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In 1998, Shibata and Sasaki [Phys. Rev. D 58, 104011 (1998)] presented an approximate analytical
formula for the radius of the innermost stable circular orbit (ISCO) of a neutral test particle around
a massive, rotating and deformed source. In the present paper, we generalize their expression by
including the magnetic dipole moment. We show that our approximate analytical formulas are
accurate enough by comparing them with the six-parametric exact solution calculated by Pachón
et. al. [Phys. Rev. D 73, 104038 (2006)] along with the numerical data presented by Berti and
Stergioulas [MNRAS 350, 1416 (2004)] for realistic neutron stars. As a main result, we find that in
general, the radius at ISCO exhibits a decreasing behavior with increasing magnetic field. However,
for magnetic fields below 100GT the variation of the radius at ISCO is negligible and hence the
non-magnetized approximate expression can be used. In addition, we derive approximate analytical
formulas for angular velocity, energy and angular momentum of the test particle at ISCO.

PACS numbers: 04.40.Nr, 04.25.Nx, 04.40.Dg, 04.20.Jb

I. INTRODUCTION

The discovery of quasi-periodic oscillations (QPOs) with
frequencies around 1 kHz from several low–mass X–ray
binaries (LMXBs) [1] has been increasing the interest in
the detailed theory of disk accretion onto neutron stars.
Several authors have suggested that at least some of the
kHz QPOs may be related to the Kepler frequency at the
innermost stable circular orbit (ISCO) of the accretion
disk around a neutron star (see e.g. [1, 2]). Stergioulas
et al. [3] have suggested that the frequency of the co–
rotating orbit at ISCO in compact stellar remnant could
be determined through X–ray observations of low–mass
X–ray binaries and it could be used to constraint the
equation of state (EOS) of ultradense matter. Morsink
and Stella [4] have remarked the central rôle of ISCO in
relativistic precession of orbits around neutron stars and
Bulik et al. [5] have shown that observations are consis-
tent with the assumption that the maximum–frequency
QPOs occurs at the ISCO. The last statement could be
used to test general relativity (GR) in the strong–field
regime around accreting neutron stars, or even to mea-
sure the stellar mass by directly comparing the highest
frequency manifest in the X–ray flux with the relativistic
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formula for the orbital frequency in the ISCO orbit [6].

On the other hand, the study of the structure and dynam-
ics of neutron stars endowed with magnetic field in GR
is an active, interesting and challenging theoretical issue.
The influence of magnetic field on the properties of neu-
tron star rotating at the Kepler frequency has been shown
in Ref. [7]. In Ref. [8], Broderick et al. have studied the
implications of very strong magnetic fields on the struc-
ture of neutron stars; in particular, Cardall et. al. [9]
have indicated how magnetic field affects the maximum
mass of stars. In Ref. [10], the ellipticity of the deformed
star due to the rotation and to the magnetic field is cal-
culated, and these two effects are compared to each other
within GR. In addition, the formulation of deformation
of relativistic stars due to the magnetic stress, consid-
ering the magnetic fields as perturbations from spherical
stars, has also been studied in [11] by means of an analyt-
ical treatment assuming weak magnetic fields compared
to gravity. The quadrupole deformation of magnetized
Newtonian stars was discussed by Chandrasekhar and
Fermi [12] and Ferraro [13]. The GR approach was done
fully numerical by Bonazzola and Gourgoulhon [14] and
Bocquet et al. [15], who pointed out that deformations of
the stars induced by magnetic fields become appreciable
only for fields greater than 10GT.

