as that of the interface operation.

115. There must not exists two classifier roles in the sequence diagram view such that
both roles have the same pathnames.

Consistency Warnings

1. For all preconditions of operations in a class, they must not (possibly) violate the
class invariant.

2. For all postconditions of operations in a class, they must not (possibly) violate the
class invariant.

3. For all the state invariants in a state machine of a class, they must not (possibly)
violate the class invariant.

4. For each state invariant in a state machine of a class, they must not (possibly) violate
the preconditions of the operations, that are invoked in that state.

5. For each state invariant in a state machine of a class, they must not (possibly) violate
the postconditions of the operations that have been invoked in a transition whose
target state is the state of the state invariant.

74

Appendix D Impact Analysis (Side Effect) Rules

The impact analysis rules described below correspond to the changes defined in the
change taxonomy defined in Appendix B. The fields for each rule are described below.
The format for the title of each rule is as follows: “Changed FElement —
Added/Changed/Deleted Property”. Where Element is the changed element’s class, and
Property is the property of the element that has changed. If the property is an
added/deleted link, then the target object’s class is used.

Note that some fields may not appear in a particular rule — this is because these fields do
not have a value, thus there is no point in including the field. For example, if no elements
were impacted by a particular change then there would be no Rationale, no Resulting
Changes and no OCL Expressions since these would not have any value. Note also, that

the rules assume that the model is consistent.

Some rules require the getproperty (propertyrn:string) operation. This operation is defined
for each model element class that requires it. The operation returns the element’s property
given the property’s ID. A data dictionary will be included later providing detail

information on all the operations that appear in the rules.

Change Code: This is the code that is assigned to the rule and is an acronym for
the change type.

Changed Element: = The pathname of the class (in the meta-model) that has been
changed. Note that is field shows the type for changedElement
type (in the OCL expressions below) is of type

Added Property: The rolename of the association end containing the class (in the
meta-model) for the added link’s target object; or the pathname of
the class (in the meta-model) for the added link’s target object.
Note that a property is an attribute or a link to a changed element.

Changed Property: The changed attribute of the changed element.

Deleted Property: The rolename of the association end containing the class (in the
meta-model) for the added link’s target object; or the pathname of
the class (in the meta-model) for the deleted link’s target object.

75

Impacted Element:

Description:

Rationale:

Resulting Change:

Invoked Rules:

OCL Expression:

Specifies the pathname of the impacted element’s class (in the
meta-model).

States, in natural language, what elements have been impacted by
the change and under what conditions.

Explains the reason(s) for the impacts.

States the changes that may be needed to accomplish a change.
These changes are the changes for which no impact analysis rules
are defined, such as changes to the implementation, for example.

The rules to be invoked by the current rule. That is, a rule may
result in a set of changes — there may be impact analysis rules
defined for these changes. Each of these invoked rules may
subsequently invoke other rules. Therefore, this field provides
information about the transitive closure for a particular change.

OCL expression stating how the impacted elements are
determined. The OCL expression represents only the logic of how
to determine the impacted elements, and thus the implementation
may be different.

76

The following definition is used in some of the rules below.

def:

let null:ModelElement = Set({}

Changed Class Diagram View — Added Association
Change Code: CCDVAA

Changed Element: model::foundation::core::ClassDiagramView

Added Property: model: : foundation: :core: :Association

Impacted Element: model::foundation::core::ClassClassifier

Description: The bag of impacted classes is such that each impacted class in the bag is a
participant (in the meta-model) of one of the added association’s ends, and
each impacted class can navigate to the classifier at the other end of the
association via the added association.

Rationale: Each of the impacted classes has gained a navigable association.

Resulting Change: The class invariant and operation contracts (preconditions and postconditions)
may have to be updated to reflect this change. In addition, additional operations
may have to be defined, and/or methods (implementations of the operations)
updated to reflect the change. Also, a variable storing reference(s) to objects of
the class at the opposite end may have to be added to the class’s implementation.

()CllExpresﬁon: context modelChanges::Change
let addedAssociation:Association = self.changedElement.
oclAsType (ClassDiagramView) .getProperty(self.propertyID) .
oclAsType (Association)

addedAssociation.end->select (e:AssociationEnd|
addedAssociation.getOtherEnd(e.getIDStr()) .
isNavigable = true) .participant

Changed Class Diagram View — Deleted Association

Change Code: CCDVDA

Changed Element: model::foundation::core::ClassDiagramView

Deleted Property: model::foundation::core::Association

Impacted Element: model::foundation::core::ClassClassifier

Description: The bag of impacted classes is such that each impacted class in the bag was a
participant (in the meta-model) of one of the deleted association’s ends,
and each impacted class was able to navigate to the classifier at the other end of
the association via the deleted association.

Rationale: Each of the impacted classes has lost a navigable association.

Resulting Change: Methods (implementations of the operations) may have to be updated and/or
deleted to reflect the change. Also, the variable storing reference(s) to objects of
the class at the opposite end may have to be deleted from the class’s
implementation. Note that since the model is assumed to be consistent the class
invariant and operation contracts in each impacted class should not contain
navigation expressions to the class that uses the deleted association.

()CllExpresﬁon: context modelChanges::Change
let deletedAssociation:Association = self.changedElement.
oclAsType (ClassDiagramView) .getProperty(self.propertyID) .
oclAsType (Association)

deletedAssociation.end->select (e:AssociationEnd]|
addedAssociation.getOtherEnd(e.getIDStr()) .

isNavigable = true) .participant->select (p:ClassClassifier]|
p.view.model.application.modifiedModel.classDiagramView.
classClassifier->exists(c:ClassClassifier|

c.getPathname () = p.getPathname()))

77

Changed Class Diagram View — Added Class

Change Code:
Changed Element:
Added Property:
Description:

CCDVAC
model::foundation::core::ClassDiagramView
model: :foundation::core::ClassClassifier
No impact since the model is assumed to be consistent.

Changed Class Diagram View — Deleted Class

Change Code:
Changed Element:
Deleted Property:
Impacted Elements:

Description:

Rationale:

Resulting Changes:

OCL Expressions:

CCDVDC

model::foundation::core::ClassDiagramView
model::foundation::core::ClassClassifier

model: :foundation::core::ClassClassifier
model::foundation::core::Interface

The bag of impacted classes is such that each impacted class in the bag had a
navigable association to, or dependency relationship (as a client) with the
deleted class. The descendants of the deleted class are also impacted. The
interfaces that have a dependency relationship (as a client) with the deleted class
are also impacted.

Each of the impacted classes can no longer access the services of the deleted
class (directly or indirectly).

The implementation of the impacted classes may have to modified. This
modification may include the deletion of the variable that stores the reference to
objects of the deleted class. In addition, methods may have to be modified to
reflect the change. The implementation of the impacted interfaces may have to
be modified to reflect the change. Note that since the model is assumed to be
consistent the class invariant and operation contracts in each impacted class
should not contain navigation expressions to the deleted class. Also, since the
model is assumed to be consistent, there should be no parameter nor attribute
that has the deleted class as its type.

context modelChanges::Change def:
let deletedClass:ClassClassifier = self.changedElement.
oclAsType (ClassDiagramView) .getProperty(self.propertyID) .
oclAsType (ClassClassifier)

context modelChanges::Change -- associated classes
let deletedClassEnd:AssociationEnd = deletedClass.
associationEnd

if deletedClassEnd.isNavigable = true then
deletedClassEnd.association.getOtherEnd (deletedClassEnd.

getIDStr()) .participant
else
null
endif
context modelChanges::Change -- dependent classifiers

deletedClass.clientDependency.client

context modelChanges::Change —-- subclasses
deletedClass.specialization.child

78

5. Changed Class Diagram View — Added Dependency

Change Code:
Changed Element:
Added Property:
Impacted Elements:

Description:
Rationale:

Resulting Change:

OCL Expression:

CCDVAD

model::foundation::core::ClassDiagramView

model::foundation: :core: :Dependency

model: :foundation::core::ClassClassifier
model::foundation::core::Interface

The client classifier (class or interface) is impacted.

The impacted classifier now has a dependency relationship with another
classifier.

The implementation of the impacted classifier may have to modified to reflect
the change. This modification may include, for instance, updating methods (in
the case of classes) to reflect the change.

context modelChanges: :Change
self.changedElement.oclAsType (ClassDiagramView) .
getProperty (self.propertyID) .oclAsType (Dependency) .client

6. Changed Class Diagram View — Deleted Dependency

Change Code: CCDVDD

Changed Element: model::foundation::core::ClassDiagramView

Deleted Property: model::foundation::core::Dependency

Impacted Elements: model: :foundation::core::ClassClassifier
model: :foundation::core::Interface

Description: Same as that of CCDVAD.

Rationale: The impacted classifier has now lost its dependency relationship with another
classifier.

Resulting Change: Same as that of CCDVAD.

OCL Expression: -— Same as that of CCDVAD.

7. Changed Class Diagram View — Added Generalization

Change Code: CCDVAG

Changed Element: model::foundation::core::ClassDiagramView

Added Property: model::foundation: :core::Generalization

Impacted Elements: model: :foundation::core::ClassClassifier
model::foundation::core::Interface

Description: The child classifier (class or interface) is impacted.

Rationale: The impacted classifier is now a subclassifier of another classifier.

Resulting Change: The implementation of the impacted classifier may have to be modified, for
example, in the case of a class classifier, the class declaration code may have to
specify that the class is now a subclass of another class.

()CIJEXpreSﬂOH: context modelChanges: :Change

self.changedElement.oclAsType (ClassDiagramView) .
getProperty (self.propertyID) .oclAsType (Generalization) .child

8. Changed Class Diagram View — Deleted Generalization

Change Code:
Changed Element:
Deleted Property:
Impacted Elements:

Description:

Rationale:
Resulting Changes:

OCL Expression:

CCDVDG
model::foundation::core::ClassDiagramView
model::foundation::core::Generalization
model::foundation::core::ClassClassifier
model::foundation::core::Interface

Same as that of CCDVAG.

The impacted classifier is no longer a subclassifier of its former superclassifier.
The implementation of the impacted classifier may have to be modified, for
example, in the case of a class classifier, the class declaration code may have to
modified to reflect the change.

-— Same as that of CCDVAG.

79

9. Changed Class Diagram View — Added Interface

10.

Change Code:
Changed Element:
Added Property:
Description:

CCDVAI
model::foundation::core::ClassDiagramView
model: :foundation::core::Interface

No impact since the model is assumed to be consistent.

