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ABSTRACT

We extend our modeling of the ionization structure of magnetohydrodynamic
(MHD) accretion-disk winds, previously applied to Seyfert galaxies, to a popu-
lation of quasi-stellar-objects (QSOs) of much lower X-ray-to-UV flux ratios, i.e.
smaller a,y index, motivated by UV /X-ray ionized absorbers with extremely high
outflow velocities in UV-luminous QSOs. We demonstrate that magnetically-
driven winds ionized by a spectrum with ao, >~ —2 can produce the charge states
responsible for C1v and Fe xxv/Fe XXV1 absorption in wind regions with corre-
sponding maximum velocities of v(C1v) < 0.1¢ and v(Fexxv) < 0.6¢ (where ¢
is the speed of light) and column densities Ny ~ 10%% — 10?* cm™2, in general
agreement with observations. In contrast to the conventional radiation-driven
wind models, high-velocity flows are always present in our MHD-driven winds
but manifest in the absorption spectra only for a., < —2, as larger a,x values
ionize the wind completely out to radii too large to demonstrate the presence
of these high velocities. We thus predict increasing velocities of these ionized
absorbers with decreasing (steeper) auy, a quantity that emerges as the defining
parameter in the kinematics of the AGN UV /X-ray absorbers.
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1. Introduction

The launch of Chandra and XMM-Newton ushered a new era in X-ray astronomy of
AGN outflows with the discovery of absorption lines in the spectra that enabled for the first
time accurate charge state and velocity measurements. The long observations of a number
of AGNs revealed transitions of charge states as diverse as Fel through Fe xXVv1. Since any
atomic gas with bound electrons absorbs X-rays these ions span a range of ~ 10° in ionization
paramete ¢, a fact that underscores the great utility of X-ray spectroscopy.

In a subsequent development, Holczer, Behar & Kaspi (2007) and Behar (2009, here-
after, B09) developed a statistical measure of the plethora of the transitions in the Chan-
dra/XMM spectra, the absorption measure distribution (AMD), namely the differential
hydrogen-equivalent column Ny of specific ions per decade of &, i.e. AMD = dNy/dlogé.
Moreover, the AMD was found to be roughly constant, i.e. Ny to be roughly independent of
&, in the small number of Seyferts for which the data quality allowed a quantitative analysis.
The functional form of the AMD is significant as it can provide the plasma density along
the observer’s line of sight (LoS), which for constant AMD is n(r) o< r=1.

Motivated by the AMD systematics, Fukumura et all (2010, hereafter, FKCB) employed
the photoionization code XSTAR (Kallman & Bautista 2001) to determine the ionization
structure of the 2D winds of |Contopoulos & Lovelace (1994, hereafter, CL94) which pro-
vide for density profiles such as n oc r~!. This density dependence on r yields also & oc 771,
thereby allowing for ionic species of decreasing ionization with distance, but of columns sim-
ilar to those of high ionization. Importantly, these models are scale free: with the radial
coordinate r normalized to the Schwarzschild radius, 7, and the mass flux to the Eddington
rate, £ is independent of the black hole mass M, implying broad applicability in galactic
and extragalactic settings. Assuming an ionizing spectral energy density (SED) of F, oc 71
between 1 and 1000 Ryd, these models were successful in reproducing the observed: (i) Slow
velocities (v ~ 100 — 300 km s™!) for the low ionization transitions like Fe Xvil and fast
outflows (v ~ 1,000 — 3,000 km s™!) for the high ionization ones such as Fexxv, and (ii)
AMD almost independent of ¢ for —1 < log& < 4, in agreement with the results of B09.

While X-ray absorption lines in Seyfert spectra are rather recent discoveries, UV absorp-
tion lines in Seyferts and QSOs have been known (e.g.,Crenshaw et _al.2003; Brandt, Laor, & Wills
2000). Also known since the earlier ROSAT surveys (e.g. Kopko et alll1994;/Green & Mathur
1996) is that the X-ray-to-UV flux ratio of the broad absorption line (BAL) QSOs [i.e. QSOs
with blue absorption C1v and Ly« troughs of Av/c ~ 0.04 — 0.1 (e.g. Hewett & Foltz 2003;
Srianand & Petitjean2000)] is smaller than that of the QSO majority, possibly due to absorp-