More than one decade ago, Shibata and Sasaki [16] (here-
after S&S) computed an approximate analytical formula
for the radius at ISCO on massive rotating and arbitrarily
deformed sources within GR. They considered the rôle of
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the quadrupole moment of mass in physics related to neu-
tron stars (this fact has also been noted by other authors,
see for instance [17] and references therein), by including
multipolar moments of mass up to the 24–pole order in
their calculations. Yet, as discussed above, there exist an
strong influence of the magnetic field on the structure of
the neutron stars and hence is desirable to include also
the magnetic field in an approximation as the given by
S&S. In the present paper we tackle this point by follow-
ing the procedure by S&S to compute approximate formu-
las for the ISCO including the magnetic dipole moment.
Thereby, our goal is to calculate approximate formulas for
the radius, angular velocity, energy and angular momen-
tum at ISCO for massive rotating and deformed sources
endowed with magnetic dipole. Due to the importance
that these parameters have for magnetized neutron stars
(see e.g. [15, 18]), we should take into account in our
treatment at least the physical parameters of mass, an-
gular momentum, quadrupolar moment of mass, current
octupole moment and magnetic dipole.

The plan of this paper is as follows: In Section II the gen-
eral formalism to calculate the ISCO for a neutral parti-
cle orbiting around a massive source in GR is presented.
The procedure to compute the approximate formulas for
radius , angular velocity, energy and angular momentum
at ISCO of a neutral test particle is shown in Section
III. The results along with their analysis are presented
in Section IV. Finally, we present the conclusions of our
study.

II. ISCO AND THE MULTIPOLAR

STRUCTURE

The metric describing the geometry of space–time around
a stationary and axisymmetric source, can be written as
[19]

ds2 = −f(dt−ωdφ)2+f−1[e2γ(dρ2+dz2)+ρ2dφ2], (1)

where f , γ and ω are functions of the quasi-cylindrical
Weyl-Lewis-Papapetrou coordinates (t, ρ, z, φ). In this
paper we use geometrized units c = G = 1. Hence all the
physical quantities are measured in units of length [L].

In a standard way, we use the line element (1) to find
the geodesic equations for a neutral test particle on the
equatorial plane, which reads as follows:

dt

ds
=

Egϕϕ + Lgtϕ
ρ2

,
dϕ

ds
= −Egtϕ + Lgtt

ρ2
, (2)

gϕϕ

(

dρ

dt

)2

= −(1− E2 gϕϕ

ρ2
− 2EL

gtϕ
ρ2

− L2 gtt
ρ2

)

= −Veff (ρ), (3)

with gtt= = −f , gtϕ = fω and gϕϕ = −fω2 + ρ2/f, and
Veff (ρ) denotes the effective potential.

Circular prograde (or co–rotating) orbits will occur at
radius ρ when Veff = 0 and dVeff/dρ = 0, which im-
poses the following conditions for the angular velocity Ω,
the energy E and the angular momentum L of the test
particle,

Ω =
−gtϕ,ρ +

√

(gtϕ,ρ)2 − gtt,ρgϕϕ,ρ

gϕϕ,ρ
, (4)

E = − gtt + gtϕΩ
√

−gtt − 2gtϕΩ− gϕϕΩ2
, (5)

L =
gtϕ + gϕϕΩ

√

−gtt − 2gtϕΩ− gϕϕΩ2
. (6)

The stability of the circular orbit is determined by the
sign of

d2Veff

dρ2
=

1

ρ2

(

2− E2 dgϕϕ

dρ2
− 2EL

dgtϕ
dρ2

− L2 dgtt
dρ2

)

,

(7)
hereby, ISCOs will occur if and only if d2Veff/dρ

2 = 0.
It is worth mentioning that the above formulae do not
depend on the metric function γ and therefore we will
left aside this metric function in the rest of the paper.

In order to calculate the metric functions in the elec-
trovacuum case, we use the Ernst formulation [20]. Via
Ernst’s procedure, the Einstein-Maxwell equations can
be reformulated in terms of the complex potentials E and
Φ as

(Re(E) + |Φ|2)∇2E = (∇E + 2Φ∗∇Φ) · ∇E ,
(Re(E) + |Φ|2)∇2Φ = (∇E + 2Φ∗∇Φ) · ∇Φ. (8)

Once the potentials are known, the metric functions f
and ω can be constructed by using

E = f − |Φ|2 + i Im(E), (9)

ω =

∫ ∞

ρ

dρ′
ρ′

f2

[

∂Im(E)
∂z

+ 2Re(Φ)
∂Im(Φ)

∂z

−2Im(Φ)
∂Re(Φ)

∂z

]

z=const

. (10)

For getting a more intuitive and physical approach, is
helpful to change the potentials E and Φ to the potentials
ξ and q throughout the following definitions

E :=
1− ξ

1 + ξ
, Φ :=

q

1 + ξ
. (11)

This change elucidates the procedure because the poten-
tials ξ and q are related to the gravitational and electro-
magnetic moment of the source in a very direct way. In
order to calculate the multipolar moments of an asymp-
totically flat space-time, according to the Geroch-Hansen
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definition [21, 22] we use the procedure of Fodor et al.