Changed Class Diagram View — Deleted Interface

Change Code:
Changed Element:
Deleted Property:
Impacted Elements:

Description:

Rationale:

Resulting Changes:

OCL Expressions:

CCDVDI

model::foundation::core::ClassDiagramView
model::foundation::core::Interface
model::foundation::core::ClassClassifier

model: :foundation::core::Interface

The bag of impacted classes is such that each impacted class in the bag had a
navigable association to, or dependency relationship (as a client) with the
deleted interface. The classes that realized the deleted interface are impacted as
well. In addition, the descendants of the deleted interface as well as the
interfaces that had a dependency relationship (as a client) with the deleted
interface are also impacted.

Each of the impacted classes can no longer access the services of the deleted
interface (directly or indirectly). The impacted interfaces are no longer sub-
interfaces of the deleted interface — in the case of the former child interfaces;
and for the other impacted interfaces, they can no longer access the services of
the deleted interface.

The implementation of the impacted classes may have to modified. This
modification may include the deletion of the variable that stores the reference to
objects of the classes that realized the deleted interface. In addition, methods
may have to be modified to reflect the change. The implementation of the
interfaces that inherited from the deleted interface may have to be modified.
This modification may include the interface declaration code, for example.

context modelChanges::Change def:
let deletedInterface:Interface = self.changedElement.
oclAsType (ClassDiagramView) .oclAsType (ClassDiagramView) .
getProperty(self.propertyID) .oclAsType (Interface)

context modelChanges::Change -- associated classes
let deletedInterfaceEnd:AssociationEnd = deletedInterface.
specifiedEnd

if deletedInterfaceEnd.isNavigable = true then
deletedInterfaceEnd.association.

getOtherEnd (deletedInterfaceEnd.getIDStr ()) .participant
else
null
endif
context modelChanges::Change -- dependent classes and interfaces

deletedInterface.clientDependency.client

context modelChanges::Change -- subinterfaces
deletedInterface.specialization.child

80

11. Changed Class Diagram View — Added Realization

12.

13.

Change Code:
Changed Element:
Added Property:
Impacted Element:
Description:
Rationale:

Resulting Change:

OCL Expression:

CCDVAR

model::foundation::core::ClassDiagramView

model: :foundation::core::Realization

model: :foundation::core::ClassClassifier

The implementation class is impacted.

The impacted class now has to implement all the operations in the interface
(specification).

The implementation of the impacted class may have to be modified to define the
the methods that implement the interface’s operations.

context modelChanges: :Change
self.changedElement.oclAsType (ClassDiagramView) .
getProperty(self.propertyID) .oclAsType (Realization) .
implementation

Changed Class Diagram View — Deleted Realization

Change Code:
Changed Element:
Deleted Property:
Impacted Element:
Description:
Rationale:
Resulting Change:

OCL Expression:

CCDVDR

model::foundation::core::ClassDiagramView
model::foundation::core::Realization
model::foundation::core::ClassClassifier

Same as that of CCDVAR.

The impacted class no longer realizes the deleted interface.

The implementation of the impacted class may have to be modified, for
example, the class declaration code may have to modified to reflect the change.
—- Same as that of CCDVAR.

Changed Sequence Diagram View — Added Classifier Role

Change Code:
Changed Element:

Added Property:
Description:

CSDVACR

model: :behaviouralElements::collaborations::
SequenceDiagramView

model: :behaviouralElements::collaborations::ClassifierRole
No impact since the model is assumed to be consistent.

81

14. Changed Sequence Diagram View — Deleted Classifier Role

Change Code:
Changed Element:

Deleted Property:
Impacted Elements:

Description:

Rationale:
Resulting Changes:

OCL Expressions:

CSDVDCR

model: :behaviouralElements::collaborations::
SequenceDiagramView

model: :behaviouralElements::collaborations::ClassifierRole
model::foundation::core::ClassClassifier
model::foundation::core::0Operation

The bag of impacted classes is such that each impacted class in the bag is a base
class of at least one of the classifier roles in the sequence diagram view of the
model, and each impacted class sent at least one message, to the deleted
classifier role, that did not invoke an operation (on the deleted classifier role).
The bag of impacted operations is such that each impacted operation sent at least
one message to the deleted classifier role.

The impacted classes no longer send messages to the deleted classifier role. The
impacted operations no longer send messages to the deleted classifier role.

The implementation of the impacted classes as well as that of the impacted
operations may have to be changed.

context modelChanges::Change def:
let deletedRole:ClassifierRole = self.changedElement.
oclAsType (SequenceDiagramView) .getProperty (self.
propertyID) .oclAsType (ClassifierRole)

let senderRoles:ClassifierRole = deletedRole.receivedMessage.
sender

context modelChanges::Change —-- classes
senderRoles->select (sr:ClassifierRole|sr.
sentMessage->select (sm:Message|deletedRole.
receivedMessage->includes (sm)) ->exists (m:Message]|
not m.activator.action.oclIsTypeOf (CallAction))) .base

context modelChanges::Change -- operations
senderRoles.base.operation->select (od:Operation]|
deletedRole.receivedMessage.activator.action.
operation->exists (oi:Operation|od.equals (oi))
-- od = defined operation
-- oi = invoked operation

82

15. Changed Sequence Diagram View — Added Message

Change Code: CSDVAM

Changed Element: model::behaviouralElements::collaborations::
SequenceDiagramView

Added Property: model::behaviouralElements::collaborations::Message

Impacted Elements: model: :foundation::core::ClassClassifier
model::foundation::core::0Operation
model::foundation::core::Postcondition

Description: The base class of the classifier role that sends the added message is impacted if
the message that sends the added message does not invoke an operation, i.e. its
action is not a call action; else, the operation, o, that sends the added message is
impacted. The postcondition of o is also impacted.

Rationale: The impacted class now performs one more action. The impacted operation also
now performs one more action. The impacted postcondition may now not
represent the effect (what is true on completion) of its operation.

Resulting Changes: The implementation of the base class may have to be modified. The method of
the impacted operation may have to be modified. The impacted postcondition
should be checked to ensure that it is still valid.

Invoked Rule: Changed Class Operation — Changed Postcondition (CCOCPst)

OCL Expressions: context modelChanges::Change def:
let addedMessage:Message = self.changedElement.
oclAsType (SequenceDiagramView) .getProperty (self.
propertyID) .oclAsType (Message)

let sendingOperation:Operation =
(if addedMessage.activator.action.oclIsTypeOf (CallAction)
then
addedMessage.sender.base.
operation->select (o:0Operation]|
o.equals (addedMessage.activator.action.operation))
else
null
endif)

context modelChanges::Change -- class
if not addedMessage.activator.oclIsTypeOf (CallAction) then
addedMessage.sender.base

else
null
endif
context modelChanges::Change -- operation
sendingOperation
context modelChanges::Change -- postcondition

sendingOperation.postcondition

83

16. Changed Sequence Diagram View — Deleted Message

17.

18.

Change Code:
Changed Element:

Deleted Property:
Impacted Elements:

Description:

Rationale:

Resulting Changes:

Invoked Rule:
OCL Expressions:

CSDVDM

model: :behaviouralElements::collaborations::
SequenceDiagramView

model: :behaviouralElements::collaborations: :Message
model::foundation::core::ClassClassifier
model::foundation::core::0Operation
model::foundation::core::Postcondition

The base class of the classifier role that sent the deleted message is impacted if
the message that sent the deleted message does not invoke an operation; else,
the operation, o, that sent the deleted message is impacted. The postcondition of
o0 is also impacted.

The impacted class now performs one less action. The impacted operation also
now performs one less action. The impacted postcondition may be invalidated
since one action has been deleted from the sequence of actions performed by the
postcondition’s operation.

The implementation of the base class may have to be modified. The method of
the impacted operation may have to be modified. The impacted postcondition
should be checked to ensure that it is still valid.

Changed Class Operation — Changed Postcondition (CCOCPst)

-- Same as that of CSDVAM.

Changed State Diagram View — Added Composite State

Change Code:
Changed Element:

Added Property:
Impacted Element:
Description:

Rationale:
Resulting Change:

OCL Expression:

CStDVACS

model: :behaviouralElements: :stateMachines::
StatechartDiagramView

model: :behaviouralElements::stateMachines::CompositeState
model::foundation::core::ClassClassifier

The context class, of the state machine to which the added composite state
belongs, is impacted.

The impacted class’s state machine now has one more state.

The implementation of the impacted class (or class cluster to which it belongs)
may have to be modified to account for the new state.

context modelChanges: :Change
self.changedElement.oclAsType (StatechartDiagramView) .
getProperty(self.propertyID) .oclAsType (CompositeState) .
stateMachine.context

Changed State Diagram View — Deleted Composite State

Change Code:
Changed Element:

Deleted Property:
Impacted Element:

Description:

Rationale:
Resulting Change:

OCL Expression:

CStDVDCS

model: :behaviouralElements: :stateMachines::
StatechartDiagramView

model: :behaviouralElements::stateMachines::CompositeState
model::foundation::core::ClassClassifier

The context class, of the state machine to which the deleted composite state
belonged, is impacted.

The impacted class’s state machine now has one less state.

The implementation of the impacted class (or class cluster to which it belongs)
may have to be modified to account for the deleted state.

-- Same as that of CStDVACS.

84

19. Changed State Diagram View — Added Simple State

20.

21.

Change Code:
Changed Element:

Added Property:
Impacted Element:
Description:

Rationale:
Resulting Change:

OCL Expression:

CStDVASS

model: :behaviouralElements: :stateMachines::
StatechartDiagramView

model: :behaviouralElements: :stateMachines::SimpleState
model::foundation::core::ClassClassifier

The context class, of the state machine to which the added simple state belongs,
is impacted.

The impacted class’s state machine now has one more state.

The implementation of the impacted class (or class cluster to which it belongs)
may have to be modified to account for the new state.

context modelChanges: :Change
self.changedElement.oclAsType (StatechartDiagramView) .
getProperty (self.propertyID) .oclAsType (SimpleState) .
stateMachine.context

Changed State Diagram View — Deleted Simple State

Change Code:
Changed Element:

Deleted Property:
Impacted Element:

Description:

Rationale:
Resulting Change:

OCL Expression:

CStDVDSS

model: :behaviouralElements: :stateMachines::
StatechartDiagramView

model: :behaviouralElements: :stateMachines::SimpleState
model: :foundation::core::ClassClassifier

The context class, of the state machine to which the deleted simple state
belonged, is impacted.