1¢ = L/(nr?) where L is an ionizing luminosity (between 1 and 1000 Ryd), n is the plasma number
density and r is distance from the ionizing source.
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tion of the X-rays by the BAL plasma. Indeed, this was confirmed by the ASCA detection of
high X-ray absorption column Ny > 5 x 10?3 cm™2 (Gallagher et al/[1999). |Gallagher et al.
(2006, hereafter, G06) later conducted a Chandra survey combined with known UV absorp-
tion properties that supported the earlier claims. The Chandra data of BAL QSOs indicate
that o (BAL) ~ —2.21 (G06) is smaller than the mean QSO value aqx(mean) ~ —2.0 B.
This result is augmented by a correlation between ay, and the 1 —5 keV X-ray photon index
I': increased photoelectric absorption of soft X-rays (i.e. smaller ayy) also yields a smaller
effective I', as observed.

The high outflow velocities of the prominent UV resonance lines (C1v and Lya) in
BAL QSOs were traditionally ascribed to radiation-driven winds (Weymann et al![1991), in
analogy with the winds of O stars (Castor, Abbott & Klein |11975) and were modeled as such
(e.g. Murray et al! 1995, hereafter, MCGV). MCGYV recognized and included heuristically
the effects of wind ionization and its shielding from the QSO X-rays, a crucial process as
ionization reduces severely the effectiveness of line driving. [Proga, Stone, & Kallman (2000,
hereafter, PSK) presented 2D hydrodynamic simulations of these winds, including X-ray
ionization, showing that the required shielding is provided by the section of the wind closest
to the X-ray source that “failed” to launch by being too highly ionized, thereby allowing
exterior segments to achieve velocities in agreement with C1v observations.

However, recent X-ray observations of BAL QSOs revealed absorption features in their
spectra identified with highly ionized Fe XXV /FeXXVI of column density Ny ~ 1023 — 10%
cm™?2 blueshifted to high velocities v/c ~ 0.4 — 0.7 (e.g. APM 0827945255, PG 1115+080
and H 1413+117) indicating that X-ray ionization does not necessarily inhibit outflows, which
can occur at velocities even higher than those seen in the UV lines (e.g., [(Chartas et al. 2002,
2003, 2007; |Chartas et al. 2009, hereafter, C09). Additional X-ray studies have revealed
a number of non-BAL QSOs that also exhibit similar X-ray absorbers at high velocities
v/c ~ 0.1 —=0.5 (e.g., Pounds et al. 2003 ; [Reeves et al. 2003; Reeves et al) 2009), while in
APM 0827945255 C09 have also noted a correlation between I' and the velocity of Fe xxXv.

Motivated by these observations, we examine in this letter the conditions under which
the magnetically-driven winds discussed in FKCB can reproduce the observed velocities of
the BAL QSO X-ray features (Fe xXV) along with those of their more common UV transitions
(C1v). In §2 we summarize the physics of MHD accretion disk winds and the differences of
the ionization properties between Seyferts and BAL QSOs. In §3 we present our results and
demonstrate a number of well-defined correlations among their kinematics, column, spectral
index, and LoS angle and we conclude with a summary and discussion in §4.

2The spectral index aox = 0.384 log( foxev/ fas00) measures the X-ray-to-UV relative brightness where
forev and fas00 are respectively 2 keV and 2500 A flux densities (Tananbaum et all|1979)
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2. The MHD Disk-Wind Model

In this section we present a brief outline of the MHD winds, originally formulated by
Blandford & Payne (1982) and generalized by CL94 to include arbitrary distribution of axial
current with radius. Here and in FKCB we focus on the current distribution that produces
a density profile n(r) oc 7=, crucial for obtaining the observed AMD behavior. The same
distribution leads also to a toroidal field By oc r~! that has equal magnetic energy per decade
of (cylindrical) radius.

Self-similarity is assumed, i.e. power-law radial dependence for all variables and solution
of the remaining angular part of these equations. As discussed in FKCB, this assumption

is not very restrictive and justified a posteriori by the large number of decades of £ in the
AMD form.