[23] with the corrections given by Sotoriou and Aposto-
latos [24]. We need to map the initial 3-metric to a con-

formal one hij → h̃ij = Ω2hij . The conformal factor Ω

should satisfy the following conditions: Ω|Λ = D̃iΩ|Λ = 0

and D̃iD̃jΩ|Λ = 2hij|Λ, where Λ is the point added to the
initial manifold that represents infinity. Ω transforms the
complex gravitational and electromagnetic potentials ξ
and q into ξ̃ = Ω−1/2ξ and q̃ = Ω−1/2q respectively. The
conformal factor is given by Ω = r̄2 = ρ̄2 + z̄2, and the
transformation between unbarred and barred variables
reads as

ρ̄ =
ρ

ρ2 + z2
, z̄ =

z

ρ2 + z2
, φ̄ = φ, (12)

which brings infinity at the origin of the axes (ρ̄, z̄) =

(0, 0). The potentials ξ̃ and q̃ can be written in a power
series expansion of ρ̄ and z̄ as

ξ̃ =

∞
∑

i,j=0

aij ρ̄
iz̄j, q̃ =

∞
∑

i,j=0

bij ρ̄
iz̄j. (13)

Due to the analyticity of the potentials at the axis of
symmetry, aij and bij must vanish when i is odd. The
coefficients in the above power series can be calculated
by using the relations [24]

(r + 2)2ar+2,s = −(s+ 2)(s+ 1)ar,s+2 +
∑

k,l,m,n,p,g

(akla
∗
mn − bklb

∗
mn)[apg(p

2 + g2 − 4p− 5g − 2pk − 2gl− 2)

+ ap+2,g−2(p+ 2)(p+ 2− 2k) + ap−2,g+2(g + 2)(g + 1− 2l)] (14)

and

(r + 2)2br+2,s = −(s+ 2)(s+ 1)br,s+2 +
∑

k,l,m,n,p,g

(akla
∗
mn − bklb

∗
mn)[bpg(p

2 + g2 − 4p− 5g − 2pk − 2gl− 2)

+ bp+2,g−2(p+ 2)(p+ 2− 2k) + bp−2,g+2(g + 2)(g + 1− 2l)], (15)

where m = r − k − p, 0 ≤ k ≤ r, 0 ≤ p ≤ r − k with
k and p even, and n = s − l − g, 0 ≤ l ≤ s + 1, with
−1 ≤ g ≤ s − l. These recurrence relations could build
the whole power series of ξ̃ and q̃ from their values on
the axis of symmetry

ξ̃(ρ̄ = 0, z̄) =

∞
∑

i=0

miz̄
i, q̃(ρ̄ = 0, z̄) =

∞
∑

i=0

qiz̄
i, (16)

where the coefficients in the above series expansion are
related to the values of the multipole moments of the
space-time qi ≡ b0i and mi ≡ a0i [23, 24].

III. APPROXIMATE FORMULAS AT ISCO

Following the scheme given by S&S [16] we assume that
the only non vanishing multipole moments are the mass
M0 = M , the angular momentum M1 = qM2, the mass
quadrupole M2 = −Q2M

3, the current octupole mo-
ment M3 = −Q3M

4, the 24-pole M4 = Q4M
5 and

additionally, the magnetic dipole moment M = µM2,
where q,Q2,Q3,Q4 and µ are dimensionless parameters.
In order to keep the approximation consistent up to

O(ǫ4), we formally set q → ǫq, Q2 → ǫ2Q2, Q3 →
ǫ3Q3, Q4 → ǫ4Q4 and µ → ǫ2µ.