The impacted class’s state machine now has one less state.

The implementation of the impacted class (or class cluster to which it belongs)
may have to be modified to account for the deleted state.

-- Same as that of CStDVASS.

Changed State Diagram View — Added Transition

Change Code:
Changed Element:

Added Property:
Impacted Element:
Description:

Rationale:
Resulting Change:

OCL Expression:

CStDVAT

model: :behaviouralElements: :stateMachines::
StatechartDiagramView

model: :behaviouralElements::stateMachines::Transition

model: :foundation::core::ClassClassifier

The context class, of the state machine to which the added transition belongs, is
impacted.

The impacted class’s state machine now has one more transition.

The implementation of the impacted class (or class cluster to which it belongs)
may have to be modified to account for the new transition.

context modelChanges: :Change
self.changedElement.oclAsType (StatechartDiagramView) .
getProperty(self.propertyID) .oclAsType (Transition) .
stateMachine.context

85

22. Changed State Diagram View — Deleted Transition

23.

Change Code:
Changed Element:

Deleted Property:
Impacted Element:

Description:

Rationale:
Resulting Change:

OCL Expression:

CStDVDT

model: :behaviouralElements: :stateMachines::
StatechartDiagramView

model: :behaviouralElements: :stateMachines::Transition

model: :foundation::core::ClassClassifier

The context class, of the state machine to which the deleted transition belonged,
is impacted.

The impacted class’s state machine now has one less transition.

The implementation of the impacted class (or class cluster to which it belongs)
may have to be modified to account for the deleted transition.

-- Same as that of CStDVAT.

Changed Association End — Changed Aggregation

Change Code:
Changed Element:
Changed Property:
Impacted Element:
Description:

Rationale:

Resulting Change:

OCL Expression:

CAECA

model::foundation::core::AssociationEnd

aggregation

model::foundation::core::ClassClassifier

There is no impact when aggregation is changed from “no aggregation” to
“aggregation” since the model is assumed to be consistent. The association end’s
participant (in the meta-model) is impacted when aggegation is
changed from “no aggregation” to “composition”. There is no impact when
aggregation is changed from “aggregation” to “no aggregation”. The
association end’s participant (in the meta-model) is impacted when
aggregation 1is changed from “aggregation” to “composition”. The
association end’s participant (in the meta-model) is impacted when
aggregation is changed from “composition” to “no aggregation”. The
association end’s participant (in the meta-model) is impacted when
aggregation is changed from “composition” to “aggregation”.

When aggregation is changed to “composition” then the participant is
impacted because it now has to handle the the life time issues of the parts, i.e.
the parts live and die with the composite, and so the impacted class has to
account for this. However, when aggregation 1is changed from
“composition”, then the participant is impacted because now it is no longer
responsible for the life time issues of the parts and thus the class
(participant) may have to be changed to reflect this.

Certain methods of the impacted class may have to be changed to reflect the
change in the life time dependencies of the parts in the composition relationship,
for example, constructors and destructors may have to be changed.

context modelChanges: :Change
if (self.changedElement.oclAsType (AssociationEnd) .
getAggregation () = #composite) or (self.changedElement.
association.view.model.application.originalModel.
classDiagramView.getAssociation (self.changedElement.

association.getIDStr ()) .getEnd(self.changedElement.
getIDStr()) .getAggregation() = #composite) then
self.changedElement.participant
else
null
endif)

86

24. Changed Association End — Changed Changeability

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:

Rationale:

Resulting Changes:

OCL Expressions:

CAECC

model::foundation::core::AssociationEnd

changeability

model: :foundation::core::ClassClassifier
model::foundation::core::Operation

The class at the unchanged association end is impacted if the changed
association end is navigable. The impacted operations are those in the class at
the unchanged association end, such that the postcondition of each of these
operations contains at least one navigation (via the changed association) to the
class at the changed association end.

The criterion for adding, modifying and deleting links to objects of the class at
the changed association end has changed and thus the method of each impacted
operation may have to be changed to reflect this change. The implementation of
the impacted class may have to be changed.

The implementation (method) of each impacted operation should be checked to
verify that it does not violate the new changeability criterion. If
changeability was changed to “changeable” then the methods of the
impacted operations may have to be modified to allow for the addition,
modification or deletion of links to objects of the class at the changed
association end. If changeability was changed from “frozen” to
“addOnly” then the methods of the impacted operations may have to be
modified to allow for the addition of links to objects of the class at the changed
association end. Also, additional operations may have to be defined (and
implemented) in the impacted class. The postconditions of some operations in
the impacted class may not show a navigation to the class at the changed
association end even though their methods have such navigations. The
implementation of the impacted class thus has to be checked for the occurrences
of these methods.

context modelChanges::Change Def:
let affectedClass:ClassClassifier = self.changedElement.
association.getOtherEnd (self.changedElement.getIDStr()).
participant

context modelChanges::Change -- operations
affectedClass.operation->select (0o:0Operation|o.postcondition.
containsNavigation (self.changedElement.participant,
self.changedElement.association))

context modelChanges::Change -- class
if self.changedElement.isNavigable = true then
affectedClass
else
null
endif

25. Changed Association End — Added Interface Specifier

Change Code:
Changed Element:
Added Property:
Description:

CAEAIS
model::foundation::core::AssociationEnd
interfaceSpecifier

No impact since the model is assumed to be consistent.

87

26. Changed Association End — Changed Interface Specifier

27.

28.

Change Code:
Changed Element:
Changed Property:
Description:

CAECIS

model::foundation::core::AssociationEnd

interfaceSpecifier

“Changed Interface Specifier” refers to a change in the classifier’s specification.
For example, if the interface specifier is an interface, then an added operation is
treated as a changed specification. There is no impact since the model is
assumed to be consistent.

Changed Association End — Deleted Interface Specifier

Change Code:
Changed Element:
Deleted Property:
Description:

CAEDIS

model::foundation::core::AssociationEnd

interfaceSpecifier

No impact — the original services are still available and have not changed. Note
that an association end interface specifier specifies the subset of the
funtionalities of a classifier that are needed in the association. Thus, deleting the
interface specifier does not result in any impacts.

Changed Association End — Changed isNavigable

Change Code:
Changed Element:
Changed Property:
Impacted Element:
Description:

Rationale:

Resulting Change:

OCL Expression:

CAECIN

model::foundation::core::AssociationEnd

isNavigable

model::foundation::core::ClassClassifier

If isNavigable equals true then the class at the unchanged association end
is impacted.

The impacted class is now able to navigate to the classifier at the unchanged
association end via the changed association.

The existing operations of the impacted class may have to be modified and/or
new operations defined to access link(s) to the class at the changed association
end.

context modelChanges: :Change
if self.changedElement.isNavigable = true then
self.changedElement.association.getOtherEnd (self.
changedElement.getIDStr ()) .participant
else
null
endif

88

29. Changed Association End — Changed Multiplicity

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:

Rationale:

Resulting Changes:

Invoked Rules:

CAECM

model::foundation::core::AssociationEnd

multiplicity

model: :foundation::core::ClassClassifier
model::foundation::core::Invariant

model::foundation::core: :0Operation
model::foundation::core::Operation

The class at the unchanged association end is impacted if the changed
association end is navigable. The invariant of the class at the unchanged
association end is impacted if it contains any navigation (via the changed
association) to the class at the changed association end. The bag of impacted
operations is such that each impacted operation in the bag belongs to the class at
the unchanged association end, and each impacted operation’s pre/postcondition
contains at least one navigation (via the changed association) to the class at the
changed association end. The impacted pre/postconditions are those of the
impacted operations that contain navigations (via the changed association) to the
class at the changed association end.

The impacted class’s implementation may have to be changed. The impacted
invariant and pre/postconditions may be accessing links that no longer exist or
may have to be modified to account for the new number of links. The method of
each impacted operation may have to be modified.

The method of each impacted element may have to be modified to reflect the
changed multiplicity, i.e. the changed multiplicity affects the number of
accessible links. It may also affect how the links are accessed. The
implementation of the impacted class may have to be changed to reflect the
change. For example, if the multiplicity was changed from 1 to *, then the
implementation needs to define an attribute that has a multiplicity greater than 1
to store the links to objects of the class at the changed association end. In
addition, new operations may have to be defined to facilitate access to the new
number of links.

Changed Class — Changed Invariant (CCCI).

Changed Class Operation — Changed Precondition (CCOCPre)

Changed Class Operation — Changed Postcondition (CCOCPst)

89

()CIJEXpreSﬁOHS: context modelChanges::Change Def:
let affectedClass:ClassClassifier = self.changedElement.

association.getOtherEnd (self.changedElement.getIDStr()) .
participant

context modelChanges::Change -- class
if self.changedElement.isNavigable = true then
affectedClass
else
null
endif

context modelChanges::Change -- invariant
if affectedClass.invariant.containsNavigation (self.
changedElement.participant, self.changedElement.
association) then
affectedClass.invariant
else
null
endif

context modelChanges::Change -- operations
affectedClass.operation->select (o:Operation|o.postcondition.
containsNavigation (self.changedElement.participant, self.
changedElement.association) or o.precondition.
containsNavigation (self.changedElement.participant,
self.changedElement.association))

context modelChanges::Change -- preconditions
affectedClass.operation.precondition->select (pr:Precondition]
pr.containsNavigation (self.changedElement.participant,
self.changedElement.association)

context modelChanges::Change -- postconditions
affectedClass.operation.postcondition->select (ps:Postcondition]|
ps.containsNavigation (self.changedElement.participant,
self.changedElement.association)

90

30. Changed Association End — Changed Ordering

31.

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:

Rationale:

Resulting Changes:

OCL Expressions:

CAECO

model::foundation::core::AssociationEnd

ordering

model: :foundation::core::ClassClassifier
model::foundation::core::Operation

The class at the unchanged association end is impacted if the changed
association end is navigable. The bag of impacted operations is such that each
impacted operation in the bag belongs to the class (impacted class) at the
unchanged association end, and each impacted operation’s pre/postcondition
contains at least one navigation (via the changed association) to the class at the
changed association end.

The method of each impacted operation may have to be modified to reflect the
new ordering criterion. For example, if the method adds links then it (the
method) may have to be changed to reflect the new ordering criterion.
Additional operations may have to be defined to implement the new ordering
criterion. Also, a data type change may be required for the variable (in the
implementation of the impacted class) that stores the links to the objects of the
class at the changed association end.