The fundamental quantity of axisymmetric MHD is the magnetic stream function ¥(r, 6),
assumed to have the form U(r,0) = (r/r,)?¥(0)¥,, with ¥, the poloidal magnetic flux
through the fiducial wind launch radius at r = r,. W(f) is its angular dependence to be
solved for and ¢ ~ 1 a free parameter that determines the radial dependence of the poloidal
current. The scalings of the poloidal magnetic stream function carry over to the rest of the
wind properties of which we show only the magnetic field, velocity and density (see FKCB):

B(r,0) = (r/r,)"2B(0)B, , (1)
o(r,) = (7’/7’0)_1/2'?)(«9)1)0 , (2)
n(r,0) = (r/ro)zq_?’ﬁ(ﬁ)Bgv;ngl , (3)

where m,, is the proton mass. The dimensionless angular functions denoted by tilde must be
obtained from the conservation equations and the solution of the Grad-Shafranov equation
with initial values on the disk (denoted by the subscript “0”) at (r = r,,60 = 90°). The
density normalization at (r,,90°), setting 7(90°) = 1, is given in terms of dimensionless
mass-accretion rate m (see FKCB) by

- )

N, =
207rs

where ny, is the ratio of the mass-outflow rate in the wind to m, assumed here to be of
order unity and or is the Thomson cross-section. It is important to note that because the
mass flux in these winds depends in general on the radius, 7 always refers to the mass
flux at the innermost flow radius at r ~ r, where r, is the Schwarzschild radius. In the
present treatment we adopt the value ¢ = 0.93 resulting in n oc =4, the steepest density
dependence on 7 implied by the AGN AMD data of B09, and in order to allow for the
somewhat higher observed X-ray column than UV column.

With the dimensionless, mass-invariant wind structure (see Fig. la) for given 7 and
0, the only significant difference in the wind ionization properties across objects of different
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Fig. 1.— (a) Poloidal density structure log(n[cm™3]) of MHD wind with 72 = 0.5; density
contour curves (dotted lines with numbers) and magnetic field lines (solid curves) for M =
10°Mg. Also shown are the positions of the C1v (square = [0) and FeXxxv (circle = o)
which shift outward along LoS of decreasing 6 [from 80° (innermost) to 30° (outermost) by
a 10° increment]. Note that the C1v position for § = 30° lies outside the figure range. (b)
The form of the assumed input SED consisting of a thermal MCD of innermost temperature
kT, =5 eV and a PL continuum of photon index I' normalized by .

luminosity is the spectral distribution of ionizing radiation. While in FKCB we used a
spectrum of the form F, oc v ! (e.g. [Sim et al. m, M), more appropriate for Seyferts,
here we add a bright UV disk source. The spectrum used in the present work is shown in
Figure 1b; it comprises a multicolor-disk (MCD) with an innermost temperature of 5 eV
and an X-ray power-law (PL) of photon index I' normalized by a.x (e.g. Everett m; Sim
). We do not include a soft X-ray excess in the SED, a feature more appropriate for
narrow-line Seyfert spectra (e.g. Pounds et. all 2003; [Sim |29£)_d) The PL has a low energy
cut-off at 5 eV and a high energy one at 200 keV. The total (X-ray plus UV) luminosity is
L=3x10% erg s7%.

3. Results

With the background flow (r = 0.5) and the spectrum of the ionizing radiation (I" =
—ox = 2) given, we follow the same procedure as in FKCB: we split the wind logarith-
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mically into a number of radial zones; we employ XSTAR to compute the ionization and
opacities/emissivity in each zone along an observer’s LoS.

In Figure 2] we show the resulting distribution of the hydrogen-equivalent column den-
sities ANy of iron and carbon for § = 50° as a function of ¢ (optimized here to model the
outflows in APM 08279+5255) along with the corresponding LoS velocity (dashed curve), to
be read on the right vertical axis. Note the well-defined velocity gradient of the wind with
ionization parameter ¢ due to its continuous structure. The Fe XXV ions identified through
their resonance transitions of 1s-2p/3p obtain their peak hydrogen-equivalent columns of
Ng(Fexxv) ~ 2 x 10% cm™? at log¢ 2 5 with velocities v 2 0.5¢. On the other hand,
the C1v ions (2s-2p transitions) yield Ng(C1v) ~ 10?* cm™2 with corresponding LoS veloc-
ities v ~ 0.1¢, roughly consistent with the UV /X-ray absorbers in APM 0827940255 dataﬁ
(C09). The obtained ionization structure directly reflects the spatial positions of these ions;
ie. r(Fexxv)/rs ~5—40 and r(C1v)/rs ~ 200 — 700 for § = 50° (see Fig.1a) assuming a
single Lodl. Note that the equivalent width (EW) of the modeled C1v absorption seems also
to be fairly large due to a wide spread of its peak column distribution (i.e. 1.5 < log& < 4)
equivalent to Av ~ 18,000 km s™! in agreement with the typical width of C1v BALSs (i.e.
Av ~ 10,000 — 30,000 km s71).
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Fig. 2.— Simulated distribution of local column densities ANy (left ordinate) and the
outflow velocity v (dashed curves; right ordinate) as a function of ionization parameter & for
carbon and iron along the § = 50° LoS. The shaded regions denote the parameter space (in
¢ and v) for which the local column is dominated primarily by C1v or Fe xxv.