With the aim to calculate the approximate potentials (13)
as a truncated power series, we carry out the following
steps: (i) We compute the gravitational and electromag-
netic multipoles up to order twelve (using the corrected
formulas given by Sotiriou and Apostolatos [24]), as a
function of the coefficients on the symmetry axis, a0,j
and b0,j . (ii) By inverting these expressions, we then get
the coefficients a0,j and b0,j as a function of the multi-
poles (see the Appendix and the note [25] at the end of
the paper). (iii) Then, we use the expressions for a0,j
and b0,j along with the recurrence relations (14)-(15), in
order to calculate the coefficients ai,j and bi,j up to O(ǫ4).
We do not present here these quantities because of their
cumbersome form, but they are available under request
to the authors.

Once we know the approximate expressions for the com-
plex potentials (13), it is possible to obtain the approxi-
mate expressions of the Ernst potentials E and Φ by ap-
plying Eq. (11). Consequently, we compute the metric
functions f and ω (9)-(10), by expanding in power series
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of the inverse of ρ:

f = 1 +

11
∑

k=1

(

Cf,k

ρ

)k

+O(ρ−12), (17)

ω =

11
∑

k=1

(

Cω,k

ρ

)k

+O(ρ−12), (18)

where Cf,k and Cω,k are functions of the multipoles.

By using the Eqs. (17) and (18) we can cast the Eq. (7)
as

4
∑

k=0

ǫkAk(ρ,M, q,Q2,Q3,Q4, µ) = 0 . (19)

Solving it for ρ, we obtain for the circumferencial radius
R =

√
gϕϕ at ISCO:

RISCO

6M
= 1− 0.54433q− 0.22651q2 + 0.17992Q2

−0.00323µ2 − 0.23122q3 + 0.26353qQ2

−0.05318Q3 − 0.00765qµ2 − 0.29981q4

+0.44887q2Q2 − 0.06260Q2
2 − 0.11325qQ3

+0.01546Q4 − 0.01572q2µ2 + 0.00312Q2µ
2

−0.00004µ4, (20)

and for the angular velocity, the energy and the angular
momentum at ISCO:

ΩISCO =
1

6
√
6M

(1 + 0.74860q+ 0.78106q2 − 0.23432Q2

+0.00446µ2 + 0.98328q3 − 0.64492qQ2

+0.07433Q3 + 0.01608qµ2 + 1.38828q4

+0.12813Q2
2 + 0.25050qQ3 − 0.02132Q4

−0.00596Q2µ
2 − 1.42351q2Q2 + 0.04191q2µ2

+0.00007µ4), (21)

EISCO = 0.94280− 0.03208q− 0.02977q2 + 0.00794Q2

−0.00010µ2 − 0.03417q3 + 0.01980qQ2

−0.00200Q3 − 0.00035qµ2 − 0.04427q4

−0.00331Q2
2 − 0.00621qQ3 + 0.00049Q4

+0.00012Q2µ
2 + 0.04044q2Q2 − 0.00088q2µ2

+0.00001µ4, (22)

LISCO

M
= 3.46410− 0.94281q− 0.44452q2 + 0.18793Q2

−0.00195µ2 − 0.39579q3 + 0.29982qQ2

−0.03926Q3 − 0.00519qµ2 − 0.44854q4

−0.05055Q2
2 − 0.09282qQ3 + 0.00935Q4

+0.00170Q2µ
2 + 0.49506q2Q2 − 0.01099q2µ2

−0.00002µ4. (23)

IV. RESULTS AND ANALYSIS

First, we verify our results in the vacuum case. We
check our formula for the radius at ISCO (20), by set-
ting Q2 = q2,Q3 = q3,Q4 = q4 and µ = 0, and compar-
ing it with the exact expression given by Bardeen et al.