The impacted class’s implementation may have to be modified. The method of
each impacted operation may have to be modified.

context modelChanges: :Change Def:
let affectedClass:ClassClassifier = self.changedElement.
association.getOtherEnd(self.changedElement.getIDStr()) .
participant

context modelChanges::Change -- class
if self.changedElement.isNavigable = true then
affectedClass
else
null
endif

context modelChanges::Change -- operations
affectedClass.operations->select (0:0Operation|o.postcondition.
containsNavigation (self.changedElement.participant,
self.changedElement.association) or o.precondition.
containsNavigation (self.changedElement.participant,
self.changedElement.association))

Changed Association End — Added Qualifier

Change Code:
Changed Element:
Added Property:
Impacted Elements:

Description:
Rationale:

Resulting Changes:
OCL Expressions:

CAEAQ

model::foundation::core::AssociationEnd

qualifier

model: :foundation::core::ClassClassifier
model::foundation::core::Operation

Same as that of CAECO.

The method of each impacted operation may have to be changed so that it now
uses the added qualifier in link selection. Data structure(s) may have to be
defined to facilitate the new lookup feature that the added qualifier introduces.
In addition, new operations may have to be defined (and implemented) to
facilate the change.

Same as that of CAECO.

-- Same as that of CAECO.

91

32. Changed Association End — Changed Qualifier Type

33.

34.

35.

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:
Rationale:

Resulting Changes:
OCL Expressions:

CAECQT

model::foundation::core::AssociationEnd

qualifier

model::foundation::core::ClassClassifier
model::foundation::core::Operation

Same as that of CAECO.

The method of each impacted operation may have to be changed so that it is
now consistent with the changed qualifier type. The implementation of the
qualifier may have to be changed.

Same as that of CAECO.

-- Same as that of CAECO.

Changed Association End — Deleted Qualifier

Change Code:
Changed Element:
Deleted Property:
Impacted Elements:

Description:
Rationale:

Resulting Changes:
OCL Expressions:

CAEDQ

model::foundation::core::AssociationEnd

qualifier

model::foundation::core::ClassClassifier
model::foundation::core: :Operation

Same as that of CAECO.

The method of each impacted operation may have to be changed so that it
doesn’t use the deleted qualifier in link selection. Certain operations defined
specifically for the deleted qualifier may have to be deleted. The declaration of
the data structure used for the deleted qualifier may have to be deleted.

Same as that of CAECO.

-- Same as that of CAECO.

Changed Association End — Changed Target Scope

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:
Rationale:

Resulting Changes:
OCL Expressions:

CAECTS

model::foundation::core::AssociationEnd

targetScope

model::foundation::core::ClassClassifier
model::foundation::core::Operation

Same as that of CAECO.

The method of each impacted operation may have to be changed so that it is
now consistent with the changed target scope. The declaration of variables
containing links to the target class in the implementation of the impacted class
may have to be changed.

Same as that of CAECO.

-- Same as that of CAECO.

Changed Association End — Changed Visibility

Change Code:
Changed Element:
Changed Property:
Description:

CAECV
model::foundation::core::AssociationEnd
visibility

No impact since the model is assumed to be consistent.

92

36. Changed Class — Added Attribute

37.

38.

39.

40.

Change Code:
Changed Element:
Added Property:
Description:

CCAA

model::foundation::core::ClassClassifier
model::foundation::core::Attribute

There is no impact since the model is assumed consistent. However, the class
may have to be modified to include operations that access the new attribute
and/or existing operations may have to be modified to access the new attribute.
In addition, the class invariant may have to be modified to reflect the constraints
(if any) on the attribute.

Changed Class — Deleted Attribute

Change Code:
Changed Element:
Deleted Property:
Description:

CCDA

model::foundation::core::ClassClassifier
model::foundation::core::Attribute

No impact since the model is assumed to be consistent. However, the
implementation of the changed class may have to be updated.

Changed Class — Changed Invariant

Change Code:
Changed Element:
Changed Property:
Description:

CCCI
model::foundation::core::ClassClassifier
invariant

No impact since the model is assumed to be consistent.

Changed Class — Changed isAbstract

Change Code:
Changed Element:
Changed Property:
Impacted Element:
Description:

Rationale:

Resulting Change:

OCL Expression:

CCCiAbs

model: :foundation::core::ClassClassifier

isAbstract

model::foundation::core::ClassClassifier

The classes that have a navigable association to the changed class are impacted.
The classes that have a dependency relationship (as a client) with the changed
class are also impacted.

If isAbstract is now true, then now it is not possible to have links to objects
of the changed class, only links to concrete subclasses. If isAbstract is now
false, then it is now possible to have links to objects of the changed class.

The implementation of the impacted classes may have to be changed. For
example, some of the methods that access the changed class may have to be
changed.

context modelChanges: :Change
self.changedElement.associationEnd->select (e:AssociationEnd|
e.isNavigable = true)->forAll (e:AssociationEnd|e.association.
getOtherEnd (e.getIDStr()))->union(self.changedElement.
clientDependency.client->select (c:Classifier|
c.oclIsTypeOf (ClassClassifier))

Changed Class — Changed isActive

Change Code:
Changed Element:
Changed Property:
Description:

CCCiA

model::foundation::core::ClassClassifier

isActive

No impact. However, the implementation of the changed class may have to be
updated.

93

41. Changed Class — Changed isLeaf

42.

43.

44,

45.

46.

47.

Change Code:
Changed Element:
Changed Property:
Description:

CCCiL

model::foundation::core::ClassClassifier

isLeaf

No impact since the model is assumed to be consistent. However, the
implementation of the changed class may have to be updated. For example, the
variable declaration section of the code may have to be changed to state that the
class cannot be extended.

Changed Class — Changed isRoot

Change Code:
Changed Element:
Changed Property:
Description:

CCCiR

model::foundation::core::ClassClassifier

isRoot

No impact since the model is assumed to be consistent. However, the
implementation of the changed class may have to be updated.

Changed Class — Changed Multiplicity

Change Code:
Changed Element:
Changed Property:
Description:

CCCM

model::foundation::core::ClassClassifier
multiplicity

No impact since the model is assumed to be consistent. However, the
implementation of the changed class may have to be updated.

Changed Class — Added Operation

Change Code:
Changed Element:
Added Property:
Description:

CCAO

model: :foundation::core::ClassClassifier
model::foundation::core: :0Operation

No impact since the model is assumed to be consistent. However, the
implementation of the changed class may have to be updated.

Changed Class — Deleted Operation

Change Code:
Changed Element:
Deleted Property:
Description:

CCDO

model::foundation::core::ClassClassifier
model::foundation::core::0Operation

No impact since the model is assumed to be consistent. However, the
implementation of the changed class may have to be updated.

Changed Class — Changed Visibility

Change Code:
Changed Element:
Changed Property:
Description:

CCCV

model: :foundation::core::ClassClassifier

visibility

No impact since the model is assumed to be consistent. However, the
implementation of the changed class may have to be updated. For example, the
variable declaration section of the code may have to be changed to state the new
visibility.

Changed Interface — Added Operation

Change Code:
Changed Element:
Added Property:
Description:

CIAO

model::foundation::core::Interface
model::foundation::core::0Operation

No impact since the model is assumed to be consistent. However, the
implementation of the changed interface may have to be updated.

94

48.

49.

50.

51.

52.

Changed Interface — Deleted Operation

Change Code: CIDO

Changed Element: model::foundation::core::Interface
Deleted Property: model::foundation::core::Operation
Impacted Element: model::foundation::core::ClassClassifier

Description: The classes that realize the changed interface are impacted if they declare the

deleted operation.

Rationale: The impacted classes realizes an interface operation that has been deleted from

the realized interface.

Resulting Change: The deleted interface operation may have to be deleted from the impacted
classes. The method of the deleted operation may also have to be deleted from

the impacted classes.
()CllExpresﬁon: context modelChanges: :Change

self.changedElement.implementationRealization.

implementation->select (c:ClassClassifier|
c.operation->includes (self.changedElement.

oclAsType (Interface) .getOperation(self.propertyID) .

oclAsType (Operation)))

Changed Classifier Role — Added Available Operation
Change Code: CCRAAO

Changed Element: model::behaviouralElements::collaborations::ClassifierRole
Added Property: availableOperation

Description: No impact since the model is assumed to be consistent.

Changed Classifier Role — Deleted Available Operation

Change Code: CCRDAO

Changed Element: model::behaviouralElements::collaborations::ClassifierRole
Deleted Property: availableOperation

Description: No impact since the model is assumed to be consistent.

Changed Classifier Role — Changed Base Class Classifier

Change Code: CCRCBCC

Changed Element: model::behaviouralElements::collaborations::ClassifierRole
Changed Property: base

Description: Handled by the rules that deal with a changed class.

Changed Classifier Role — Changed Multiplicity

Change Code: CCRCM

Changed Element: model::behaviouralElements::collaborations::ClassifierRole
Changed Property: multiplicity

Description: Handled by the rule that deals with a changed class multiplicity (CCCM).

95

53. Changed Message Action — Changed Recurrence

Change Code: CMACR

Changed Element: model::behaviouralElements::collaborations: :Message

Changed Property: action.recurrence

Impacted Elements: model: :foundation::core::ClassClassifier
model::foundation::core: :Operation
model: :foundation::core::Postcondition

Description: The base class of the classifier role that sends the changed message is impacted
if the message that sends the changed message does not invoke an operation;
else, the operation, o, that sends the changed message is impacted. The
postcondition of o is also impacted.

Rationale: One of the impacted class’s actions has been changed. The impacted operation
action has also been changed. The impacted postcondition may now not
represent the effect (what must be true on completion) of its operation.

Resulting Changes: The implementation of the impacted class may have to be modified. The method
of the impacted operation may have to be modified. The impacted postcondition
should be checked to ensure that it is correct.

Invoked Rule: Changed Class Operation — Changed Postcondition (CCOCPst)
()CIJEXpreSﬁOHS: context modelChanges::Change def:
let changedMessage:Message = self.changedElement

let sendingOperation:Operation
(if changedMessage.activator.action.oclIsTypeOf (CallAction)
then

changedMessage.sender.base.

operation->select (o:0Operation]|

o.equals (changedMessage.activator.action.operation))
else

null
endif)

context modelChanges::Change -- class
if not changedMessage.activator.oclIsTypeOf (CallAction) then
changedMessage.sender.base

else
null
endif
context modelChanges::Change -- operation
sendingOperation
context modelChanges::Change -- postcondition

sendingOperation.postcondition

54. Changed Composite State — Added Subvertex
Change Code: CCSAS
Changed Element: model::behaviouralElements::stateMachines::CompositeState
Added Property: subvertex
Impacted Element: model::foundation::core::ClassClassifier

Description: The context class of the state machine to which the composite class belongs is
impacted.
Rationale: The context class now has one more state.

