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In 1998, Shibata and Sasaki [Phys. Rev. D 58, 104011 (1998)] presented an approximate analytical
formula for the radius of the innermost stable circular orbit (ISCO) of a neutral test particle around
a massive, rotating and deformed source. In the present paper, we generalize their expression by

including the magnetic dipole moment.

We show that our approximate analytical formulas are

accurate enough by comparing them with the six-parametric exact solution calculated by Pachén
et. al. [Phys. Rev. D 73, 104038 (2006)] along with the numerical data presented by Berti and
Stergioulas [MNRAS 350, 1416 (2004)] for realistic neutron stars. As a main result, we find that in
general, the radius at ISCO exhibits a decreasing behavior with increasing magnetic field. However,
for magnetic fields below 100GT the variation of the radius at ISCO is negligible and hence the
non-magnetized approximate expression can be used. In addition, we derive approximate analytical
formulas for angular velocity, energy and angular momentum of the test particle at ISCO.

PACS numbers: 04.40.Nr, 04.25.Nx, 04.40.Dg, 04.20.Jb

I. INTRODUCTION

The discovery of quasi-periodic oscillations (QPOs) with
frequencies around 1 kHz from several low—mass X-ray
binaries (LMXBs) [1] has been increasing the interest in
the detailed theory of disk accretion onto neutron stars.
Several authors have suggested that at least some of the
kHz QPOs may be related to the Kepler frequency at the
innermost stable circular orbit (ISCO) of the accretion
disk around a neutron star (see e.g. [1, 2]). Stergioulas
et al. [3] have suggested that the frequency of the co—
rotating orbit at ISCO in compact stellar remnant could
be determined through X-ray observations of low—mass
X-ray binaries and it could be used to constraint the
equation of state (EOS) of ultradense matter. Morsink
and Stella [4] have remarked the central réle of ISCO in
relativistic precession of orbits around neutron stars and
Bulik et al. [5] have shown that observations are consis-
tent with the assumption that the maximum—frequency
QPOs occurs at the ISCO. The last statement could be
used to test general relativity (GR) in the strong—field
regime around accreting neutron stars, or even to mea-
sure the stellar mass by directly comparing the highest
frequency manifest in the X-ray flux with the relativistic
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formula for the orbital frequency in the ISCO orbit [6].

On the other hand, the study of the structure and dynam-
ics of neutron stars endowed with magnetic field in GR
is an active, interesting and challenging theoretical issue.
The influence of magnetic field on the properties of neu-
tron star rotating at the Kepler frequency has been shown
in Ref. [7]. In Ref. [8], Broderick et al. have studied the
implications of very strong magnetic fields on the struc-
ture of neutron stars; in particular, Cardall et. al. [9]
have indicated how magnetic field affects the maximum
mass of stars. In Ref. [10], the ellipticity of the deformed
star due to the rotation and to the magnetic field is cal-
culated, and these two effects are compared to each other
within GR. In addition, the formulation of deformation
of relativistic stars due to the magnetic stress, consid-
ering the magnetic fields as perturbations from spherical
stars, has also been studied in [11] by means of an analyt-
ical treatment assuming weak magnetic fields compared
to gravity. The quadrupole deformation of magnetized
Newtonian stars was discussed by Chandrasekhar and
Fermi [12] and Ferraro [13]. The GR approach was done
fully numerical by Bonazzola and Gourgoulhon [14] and
Bocquet et al. [15], who pointed out that deformations of
the stars induced by magnetic fields become appreciable
only for fields greater than 10GT.