[26]. Here, we find that the error for q < 0.5 is smaller
than 1%. Next, we compare our expression (20) with the
six–parametric exact solution given by Pachón et al. [27]
along with the numerical data given by Berti and Ster-
gioulas (hereafter B&S) for selected EOS [28]. In this
case, for q < 0.3, the error still being smaller than 0.6%
in all the cases. It should be noted at this stage that de-
spite the mistake in Eqs. (2.24), (2.25), (B1) and (B2) of
S&S (see note [25]), the difference with our expressions
(20)–(23) is smaller than 0.1% and therefore negligible.

Now, we turn our attention to the electrovacuum case.
Starting from the following limiting statements: (i) Mag-
netars lose rotational speed very quickly due to their
high magnetic field. (ii) Given their rarity, the possi-
bility to observe a new-born rapidly rotating magnetar
is negligible. (iii) The amount of data for observed mag-
netars is minimum (cf. [29]) without any data of their
higher–order multipolar structure. (iv) Theoretical stud-
ies reporting numerical data of the multipolar structure
of magnetars (cf. [15]), did not present numerical data
for the radius at ISCO nor numerical data for higher
mass–rotation multipole moments. (v) The Pachón et

al. solution [27] fits very well with realistic numerical
interior solutions for slowly rotating neutron stars, pos-
sessing an arbitrary magnetic dipole parameter. Let us
to assume that the Pachón et al. solution is a good model
for realistic slowly rotating magnetars.

With the aim of testing our approximate formulae, we use
the parameters calculated by B&S for neutron stars, ex-
trapolated to the case of a non-vanishing magnetic dipole.
In order to observe the effect of the magnetic field on the
radius, hereafter we restrict ourselves to the use of the ap-
proximate formula (20) in the presence of magnetic dipole
µ 6= 0, where this approach will be labeled as “Mag” or
in its absence µ = 0, where this approach will be labeled
as “Non-Mag”.
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A rough estimate of the numerical solutions of the
Einstein–Maxwell equations presented by Bocquet et al.
(see Table 2 in [15]) for models of rapidly rotating mag-
netized neutron stars, suggest that the magnetic dipole
M belongs, in average, to the interval 0 to 1032Am2,
corresponding to magnetic fields in the range 0 to 1012T.
Hence, from the proportionality betweenM and the mag-
netic field B, the observed magnetic field for magnetars
ca. 1011T [29], should roughly correspond to a magnetic
dipole moment of about 1031Am2. Moreover, in natural
units the magnetic dipole moment has an order of

M =
10−6

√
µ0G

c2
MS.I, (24)

which represents a value of the magnetic dipole of M ∼
1km2 for observed magnetars (see for instance the para-
graph around Eq. (20) of Ref. [27]).

For the particular case M = 1km2, in Fig.1 we plot
the radii at ISCO for the six parametric exact solution
presented by Pachón et al. (Six-Parametric), the ap-
proximate formula (20) with magnetic dipole (Mag) and
the approximate formula without magnetic dipole (Non-
Mag). Here, we use the data of B&S for EOS AU se-
quence with constant rest mass corresponding to a non–
rotating model of 1.578M⊙ (panel a) and the EOS APRb
sequence with constant rest mass corresponding to the
maximum-mass model in the non–rotating limit 2.672M⊙

(panel b). As can be easily noted from the insets in Fig.1,
for the case of a dipolar magnetic moment of 1031Am2,
the changes introduced in the radius at ISCO by the ap-
proximate formula (20) taking into account the magnetic
dipole are negligible.

In Fig.2 we plot the radii at ISCO for the same param-
eters as in Fig.1, but using the high value M = 10km2.
For EOS AU (panel a) the error for the case qmax ∼ 0.7 is
around 4% for the Non–Mag. case, while it is just close
to 1% for Mag. For EOS APRb (panel b) the errors are
1% for Non–Mag. and 0.5% for Mag. Therefore, it can
be concluded that for very strong magnetic fields (ten
times larger than the ones observed for magnetars) the
influence of the magnetic field on the radius at ISCO is
significantly important, producing a decreasing tendency
on the radius at ISCO with the increasing of the magnetic
dipole strength.