3t is conceivable that scatterred/reflected UV photons could externally fill in the “true” C1v absorption
feature to seemingly reduce its intrinsic column (S. Kraemer, private communication).

4Different LoS for the UV /Optical and X-ray emitting regions (e.g. Dai et all2010) could alternatively
be modeled with radiation transfer in a more complex source geometry.
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Fig. 3.— (a) Expected correlation of MHD wind velocity v with I' (solid curves; left ordinate)
and .,y (dashed curves; right ordinate) indicated by (I, aoy ) for C1v and Fe xxv with i = 0.5
and 6 = 50°. (b) Expected correlation of wind velocity v with ANy and 6 (indicated by
numbers in degree) for C1v and Fexxv with I' = —a,, = 2. Shared regions indicate the
observed velocity dispersions of C1v and Fe xxv for APM 08279+5255.

The difference in the Fexxv and C1v velocities above from those in FKCB [v(Fe XXV)
~ 3,000 km s7! and v(C1v) ~ 300 km s7!] begs an explanation, considering the scale
invariance of these winds and the similar values of §(~ 50°) presented in both cases. This
can be traced to the different i and/or ionizing spectrum F),. Indeed rm here is ~ 4 times
higher than that in FKCB, leading to a large increase in Ny ; furthermore, ayy is smaller here

than in FKCB, with the present value a,, = —2 consistent with the values of UV-luminous
QSOs (Steffen et al. 2005).

These differences affect the Fe xXv and C1v velocities as follows: The combined increase
in 7 and decrease in ay, imply lower ionization of the plasma at the smallest r, despite the
fact that the ratio L/n, does not change; this is because the luminosity L in the definition of
¢ involves an integral over the spectrum, while the ionization of the gas is affected mostly by
the 2-10 keV X-rays. Therefore, an increase in 1 for a given M achieves: (i) an increase in
the plasma column, density and luminosity and (ii) a relative decrease of the ionizing hard
X-ray flux (smaller a,y). With these changes over FKCB, in the present treatment iron is
not fully ionized even at the smallest radii (r ~ 10r;), leading to v(FexXVv) ~ 0.7¢c. This
partial ionization of the plasma, coupled with the increased column, reduces the ionizing flux
that reaches further out into the wind, especially for high 6, leading to a bootstrap of less
ionization and increasingly higher soft X-ray opacity. Then, because of the ensuing severe
reduction of ionizing photons in the £ ~ 0.1 — 2 keV range, the C1v ions form at smaller
radii (higher velocities), so that the r—2 increase of the photon flux with F 2 64 eV (the
ionization potential of C1v) off-sets the photon depletion due to photoelectric absorption by



the partially ionized plasma.

Recent spectroscopic studies of BAL QSOs have indicated likely correlations between the
maximum outflow velocity of the UV /X-ray absorbers and the spectral indices (G06;C09).
For comparison we show in Figure [3a the modeled outflow velocities for C1v and Fe XXV with
different values of (I', ay) for m = 0.5 and 6 = 50°. It is seen for a,, = —2 that Fe XXV ve-
locities correlate strongly with I' (solid curves) allowing for velocities in the range 0.3 <
v(Fexxv)/c < 0.8 consistent with the X-ray outflow velocity observations in APM 08279+5255
(C09), while the C1v velocity is virtually unaffected. This is because for the steeper X-ray
spectra fewer ionizing photons are available to produce highly-ionized species (e.g. Fe XXV of
ionization potential ~ 9 keV) and the relevant ions are found at smaller distances (higher
velocities) than in the case of harder spectra. This does not affect significantly the overall
ionization of the wind leaving the C1v transition at roughly the same distance. However, a
change in oy, affects strongly the maximum column position of both Fe xxv and C1v, as de-
scribed above. For constant I'(= 2), the velocities of both these transitions correlate strongly
with oy (dashed curves), ranging between 0.1 < v(Fexxv)/c < 0.8 and 0.01 < v(C1v)/c
< 0.15 for —2.1 < aex S —1.6 qualitatively consistent with UV data (Laor & Brandt 2002;
G06; Fan et al.2009). Radiation forces are often invoked to explain these correlations (with
X-ray shielding necessary for high velocities, e.g. MCGV;PSK). In contrast to these models,
high-velocity flows are always present in our model, but only the steep (S —2) allows the
relevant ions (e.g., Fexxv and C1v) to form in their small-r, high-v regions which are oth-
erwise overionized (c.f. FKCB). While some (narrow-line) Seyferts with —1.6 < ag < —1.1
appear to exhibit X-ray outflows with v/c < 0.15 (Dadina et _al. [2005; Tombesi et al. 2010),
these are systematically slower [and generally substantially slower (Holczer, Behar & Kaspi
2007; Holczer, Behar & Arav 2010)] than those of the BAL QSOs with ay S —1.6. Thus,
we propose .y as the defining parameter that determines the velocities of the UV /X-ray
absorption features in AGNs.