Resulting Change: The implementation of the impacted class (or class cluster) may have to be
modified to account for the extra state and the corresponding logic.

()CIJExpresﬁon: context modelChanges: :Change
self.changedElement.stateMachine.context

96

55. Changed Composite State — Deleted Subvertex

56.

Change Code:
Changed Element:
Deleted Property:
Impacted Element:
Description:

Rationale:
Resulting Change:

OCL Expression:

CCSDS

model: :behaviouralElements: :stateMachines: :CompositeState
subvertex

model::foundation::core::ClassClassifier

The context class of the state machine to which the composite class belongs is
impacted.

The context class now has one less state.

The implementation of the impacted class (or class cluster) may have to be
modified to account for the deleted state and the corresponding logic.

-- Same as that of CCSAS.

Changed Transition — Changed Guard

Change Code:
Changed Element:
Changed Property:
Impacted Element:
Description:

Rationale:
Resulting Change:

OCL Expression:

CTCG

model: :behaviouralElements: :stateMachines::Transition

guard

model::foundation::core::ClassClassifier

The context class of the state machine to which the transition belongs is
impacted.

The condition required to trigger the event (in the context class state machine),
of the changed transition, has changed.

The implementation of the impacted class (or class cluster) may have to be
modified to account for the changed guard condition.

-- Same as that of CCSAS.

97

57. Changed Attribute — Changed Changeability

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:

Rationale:

Resulting Changes:

OCL Expressions:

CACC

model::foundation::core: :Attribute

changeability

model: :foundation::core::ClassClassifier
model::foundation::core: :Operation

The bag of impacted operations is such that the changed attribute’s
changeablity is not “changeable” and the postcondition of each impacted
operation possibly updates the changed attribute. The owner (class) of the
attribute is also impacted.

If the attribute’s changeability was changed from ‘“changeable” to
“frozen” then each impacted operation’s method may have to be changed to
ensure that the attribute’s value is not updated nor no additional values are
added/deleted to/from the attribute. If the changeability was changed from
“changeable” to “addOnly” then each impacted operation’s method may have to
be changed to ensure that the attribute’s value is not updated nor no values
deleted from the attribute. The implementation of the impacted class may have
to be changed to ensure that the attribute’s new changeablity property is
observed. For example, if the changeability was changed from “frozen” to
“changeable” then some operations may have to be modified to update the
attribute and/or new operations defined to update the attribute. The variable
declaration for the attribute may have to be changed as well.

The implementation of the impacted operation may have to be changed. The
implementation of the impacted class may have to be changed and/or operations
defined/deleted/modified.

context modelChanges::Change Def:
let affectedClass:ClassClassifier = self.changedElement.
getClassClassifier ()

context modelChanges::Change —-- class
affectedClass
context modelChanges::Change -- operations

if self.changedElement.oclAsType (Attribute) .getProperty (self.
propertyID) .oclAsType (ChangeableKind) <> f#changeable
then
affectedClass.getOperations () ->select (o:Operation]|
o.postcondition.possiblyUpdatesVariable (self.
changedElement.name))
else
null
endif

98

58. Changed Attribute — Changed Initial Value

59.

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:

Rationale:
Invoked Rules:

OCL Expressions:

CACIV
model: :foundation: :core::Attribute
initialvalue

model: :foundation: :core: :Precondition
model: :foundation: :core::Postcondition

The bag of impacted preconditions is such that each impacted precondition uses
the changed attribute. The bag of impacted postconditions is such that each

impacted postcondition uses the changed attribute.

The changed initial value may now violate the impacted preconditions.

changed initial value may now change the impacted postconditions.

Changed Class Operation — Changed Precondition (CCOCPre)

Changed Class Operation — Changed Postcondition (CCOCPst)

context modelChanges::Change -- precondition
self.changedElement.getClassClassifier () .getOperations() .

precondition->select (pr:Precondition|pr.usesVariable (self.
changedElement.name))

context modelChanges::Change -- postcondition
self.changedElement.getClassClassifier () .getOperations() .

postcondition->select (ps:Postcondition|ps.usesVariable (self.

changedElement.name))

Changed Attribute — Changed Multiplicity

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:

Rationale:

Resulting Changes:

OCL Expressions:

CACM

model::foundation::core::Attribute
multiplicity
model::foundation::core::ClassClassifier
model::foundation::core::Operation

The

The bag of impacted operations is such that the precondition of each impacted
operation uses the changed attribute or the postcondition of each impacted
operation accesses the changed attribute. The class that owns the changed

attribute is also impacted.

The methods of the impacted operations may not be accessing the correct
attribute values. The variable declaration for the changed attribute may have to
be changed. In addition, new operations may have to be defined, or operations
deleted. Methods may also have to be changed to accomplish the change to the

attribute.
The implementation of the impacted class may have to be changed.
implementation of the impacted methods may have to be changed.

context modelChanges::Change Def:
let affectedClass:ClassClassifier = self.changedElement.
getClassClassifier ()

context modelChanges::Change -- class
affectedClass

context modelChanges::Change -- operations
affectedClass.getOperations () ->select (o:0Operation]

o.precondition.usesVariable (self.changedElement.name) or
o.postcondition.accessesVariable (self.changedElement.name))

99

The

60. Changed Attribute — Changed Ordering

61.

62.

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:
Rationale:

Resulting Changes:
OCL Expressions:

CACO

model::foundation::core: :Attribute

ordering

model: :foundation::core::ClassClassifier
model::foundation::core: :Operation

Same as that of CACM.

The variable declaration (in the implementation of the impacted class) for the
changed attribute may have to be changed. In addition, new operations may have
to be defined, or operations deleted. Methods may also have to changed to
accomplish the changed ordering of the changed attribute.

Same as that of CACM.

-- Same as that of CACM.

Changed Attribute — Changed Owner Scope

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:
Rationale:

Resulting Changes:
OCL Expressions:

CACOS

model::foundation::core::Attribute

ownerScope

model::foundation::core::ClassClassifier
model::foundation::core::Operation

Same as that of CACM.

The variable declaration (in the implementation of the impacted class) for the
changed attribute may have to be changed. In addition, if the attribute is now
static then an operation may have to be defined to update its value. Also, the
methods of the impacted operations should be checked to ensure that their
access to the changed attribute is of the correct scope.

Same as that of CACM.

-- Same as that of CACM.

Changed Attribute — Changed Target Scope

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:
Rationale:

Resulting Changes:
OCL Expressions:

CACTS

model::foundation::core::Attribute

targetScope

model: :foundation::core::ClassClassifier
model::foundation::core::Operation

Same as that of CACM.

The variable declaration (in the implementation of the impacted class) for the
changed attribute may have to be changed. In addition, if the attribute now
stores static values then the methods of operations that access the attribute may
have to be checked to ensure consistency.

Same as that of CACM.

-- Same as that of CACM.

100

63. Changed Attribute — Changed Type

64.

65.

66.

67.

68.

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:
Rationale:

Resulting Changes:
OCL Expressions:

CACT

model::foundation::core: :Attribute

type

model: :foundation::core::ClassClassifier
model::foundation::core: :Operation

Same as that of CACM.

The variable declaration (in the implementation of the impacted class) for the
changed attribute may have to be changed. The methods of the impacted
operations may have to be changed if they contain type incompatibilities in
regards to the changed attribute.

Same as that of CACM.

-- Same as that of CACM.

Changed Attribute — Changed Visibility

Change Code:
Changed Element:
Changed Property:
Description:

CACV

model::foundation::core: :Attribute
visibility

No impact since the model is assumed to be consistent.

Changed Class Operation — Changed Concurrency

Change Code:
Changed Element:
Changed Property:
Description:

CCOCC

model::foundation::core::Operation

concurrency

No impact. The method of the changed operation may have to be modified since
concurrent access to it has changed.

Changed Class Operation — Changed isAbstract

Change Code:
Changed Element:
Changed Property:
Description:

CCOCiAbs

model::foundation::core: :Operation

isAbstract

No impact since the model is assumed to be consistent. However, the method
may have to be modified to indicate whether the operation is abstract or not.

Changed Class Operation — Changed isPolymorphic

Change Code:
Changed Element:
Changed Property:
Description:

CCOCiP

model::foundation::core: :0Operation

isPolymorphic

No impact since the model is assumed to be consistent. However, the method
may have to be modified to indicate whether the operation can be overridden.

Changed Class Operation — Changed isQuery

Change Code:
Changed Element:
Changed Property:
Description:

CCOCiQ

model::foundation::core::0Operation

isQuery

No impact since the model is assumed to be consistent. However, the method
(implementation) of the changed operation should be checked to ensure that it
observes the 1 sQuery property.

101

69. Changed Class Operation — Changed Owner Scope

70.

71.

72.

73.

Change Code:
Changed Element:
Changed Property:
Description:

CCOCOS

model::foundation::core: :Operation

ownerScope

No impact since the model is assumed to be consistent. However, the method
(implementation) of the changed operation should be checked to ensure that it
observes the ownerScope property.

Changed Class Operation — Changed Precondition

Change Code:
Changed Element:
Changed Property:
Impacted Element:
Description:
Rationale:

Resulting Change:

OCL Expression:

CCOCPre

model::foundation::core::0Operation

precondition

model::foundation::core: :0Operation

The operations that invoke the changed operation are impacted..

The methods of the impacted operations may now be violating the changed
precondition.

The methods of the impacted operations have to be checked to ensure that the
changed precondition is not violated.

context modelChanges: :Change
self.changedElement.getInvokingOperations ()

Changed Class Operation — Changed Postcondition

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

CCOCPst
model::foundation::core: :0Operation
postcondition

model::foundation::core: :Operation
model::foundation::core::Postcondition

Description: The operations that invoke the changed operation are impacted. The
postconditions of the impacted operations are also impacted.
Rationale: The methods of the impacted operations may now have different effects. The
impacted postconditions may have to be changed.
Resulting Change: The methods of the impacted operations have to be checked and possibly
changed.
Invoked Rule: Changed Class Operation — Changed Postcondition (CCOCPst)
OCL Expressions: context modelChanges::Change -- operations
changedOperation.getInvokingOperations ()
context modelChanges::Change -- postconditions
changedOperation.getInvokingOperations () .postcondition
Changed Class Operation — Changed Visibility
Change Code: CCOCV
Changed Element: model::foundation::core::Operation
Changed Property: visibility
Description: No impact since the model is assumed to be consistent. However, the method

may have to be modified to indicate the new visibility of the operation.