Finally, just to illustrate the influence of the magnetic
dipole M on the radius at ISCO for magnetars, in Fig.3
we plot the radii at ISCO for the six-parametric exact
solution, the magnetized approximate solution and the
non-magnetized one. Here we set the multipole moments
in accordance with typical values for observed magne-
tars: M = 1.402M⊙, q = Q2 = Q3 = Q4 = 10−3. It
can be seen that the radius at ISCO is affected by the
existence of magnetic dipole, with an appreciable varia-
tion with respect to the non-magnetized case. At µ ∼ 2

(a) (b)
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FIG. 1: Case Mnat = 1km2: Radius at ISCO (henceforth
measured in Km) for the EOS AU sequence with constant
rest mass corresponding to a non–rotating model of 1.578M⊙

for prograde orbits (panel a) and for EOS APRb sequence
with constant rest mass corresponding to a sequence that ter-
minates at the maximum–mass non–rotating model in the
non–rotating limit of 2.672M⊙ for prograde orbits (panel b).
The difference between the Mag. and Non–Mag. cases is neg-
ligible, as depicted in the enlargements (insets). Color insets
online.
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FIG. 2: Case M = 10km2: Same EOS as in Fig.1. The differ-
ence between the Mag. and Non–Mag. cases is appreciably
more marked. Color insets online.

(corresponding to a value of the magnetic dipole of about
0.5 × 1032Am2), the errors are close to 3% for the non-
magnetized version and around 1% for the magnetized
version. With this example we intent to show that the
same tendency as discussed above holds for realistic val-
ues of magnetars.

From a mathematical point of view, the strong influence
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FIG. 3: Dependence of RISCO with µ for parameters of ob-
served magnetars. Note that when µ becomes larger the ra-
dius becomes smaller and the formula with magnetic dipole
(labeled as Mag.) is close to the analytical solution (labeled
as Six–parametric.)

of the magnetic dipole for µ ≥ 1, can be explained tak-
ing into account that the magnetic dipole parameter µ
appears into the metric functions by means of |Φ2| and
products of imaginary and real parts of Φ, so for the di-
mensionless magnetic dipole parameter µ its lower order
in the metric functions and therefore in the ISCO formu-
las is of the order µ2. From a physical point of view, it
is a well known fact that in general relativity the mag-
netic field could induce observable effects into the space–
time (see e.g. [30] and references therein) and therefore
changes onto the dynamics of non magnetized neutral
particles orbiting around such sources can be expected
[31].

V. CONCLUDING REMARKS

In this paper, we have obtained simple approximate for-
mulas for the radius, the angular velocity, the energy and
the angular momentum of a neutral test particle at the
innermost stable circular orbit (ISCO). These formulas
correct the results obtained by Shibata and Sasaki [16]
and generalize it to the case of neutral test particles mov-
ing on the equatorial plane around a rotating source en-
dowed with magnetic dipole. In order to test the accuracy
of our approximate expressions, we first have compared it
with the radius at ISCO (calculated for non-magnetized
neutron stars) by means of the Kerr solution, the six-
parametric exact solution given by Pachón et al. [27] and
the numerical data given by Berti and Stergioulas [28] for
selected EOS. In all cases, our formula differs from the
numerical results by at most 0.6% in the slow-rotation
regime (i.e. for j ≤ 0.3). As a main result, it was found
that when using realistic parameters for magnetars (in-

cluding the magnetic dipole moment of the source), the
radius at ISCO exhibits appreciable deviations with a ten-
dency to decrease away from its non-magnetized version,
only if the magnetic field strength is higher than 100GT.
Finally, we want to remark that theoretical models for
slowly rotating magnetars including numerical data for
the higher multipolar structure and the radius at ISCO
are desirable.
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APPENDIX: COEFFICIENTS FOR THE ERNST

POTENTIALS ON THE SYMMETRY AXIS.