While the intrinsic MHD wind ionization structure is determined by v, the observables,
i.e. the velocity widths/shifts of the ions depend strongly also on the observers’ inclination
angle 6. In Figure Bb we present the LoS velocity of the C1v and Fe XXV transitions for
various # with I' = —a,, = 2. Because of the specific geometric shape of the magnetic field
lines and ionization equilibria, characteristic ion velocities vary for different LoS angles [see
also Fig. la for their positional transitions along various LoS from 6 = 80° (innermost) to
30° (outermost)|. In this fiducial model we find that vy (Fexxv) ~ 0.6¢ at 6 ~ 50° and
Umax(C1V) ~ 0.15¢ at 6 ~ 70°. At larger angles the velocities decrease but the integrated
columns are so high that it is doubtful these features are observable. Similar diagrams can
be computed for different values of the parameters (1, I', iy ) and can be directly compared
to observations to assess the fundamental assumptions of these models.
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4. Summary & Discussion

We have demonstrated that purely MHD disk-winds with n oc 7=, originally proposed to
account for the X-ray AMDs in Seyferts, can also encompass combined high-velocity UV /X-
ray absorber properties as diverse as those of BAL QSOs, with those of APM 08279+5255 as
a template. This is extremely important in view of the winds’ scale invariance, with the qual-
itative differences in the absorber properties between Seyferts and QSOs attributed mainly
to their different 7 and . Given the well documented correlation of AGN UV-luminosity
(a proxy for m) with .y (Laor & Brandt [2002; [Steffen et al. 2005; [Fan et all 2009), this
model implies AGN absorber structure that depends essentially on a single parameter .
However, the observables, e.g., columns and velocities, depend additionally on the LoS angle
0, reproducing the QSO BALs C1v (UV) and Fe xxv (X-ray) properties only for sufficiently
large 0, as usually considered.

Our calculations show that C1v forms at r/rg ~ 200 — 700 with corresponding velocity
v(C1v) < 0.1¢c. This value, along with the Fe xxv velocity v(Fe xXv) ~ 0.6¢ at r/rs ~ 5—40,
are consistent with those observed in APM 0827945255 (C09). The shielding of the plasma
from the X-rays at r & 100r,, necessary to produce the high velocity C1v absorption in
radiation-driven wind models (MCGV;PSK), is in our case naturally provided by the faster
components of the same wind launched from even smaller radii. Tonization equilibrium as a
result of steeper ay, allows the relevant charge states to form closer to the central engines
where the wind is faster.

For simplicity, we have ignored here a number of physical processes, e.g. radiation pres-
sure (see PSK) and thermal instability (Krolik, McKee & Tarten|1981;Holczer, Behar & Kaspi
2007), likely to have an impact on our MHD-wind properties, that need to be implemented
(e.g. [Proga 2003). However, the broader validity of our models, gauged by the AMD depen-
dence on &, will be decided by observations and quantitative analysis such as those presented
in B09. It is also encouraging that the ionization properties of certain X-ray absorbers are
consistent with this picture and, in fact, magnetic-driving of disk-winds has been favorably
argued for GRO J1655-40 (e.g. Miller et alll2008) and NGC 4151 (e.g. ICrenshaw & Kraemer
2007), for example. We anticipate the upcoming Astro-H mission to contribute significantly
to this goal by providing more detail on the Fe-K component of the wind, and thus to further
clarify our picture of AGN structure.

Authors are grateful to the anonymous referee for inspirational suggestions. K.F. and
D.K. would like to thank T. Kallman for insightful discussions, and G. Chartas, S. Kraemer,
F. Tombesi and J. Turner for their constructive comments.
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