Changed Interface Operation — Changed Concurrency

Change Code:
Changed Element:
Changed Property:
Description:

CIOCC

model::foundation::core: :0Operation
concurrency

No impact since the model is assumed to be consistent.

102

74.

75.

76.

77.

78.

Changed Interface Operation — Changed isPolymorphic

Change Code:
Changed Element:
Changed Property:
Description:

CIOCiP

model::foundation::core: :Operation

isPolymorphic

No impact since the model is assumed to be consistent. However, the code may
have to be modified to state that the operation cannot be overridden.

Changed Interface Operation — Changed isQuery

Change Code:
Changed Element:
Changed Property:
Description:

CIOCiQ

model::foundation::core: :Operation
isQuery

No impact since the model is assumed to be consistent.

Changed Interface Operation — Changed Owner Scope

Change Code:
Changed Element:
Changed Property:
Description:

CIOCOS

model::foundation::core::Operation

ownerScope

No impact since the model is assumed to be consistent. However, the code may
have to be modified to indicate the new scope.

Changed Interface Operation — Changed Precondition

Change Code:
Changed Element:
Changed Property:
Description:

CIOCPre

model::foundation::core::0Operation

precondition

No impact since the model is assumed to be consistent. The methods of the
operations that realize the changed interface operation should be checked.

Changed Interface Operation — Changed Postcondition

Change Code:
Changed Element:
Changed Property:
Description:

CIOCPst

model::foundation::core: :0Operation

postcondition

No impact since the model is assumed to be consistent. The methods of the
operations that realize the changed interface operation should be checked.

103

79. Changed Class Operation Parameter — Changed Default Value

80.

Change Code:
Changed Element:
Changed Property:
Impacted Elements:

Description:

Rationale:

Resulting Change:

Invoked Rules:

OCL Expressions:

CCOPCDV

model::foundation: :core: :Parameter

defaultValue

model::foundation::core::Precondition
model::foundation::core::Postcondition

The precondition of the operation to which the changed parameter belongs is
impacted if it uses the changed parameter. The postcondition of the operation is
also impacted if it uses the changed parameter.

The impacted operation contracts (pre/postconditions) are using a parameter
whose default value has changed, so conditional statements, for example, may
yield different results.

The method of the operation to which the changed parameter belongs should be
checked and possibly changes made to account for the changed parameter
default value.

Changed Class Operation — Changed Precondition (CCOCPre)

Changed Class Operation — Changed Postcondition (CCOCPst)

context modelChanges::Change -- precondition
self.changedElement.getOperation() .
precondition->select (pr:Precondition|pr.
usesVariable (self.changedElement.name))

context modelChanges::Change -- postcondition
self.changedElement.getOperation() .
postcondition->select (ps:Postcondition|ps.
accessesVariable (self.changedElement.name))

Changed Class Operation Parameter — Changed Direction

Change Code:
Changed Element:
Changed Property:
Description:

CCOPCD

model::foundation::core::Parameter

direction

There is no impact since the model is assumed to be consistent. However, the
method of the operation to which the changed parameter belongs should be
checked to ensure consistency.

104

81. Changed Class Operation Parameter — Changed Name

Change Code: CCOPCN

Changed Element: model::foundation::core::Parameter

Changed Property: name

Impacted Elements: model: :foundation::core::Precondition
model::foundation::core::Postcondition

Description: Same as that of CCOPCDV.

Rationale: The impacted operation contracts (pre/postconditions) are using a parameter
whose name has changed so they have to account for this change.

Resulting Change: The method of the operation to which the changed parameter belongs should be
checked to ensure that it is using the correct name to reference the changed
parameter.

Invoked Rules: Changed Class Operation — Changed Precondition (CCOCPre)

Changed Class Operation — Changed Postcondition (CCOCPst)

()CIJEXpreSﬁOHS: context modelChanges::Change def:
let parameterOriginalName:String = self.changedElement.

getOperation() .getClassClassifier () .view.model.
application.originalModel.classDiagramView.
getClassClassifier (self.changedElement.getOperation () .
getClassClassifier () .getPathname ()) .getOperation(self.
changedElement.getOperation () .getSignature()) .
parameter->asSequence->at (self.changedElement.
getOperation () .getParameterPosition(self.
changedElement)) .name

context modelChanges::Change -- precondition
self.changedElement.getOperation() .
precondition->select (pr:Precondition|pr.
usesVariable (parameterOriginalName))

context modelChanges::Change -- postcondition
self.changedElement.getOperation() .
postcondition->select (ps:Postcondition|ps.
usesVariable (parameterOriginalName))

82. Changed Interface Operation Parameter — Changed Default Value
Change Code: CIOPCDV
Changed Element: model::foundation::core::Parameter
Changed Property: defaultvalue

Impacted Elements: model: :foundation::core::Precondition
model::foundation::core::Postcondition

Description: Same as that of CCOPCDV.

Rationale: Same as that of CCOPCDV.

Invoked Rules: Changed Class Operation — Changed Precondition (CCOCPre)
Changed Class Operation — Changed Postcondition (CCOCPst)

OCL Expressions: -- same as that of CCOPCDV.

83. Changed Interface Operation Parameter — Changed Direction
Change Code: CIOPCD
Changed Element: model::foundation::core::Parameter
Changed Property: direction
Description: No impact since the model is assumed to be consistent.

105

84. Changed Interface Operation Parameter — Changed Name
Change Code: CIOPCN
Changed Element: model::foundation::core::Parameter
Changed Property: name
Impacted Elements: model: :foundation::core::Precondition
model::foundation::core::Postcondition
Description: Same as that of CCOPCN.
Rationale: Same as that of CCOPCN.
Resulting Changes: The impacted pre/postcondition should be modified so that they reflect the new
parameter name.
()CIJEXpreSﬂOHS: context modelChanges: :Change def:
let parameterOriginalName:String = self.changedElement.
getOperation () .getInterface().view.model.
application.originalModel.classDiagramView.
getInterface (self.changedElement.getOperation() .
getInterface () .getPathname ()) .getOperation(self.
changedElement.getOperation () .getSignature()) .
parameter->asSequence->at (self.changedElement.

getOperation () .getParameterPosition (self.
changedElement)) .name

context modelChanges::Change -- precondition
self.changedElement.getOperation() .
precondition->select (pr:Precondition|pr.
usesVariable (parameterOriginalName))

context modelChanges::Change -- postcondition
self.changedElement.getOperation() .
postcondition->select (ps:Postcondition|ps.
usesVariable (parameterOriginalName))

85. Changed State — Added Activity
Change Code: CSAA
Changed Element: model::behaviouralElements::stateMachines::State
Added Property: doActivity
Impacted Element: model::foundation::core::ClassClassifier

Description: The class (context class) that owns the state machine of the changed state is
impacted.
Rationale: The behaviour of the context class has changed.

Resulting Change: The implementation of the impacted class may have to be modified.

()CIJExpresﬁon: context modelChanges: :Change
self.changedElement.stateMachine.context

86. Changed State — Deleted Activity
Change Code: CSDA
Changed Element: model::behaviouralElements::stateMachines::State
Deleted Property: doActivity
Impacted Element: model::foundation::core::ClassClassifier

Description: Same as that of CSAA.
Rationale: Same as that of CSAA.
Resulting Change: Same as that of CSAA.
OCL Expression: -- Same as that of CSAA.

106

87.

88.

9.

90.

91.

Changed State — Added Entry Action

Change Code:
Changed Element:
Added Property:
Impacted Element:
Description:
Rationale:
Resulting Change:
OCL Expression:

CSAEA

model: :behaviouralElements: :stateMachines
entry
model::foundation::core::ClassClassifier
Same as that of CSAA.

Same as that of CSAA.

Same as that of CSAA.

-- Same as that of CSAA.

Changed State — Deleted Entry Action

Change Code:
Changed Element:
Deleted Property:
Impacted Element:
Description:
Rationale:
Resulting Change:
OCL Expression:

CSDEA

model: :behaviouralElements: :stateMachines
entry
model::foundation::core::ClassClassifier
Same as that of CSAA.

Same as that of CSAA.

Same as that of CSAA.

-- Same as that of CSAA.

Changed State — Added Exit Action

Change Code:
Changed Element:
Added Property:
Impacted Element:
Description:
Rationale:
Resulting Change:
OCL Expression:

CSAExA

model: :behaviouralElements: :stateMachines
exit

model: :foundation::core::ClassClassifier
Same as that of CSAA.

Same as that of CSAA.

Same as that of CSAA.

-- Same as that of CSAA.

Changed State — Deleted Exit Action

Change Code:
Changed Element:
Deleted Property:
Impacted Element:
Description:
Rationale:
Resulting Change:
OCL Expression:

CSDExA

model: :behaviouralElements::stateMachines
exit

model: :foundation::core::ClassClassifier
Same as that of CSAA.

Same as that of CSAA.

Same as that of CSAA.

-- Same as that of CSAA.

Changed State — Added Internal Transition

Change Code:
Changed Element:
Added Property:
Impacted Element:
Description:
Rationale:
Resulting Change:
OCL Expression:

CSAIT

model: :behaviouralElements: :stateMachines
internalTransition
model::foundation::core::ClassClassifier
Same as that of CSAA.

Same as that of CSAA.

Same as that of CSAA.

-- Same as that of CSAA.

107

::State

::State

::State

::State

::State

92. Changed State — Deleted Internal Transition
Change Code: CSDIT

Changed Element: model::behaviouralElements::stateMachines::State
Deleted Property: internalTransition
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: Same as that of CSAA.
Resulting Change: Same as that of CSAA.
OCL Expression: -- Same as that of CSAA.

93. Changed State — Changed State Invariant
Change Code: CSCSI
Changed Element: model::behaviouralElements::stateMachines::State
Changed Property: invariant
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSAA.
Rationale: A state invariant has been changed so the implemenation of the class has to be

checked.

Resulting Change: The implementation of the context class may have to be modified.

OCL Expression: -- same as that of CSAA.

94. Changed State Machine Action — Added Discrete Action
Change Code: CSMAADA
Changed Element: model: :commonBehaviour: :Action
Added Property: action
Impacted Element: model::foundation::core::ClassClassifier

Description: The class (context class) that owns the state machine to which the changed

action belongs is impacted.