The following expressions show the data on the symmetry
axis mi := a0,i and qi := b0,i, obtained by using the
procedure of FHP [23] with the formulas given by Sotiriou
and Apostolatos [24], in order to get a source with the
following multipole structure: Mass M0 = M , angular
momentum M1 = qM2, mass quadrupole M2 = −Q2M

3,
current octupole moment M3 = −Q3M

4, 24-pole of mass
M4 = Q4M

5 and magnetic dipole moment M = µM2

(all the other multipolar moments are set to zero),

a0,0 = M, a0,1 = iM2q,

a0,2 = −M3Q2, a0,3 = −iM4Q3,

a0,4 =
1

70
M5

(

10q2 − 3µ2 − 10Q2 + 70Q4

)

,

a0,5 = −i
1

21
M6

(

q3 − µ2q − 8Q2q + 7Q3

)

,

a0,6 = M7

(

23Q2q
2

231
+

q2

21
− 14Q3q

33
− 17Q2

2

77

−205Q2µ
2

4158
− 32µ2

945
− Q2

21
+

6Q4

11

)

,
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a0,7 = iM8

(

−13q3

231
+

46µ2q

10395
+

16Q2q

77
− 5Q3

33

)

+M8O(ǫ5),

a0,8 = M9

(

− 40q4

3003
+

2623µ2q2

216216
+

536Q2q
2

3003
+

5q2

231

−140Q3q

429
+

257µ4

216216
− 461Q2

2

3003
− 137Q2µ

2

90090

−985µ2

36036
− 5Q2

231
+

45Q4

143

)

+M9O(ǫ5),

a0,9 = iM10

(

−115q3

3003
− 713µ2q

135135
+

120Q2q

1001
− 35Q3

429

)

+M10O(ǫ5),

a0,10 = M11

(

−115q4

7007
− 26808961µ2q2

2412159750
+

3049Q2q
2

21021

+
5q2

429
− 98Q3q

429
+

14777834µ4

1206079875
− 2018Q2

2

21021

+
633179Q2µ

2

21441420
− 7132µ2

328185
− 5Q2

429
+

28Q4

143

)

+M11O(ǫ5),

a0,11 = iM12

(

− q3

39
− 4914823µ2q

689188500
+

32Q2q

429
− 7Q3

143

)

+M12O(ǫ5),

a0,12 = M13

(

− 1569q4

119119
− 27445366301µ2q2

916620705000
− 392Q3q

2431

+
12448Q2q

2

119119
+

q2

143
+

13085405783µ4

549972423000
− 38Q2

2

637

+
2754769229Q2µ

2

54997242300
− 2735479µ2

157134978
− Q2

143

+
315Q4

2431

)

+M13O(ǫ5),

b0,0 = 0, b0,1 = iM2µ, b0,2 = 0, b0,3 = 0,

b0,4 =
1

10
M5qµ, b0,5 = iM6

(

µ3

21
− 1

21
q2µ+

5Q2µ

21

)

,

b0,6 = M7

(

22qµ

945
+

19qQ2µ

378
− Q3µ

6

)

,

b0,7 = iM8

(

−2µ3

297
− 67q2µ

1485
− µ

297
+

25Q2µ

189

)

+M8O(ǫ5),

b0,8 = M9

(

−3137µq3

216216
+

3137µ3q

216216
+

57763Q2µq

540540

+
2749µq

540540
− 140Q3µ

1287

)

+M9O(ǫ5),

b0,9 = iM10

(

−431µ3

30030
− 4124q2µ

135135
− 23µ

6435
+

293Q2µ

3510

)

+M10O(ǫ5),

b0,10 = M11

(

−3466313µq3

172297125
+

1669477µ3q

344594250

+
2461259Q2µq

26507250
− 709967µq

689188500
− 3929Q3µ

64350

)

+M11O(ǫ5),

b0,11 = iM12

(

−334865µ3

26189163
− 32283217q2µ

1454953500

− 97613µ

31177575
+

25724987Q2µ

436486050

)

+M12O(ǫ5),

b0,12 = M13

(

−11686577027µq3

549972423000
+

3542515517µ3q

2749862115000

+
1582913357Q2µq

21152785500
− 24121271µq

7856748900

−20220848Q3µ

654729075

)

+M13O(ǫ5). (A.25)
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Phys. Rev. D 75, 023008 (2007).