Rationale: A discrete action has been added to the action performed by a transition in the
state machine so the implementation of the class has to be checked.
Resulting Change: The implementation of the context class may have to be modified to account for

the added discrete action.
()CIJEXpreSﬁOH: context modelChanges: :Change

if self.changedElement.state->notEmpty then

self.changedElement.state.stateMachine

.context

else —- the else clause assumes that the state machine action

-- belongs to a transition instead of

a state

self.changedElement.transition.stateMachine.context

95. Changed State Machine Action — Deleted Discrete Action
Change Code: CSMADDA
Changed Element: model::commonBehaviour::Action
Deleted Property: action
Impacted Element: model::foundation::core::ClassClassifier
Description: Same as that of CSMAADA.

Rationale: A discrete action has been deleted from the action performed by a transition in
the state machine so the implementation of the class has to be checked.
Resulting Change: The implementation of the context class may have to be modified to account for

the deleted discrete action.
OCL Expression: -- same as that of CSMAADA.

108

96. Changed State Machine Action — Changed Recurrence

97.

Change Code:
Changed Element:
Changed Property:
Impacted Element:
Description:
Rationale:

Resulting Change:

OCL Expression:

CSMACR

model: :commonBehaviour: :Action

recurrence

model: :foundation::core::ClassClassifier

Same as that of CSMAADA.

The recurrence property of an action in the state machine has been changed thus
this has to reflected in the implementation of the context class.

The implementation of the context class may have to be modified to account for
the changed recurrence property.

-- Same as that of CSMAADA.

Changed State Machine Action — Changed Script

Change Code:
Changed Element:
Changed Property:
Impacted Element:
Description:
Rationale:

Resulting Change:

OCL Expression:

CSMACS

model: :commonBehaviour: :Action

script

model::foundation::core::ClassClassifier

Same as that of CSMAADA.

The script property of an action in the state machine has been changed thus this
has to reflected in the implementation of the context class.

The implementation of the context class may have to be modified to account for
the changed script property.

-- Same as that of CSMAADA.

109

Appendix E Case Study

E.1Logical Changes

Eight (8) logical changes were made in the case study. This translated into 70 changes.

The logical The logical changes are described below.

Change # 1
We want to be able to keep track of how many times per session a user attempts to enter
the PIN — after 3 invalid PIN’s the card will be retained

This translates into the following changes:
1. (CCAA)I new attribute in class ATM - numberOfTries : Integer = 0
2. 4 new methods :
a. (CCAO)resetNumTries() : Void (Class ATM)
b. (CCAO)incrementNumTries() : Void (Class ATM)
c. (CCAO)getNumTries() : Void (Class ATM)
d. (CCAO)displayRetainCard() : Void (Class Display)
3. 4 new messages in sequence diagrams
a. (CSDVAM)1.1.2: resetNumTries() (CardInsert)
b. (CSDVAM)3: try = getNumTries() (PINInvalid)
c. (CSDVAM)S: [try <=3] displayRetainCard() (PINInvalid)
d. (CSDVAM)1.3: incrementNumTries() (GetPIN)
4. 1 changed message in PINInvalid sequence diagram
a. (CMACR)old — 3: [err=1]pin = getPIN()
b. new —4: [err = 1 and try < 3] pin = getPIN
5. 1 added object to PINInvalid sequence diagram
a. (CSDVACR)display:Display

Change #2
The ATM’s attribute ‘state’ would be better represented by an enumeration class then a
simple integer

This translates into the following changes:
1. (CCDVAI)New Interface ‘java.util. Enumeration’ — containing two methods
a. (CCAO)hasMoreElements():boolean
b. (CCAO)nextElement():Object
2. (CCDVAC)New Class ‘StateEnum’ containing 10 attributes and 10 methods
(CCAA)Private static final int Off
(CCAA)Private static final int WitingForCard
(CCAA)Private static final int GettingPIN
(CCAA)Private static final int GettingTransType
(CCAA)Private static final int AskingDoAnother
(CCAA)Private static final int GettingAccountType

Mmoo o

110

21.

22.
23.
24.
25.
26.

27.

28.
29.

(CCAA)Private static final int GettingTransAmount

(CCAA)Private static final int PerformingTrans

(CCAA)Private static final int PrintingReceipt

(CCAA)Private int CurrentState

(CCAOQ)Public int getCurrentState()

(CCAO)Public void setToOffState()

. (CCAO)Public void setToWaitingForCard()

(CCAO)Public void setToGettingPINState()

(CCAO)Public void setToAskingDoAnotherState()

(CCAO)Public void setToGettingAccountTypeState()

(CCAOQO)Public void setToGettingTrans AmountState()

(CCAO)Public void setToPerformingTransState()

(CCAO)Public void setToPrintingReceiptState()

(CCAO)Public void setToGettingTransTypeState()
(CCDVAR)New Realization - StateEnum realizes Enumeration
(CCDA)Deleted Attribute in Class ATM : state:int
(CCDVAA) Added association between ClassATM and Class StateEnum
(CSDVAM) ATMShutOff — added message ‘1.1.2: myState.setToOffState()’
(CSDVACR) ATMShutOff — added myState:StateEnum
(CSDVACR) ATMStartup — added myState:StateEnum
(CSDVAM) ATMStartup — added message 1.1.4 : setToWaitingForCardState()’

FeSnOoBOBE AT ER

. (CSDVACR)CardInsert — added myState:StateEnum

. (CSDVAM)CardInsert — added message ‘4: setToGettingPINState()’

. (CSDVACR)GetPIN — added myState:StateEnum

. (CSDVAM)GetPIN — added message ‘1.4: setToGettingTransTypeState()’

. (CSDVACR)Transaction — added myState: StateEnum

. (CSDVAM)Transaction — added message ‘1.3: setToGettingAccountTypeState()’
. (CSDVAM)Transaction — added message ‘ 2.3: setToGettingAmountState()’

. (CSDVAM)Transaction — added message 2.4.3: setToPerformingTransState()’

. (CSDVAM)Transaction — adde dmessage ‘ 2.5.7: set To

AskingDoAnotherState()’

. (CSDVACR)AskingDoAnother — added myState:StateEnum
. (CSDVAM)AskingDoAnother — added message ‘1.3: [response =

1]setToGettingTransTypeState()’

(CSDVAM)AskingDoAnother — added message “ 1.4: [response = 2]
setToPrintingReceiptState()’

(CSDVACR)PrintingReceipt — added myState: StateEnum
(CSDVAM)PrintingRecipet — added message “2.2: setToWaitingForCardState()’
(CSDVACR)Cancel — added myState: StateEnum

(CSDVAM)Cancel — added message “1.1.2: state = getCurrentState()’
(CSDVAM)Cancel — added message “1.1.3: [state =
3]setToWaitingForCardState()’

(CSDVAM)Cancel — added message “1.1.4: [state =4 or 5 or
6]setToAskingDoAnotherState()’

(CSDVACR)CardNotReadable — added myState :StateEnum
(CSDVAM)CardNoReadable — added message ‘3: setToStateWaitingForCard()’

111

30. (CSDVACR)FailedTransaction — added myState:StateEnum

31. (CSDVAM)FailedTransaction — added message “ 4: [err=2 or
err=3]setToGettingTrans AmountState()’

32. (CSDVCR)PINInvalid — added myState:StateEnum

33. (CSDVAM)PINInvliad — added message © 4: [err = 1 and try < 3]
setToGettingPINState()

34. (CSDVAM)PINInvalid — added message © 6:[try >=3]
setToWaitingForCardState()’

Change # 3
An account can be owned by at most 2 customers and at least 1 customer
1. (CAECM) Account — Customer from 1..* to 1,2

Change # 4
A customer must belong to a bank and a customer can only belong to one bank
1. (CAECM)Bank- Customer from 0..* to 1

Change # 5
Class Account is changed to an Abstract class — Rationale: you will never have an
instance of class Account since accounts are always either Savings or Chequeings

accounts
1. (CCCiAbs) Account

Change #6
A confirmation message is displayed to the customer acknowledging the receipt of
his/her deposit:

1.1.3.1:display(““Your message has been accepted.”) // in the Deposit interaction

Change #7
Provides feedback to the ATM operator upon the loading (cash) of the ATM:
1.1.13.1.1.1:displayAmounts() // in the ATMStartUp interaction

Change #8
Error corrections, as follows:
— Changed invariant of the Savings class
— Changed inititial value fo the transAmount attribute in the ATM class
— Corrected a syntax error in the postcondition of the setPIN operation in the
Transaction class
— Changed the message condition for message 1.1.2 in the Inquiry interaction

112

E.2 Change Distribution

Table 1 below presents the change distribution for the ATM case study. Only 16 of the 97

(leaf) changes in the change taxonomy was used in this case study.

Change Code Number of Changes
CCDVAA
CCDVAC
CCDVAI
CCDVAR
CSDVACR
CSDVAM
CSDVDM
CAECM
CCAA
CCDA
CCCiAbs
CCAO
CCRCBCC
CMACR
CACIV
CCOCPst

Table 1: Change Distribution for ATM Case Study

DN |t

— == | BRI = (NN =W === =

E.3Impacts Vs Distance Graphs

Figure E1 below presents the cumulative number of all impacted elements for the ATM
case study while Figure E2 below presents the cumulative number of classes impacted for

the same case study.

113

50 —
& 40-
Ewn /
2530
$57]
g
=)
2 20
3
(&)
10
0

-
N

3 4 5 6
Distance

Figure E1: Cumulative number of all impacted elements vs. distance.

20

"
15 /
"

Cumulative number of
impacted classes
IS}

]

(=}
=4

2 3 4 5 6
Distance

Figure E2: Cumulative number of impacted classes vs. distance

114

E.4 UML Model (Original)

<<entity>>
Transaction

<<control>>
Withdrawal

-errMsg:int

<<entity>> <<entity>>
Savings Account
—> -balance:Double
-AcntNum:Integer
-PIN:Integer
-dailiyAmount:Double
1. 0.
+setAccountNumber:void
<<entity>> +getAccountNumber:Integer
Chequing +setPIN:void
+getPIN:Integer
—| —>| +getBalance:Double
+setBalance:void
+getCardNum:String
—,
-
-
1.*
<<control>>
<<entity>> Bank
Customer
-name:String 0.* 0..* //
-address:String +sendServiceRequest:int
-telNo:Integer +createTransaction:int /
'P|N1|”t59_5’) +createAccount:int /
-cardNum:String +createCustomer:int /
7 /
0? /
/

<<boundary>>
Display

+requestDollarAmount:void

+displayOffScreen:void
+requestBanking:void
+display:void
+displayErrorMsg:void
+requestPIN:void
+echoPIN:void

+requestReEnterAmount:void

+displayAmounts:void
+requestCardNum:void

+displayTransactionSelection:voi
+displayAccountTypes:void

<<boundary>>
CashDispenser

+dispenseCash:void

+getAmount:Double
+setAmount:void
+setAccountType:void
+setAccount:void
+setAccount:void
+setErrorMsg:void
+getErrorMsg:Integer
+setCardNum:void
+setPIN:void
+getAccount:Account(]
+getAccountType:Enun

i
/
/

+doTransaction:void
+validatePIN:boolear

<<control>>
Transfer

+doTransaction:void
+validatePIN:boolear

/ <<control>>
Inquiry

<<control>>
Deposit

+validatePIN:boolear
+doTransaction:void

+doTransaction:void
+validatePIN:boolear

<<control>>
ATM

<<boundary>>
KeyPad

-cardNumber:String
-pinNumber:Integer
-transAmount:Double
-atmBalance:Double
-state:int
-transType:int
-acntType:int

+doAnotherBanking:Integer
+getAccountTypes:Integer
+readPIN:Integer
+getTransactionType:Integer
+getTransactionAmounts:Double
+cancelPressed:void

+doTransaction:int
+getCardNum:String

+getTransactionAmount:Doubl¢| 1

+getAccount:Integer
+printReceipt:void
+performTransaction:int
+getPIN:Integer

+doAnotherBanking:Integer

+initializeATM:void
+setlnitialCash:void
+turnOffATM:void
+cancelPressed:void
+getTransaction:Integer
+notifyATM:void
+notifyCardInserted:void

1

1

0.* 1
<<boundary>> <<boundary>>
Receipt EnvelopeAcceptor

+printRec

eipt:void

+acceptEnvelope:voit

Figure E3: Class Diagram

115

<<boundary>>
OperatorPanel

+getATMAmount:int
+getATMStatus:int
+turnOff:int
+turnON:void

<<boundary>>
CardReader

-cardInserted:Boolean

+readCardNum:String
+insertCard:void

theATM:ATM

;. esponse:=doAnotherBanking():Integer

1.1: requestBanking():void

display:Display

1.2: response:=doAnotherBanking():Integer

keyPad:KeyPad

;. esponse = 1] trans:=doTransaction(cardNum, pin, transType):int

‘fresponse = 2] printReceipt(lines, size):void

i

Figure E4: Sequence (Interaction) Diagram for the AskingDoAnother Use Case

116

Operator

1: turnOff():int

operatorPanel:OperatorPanel|

1.1: turnOffATM():void

theATM:ATM

display:Display

1.1.1: displayOffScreen():void

g

Figure E5: Sequence (Interaction) Diagram for the A TMShutOff Use Case

operatorPanel:OperatorPanell

Operator

1: turnON():void

[
|
|
|
L 1.1: notifyATM(:void

theATM:ATM

display:Display

I

I

I

I
=

1.1.1: ATM_ON:=getATMStatus():int

1.1.3.1.1: amount:=getATMAmou

1.1.2:[ATM_ON = true] requestDollarAmount():void

~1.3:[ATM_ON = true] initializeATM():void

1.3.1: setlnitialCash():void

-
I
I
I
I

Figure E6: Sequence (Interaction) Diagram for the ATMStartUp Use Case

117

aCustomer

keyPad:KeyPad

1: cancelPressed():void

I

I

I

I
——

theATM:ATM

display:Display

1.1: cancelPressed():void

L
I
I
I
I
I

1.1.1: display(msg):void

Figure E7: Sequence (Interaction) Diagram for the Cancel Use Case

cardReader:CardReader

aCustomer

1: insertCard():void

[T

1.1: notifyCardInserted():void

theATM:ATM

2.2: cardNum:=readCardNum():Stri

I
I
I
Dl
I
I
|
-I?E(IlardNum():Smng

2.1: requestCardNum():void

display:Display

L
I
I
I
I
I

"

Figure E8: Sequence (Interaction) Diagram for the CardInsert Use Case

118

theATM:ATM

1: cardNum:=readCardNum():String

cardReader:CardReader]|

2:[cardNum = -1] displayErrorMsg(Integer):void

display:Display

:
g

"]

Figure E9: Sequence (Interaction) Diagram for the CardNotReadable Use Case

theATM:ATM

bank:Bank

trans:Transaction

display:Display

1: trans:=sendServiceRequest(transaction):int

- g

2: err:=getErrorMsg():Integer

g

O

I
I
I
I
I
I
I
3:[err = 2 or err = 3] requestReEnterAmount():void |
I
I
I
I
I
I
|

Figure E10: Sequence (Interaction) Diagram for the FailedTransaction Use Case

119

the ATM : ATM

—-

bank: Bank

1 ———

1: trans: =sendServieRequest (transacton): nt

e

I

deposit : Deposi t toAccount : Account

1.1: trans: =doTransact bn(transact on, account) : vod

S o N

I

2:[trans.getErrorMessage() = 0] acceptEnvebpe(): v

1.1 vallPI N =vatat ePl N(t ransact on. get Account (), account) : bookan

1.1.2:[vatPIN = true] babnce: =get Babnce() : Doubk

1.1.3:[vallPIN = true] setBabnce(babnce + transactbn.getAmount ()):v

-1

—————— &

R NS Y

for the Deposit Use Case

ion) Diagram

Sequence (Interact

Figure E11

120

theATM:ATM display:Display keyPad:KeyPad

E in:=getPIN():Integer

1.1: requestPIN():void

1.2: pin:=readPIN(int):Integer

1.2.1: echoPIN():void

Figure E12: Sequence (Interaction) Diagram for the GetPIN Use Case

theATM:ATM bank:Bank inquiry:Inquiry fromAccount:Account

| 1: trans:=sendServicel

y:

1.1: trans:=doTransaction(transaction, account):void |
.
=

ST validPIN:=validatePIN(transaction.getAccount(), account):boolea

¥

I
|
|
|
|
|
|
1
|

1.1.2/[validPIN] balance:=getBalance():Double

Figure E13: Sequence (Interaction) Diagram for the Inquiry Use Case

121

theATM:ATM bank:Bank trans:Transaction

g

1: trans:=sendServiceRequest(transaction):int

2: err:=getErrorMsg():Integer

______|:__|:____

Eﬁl 1 and try < 3] pin:=getPIN():Integer

Figure E14: Sequence (Interaction) Diagram for the PINInvalid Use Case

theATM:ATM receipt:Receipt

[
Ijﬁl)onse:=doAn0therBanking():Integer
;. esponse = 2] printReceipt(lines, size):void

2.1: printReceipt(lines, size):void

g

Figure E15: Sequence (Interaction) Diagram for the PrintReceipt Use Case

122

theATM:ATM

display:Display

J.?l
~transType:=getTransaction():Integer

1.1: displayTransactionSelection():void

1.2: transType:=getTransactionType():Integer

keyPad:KeyPad

bank:Bank

|

~trans:=doTransaction(cardNum, pin, transType):int

2.1.1: displayAccountTypes(inAccTypes):void

2.1.2: fromAccType:=getAccountTypes():Integer

gt

N

1:[transType = #WITHDRAW or transType = #TRANSFERlor transType = #INQUIRY] fromAccTyp‘e:gelAccoun.”

B

:[transType = #TRANSFER or transType = #DEPOSIT] toIAccType::getAccounl():Integer

2.2.1: displayAccountTypes(inAccTypes):void

2.2.2: toAccType:=getAccountTypes():Integer

;. : amount:=getTransactionAmount():Double

2.3.1: displayAmounts():void

2.3.2: amount:=getTransactionAmounts():Double

g

2.4.1: trans:=createTransaction(transType):int

;. : trans:=performTransaction(cardNum, pin, transType, aerum. toAccType, fromAccType):int

S S

2.4.2: setCardNum(cardNum):void

2.4.1.1: 2.4.1.1:<<create>>

trans:Transaction

2.4.3: setAccountType(toAccType):void

2.4.4: setPIN(pin):void

2.4.5: setAmount(amount):void

2.4.6: trans:=sendServiceRequest(trans, account):int

Figure E16: Sequence (Interaction) Diagram for the Transaction Use Case

" tesponse:=doAnotherBanking():Integer

123

Y 1 i v

the ATM : ATM bank: Bank

1: trans: =sendServceRequest (transact bn): .:_I_..

—

transfer: Transf er toAccount : Account

i

|
|
|
|
1.1: trans: =doTransact bn(transactbn, toAccount, from Account) :vod _
|
|
|

~1.1: vabPI N =vallatePl N'transactbn. get Account (), from Account):bookan

1.1.2:[vatPIN = true] fromBabnce: =get Babnce(): Doubk

T

1.1.3:[babnce > transacton. getAmount()] set Babnce(fromBabnce - transacton. get Am 05_1:” vod

1.1.4:[babnce > transacton. getAmount ()] toBabnce: =get Bahnce() : Doubke

1.1.5:[babnce > transacton. get Amount()] set Babnce(toBabnce + transacton. get Am ount())* vod

S —

IS AT S

for the Transfer Use Case

ion) Diagram

Sequence (Interact

Figure E17

124

theATM : ATM

1. trans: =sendServceRequest (transacton): nt

bank: Bank

wi thdrawal:Withdrfaw al from Account : Account

cashD spenser: CashD spenser|

1.1: trans: =doTransacton(transacton, account): v

I

=

|
|
|
|
|
|
|
|
|
|
1.1.1.1:[vat] bahnce: =get Balnce(): Doube
|
|

1.1.1.2:[babnce > transacton.get Anount()] setBahnce(babnce + transacton. get Am qunt ()):vod

1.1.1.2.1: trans: =sendServieRequest (t ransact pn); nt

S o R,

1

]

for the Withdraw Use Case

ion) Diagram

Sequence (Interact

Figure E18

125

	ABSTRACT
	TABLE OF CONTENTS
	INTRODUCTION
	RELATED WORKS
	PROBLEM DEFINITION AND OBJECTIVES
	OVERVIEW OF THE APPROACH
	TOOL ARCHITECTURE AND OVERVIEW
	MODEL CHANGES
	IMPACT ANALYSIS RULES
	
	
	
	Definition 3:Bag of impacted elements

	DISTANCE MEASURE
	CASE STUDY
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	
	
	
	
	Change # 1