More than one decade ago, Shibata and Sasaki [16] (here-
after S&S) computed an approximate analytical formula
for the radius at ISCO on massive rotating and arbitrarily
deformed sources within GR. They considered the roéle of
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the quadrupole moment of mass in physics related to neu-
tron stars (this fact has also been noted by other authors,
see for instance [17] and references therein), by including
multipolar moments of mass up to the 2*-pole order in
their calculations. Yet, as discussed above, there exist an
strong influence of the magnetic field on the structure of
the neutron stars and hence is desirable to include also
the magnetic field in an approximation as the given by
S&S. In the present paper we tackle this point by follow-
ing the procedure by S&S to compute approximate formu-
las for the ISCO including the magnetic dipole moment.
Thereby, our goal is to calculate approximate formulas for
the radius, angular velocity, energy and angular momen-
tum at ISCO for massive rotating and deformed sources
endowed with magnetic dipole. Due to the importance
that these parameters have for magnetized neutron stars
(see e.g. [15, 18]), we should take into account in our
treatment at least the physical parameters of mass, an-
gular momentum, quadrupolar moment of mass, current
octupole moment and magnetic dipole.

The plan of this paper is as follows: In Section II the gen-
eral formalism to calculate the ISCO for a neutral parti-
cle orbiting around a massive source in GR is presented.
The procedure to compute the approximate formulas for
radius , angular velocity, energy and angular momentum
at ISCO of a neutral test particle is shown in Section
ITII. The results along with their analysis are presented
in Section IV. Finally, we present the conclusions of our
study.

II. ISCO AND THE MULTIPOLAR
STRUCTURE

The metric describing the geometry of space—time around

a stationary and axisymmetric source, can be written as
[19]

ds? = — f(dt —wd$)? + f ¥ (d? +d2) + pdd?], (1)

where f, v and w are functions of the quasi-cylindrical
Weyl-Lewis-Papapetrou coordinates (¢, p, z,¢). In this
paper we use geometrized units ¢ = G = 1. Hence all the
physical quantities are measured in units of length [L].

In a standard way, we use the line element (1) to find
the geodesic equations for a neutral test particle on the
equatorial plane, which reads as follows:
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with gr— = —f, gep = fw and g = —fw® + p?/f, and
Vers(p) denotes the effective potential.

Circular prograde (or co-rotating) orbits will occur at
radius p when Vepr = 0 and dVess/dp = 0, which im-
poses the following conditions for the angular velocity €2,
the energy E and the angular momentum L of the test
particle,
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The stability of the circular orbit is determined by the
sign of
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(7)
hereby, ISCOs will occur if and only if d*V,rs/dp® = 0.
It is worth mentioning that the above formulae do not
depend on the metric function v and therefore we will
left aside this metric function in the rest of the paper.

In order to calculate the metric functions in the elec-
trovacuum case, we use the Ernst formulation [20]. Via
Ernst’s procedure, the Einstein-Maxwell equations can
be reformulated in terms of the complex potentials £ and
® as

(Re(&) + |®|*)V3E
(Re(&) + |2 V?® =

(VE 420"V ) - VE,
(VE 4 20*Vd) - VO,  (8)

Once the potentials are known, the metric functions f
and w can be constructed by using

E= f—|®+ilm(&), 9)
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For getting a more intuitive and physical approach, is
helpful to change the potentials £ and ® to the potentials
¢ and ¢ throughout the following definitions

_1-¢ 1
Y ® = 1+¢

This change elucidates the procedure because the poten-
tials £ and ¢ are related to the gravitational and electro-
magnetic moment of the source in a very direct way. In
order to calculate the multipolar moments of an asymp-
totically flat space-time, according to the Geroch-Hansen
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definition [21, 22] we use the procedure of Fodor et al.
[23] with the corrections given by Sotoriou and Aposto-
latos [24]. We need to map the initial 3-metric to a con-
formal one h;; — iLij = Q%h;;. The conformal factor Q
should satisfy the following conditions: |z = ﬁZQ| A=0
and ﬁiﬁjQ|A = 2h;j|a, where A is the point added to the
initial manifold that represents infinity. 2 transforms the
complex gravitational and electromagnetic potentials £
and ¢ into &€ = Q~1/2¢ and § = Q~'/2¢ respectively. The
conformal factor is given by Q = 72 = p? + 22, and the
transformation between unbarred and barred variables
reads as

which brings infinity at the origin of the axes (p,z) =
(0,0). The potentials £ and ¢ can be written in a power
series expansion of p and Z as

bijﬁifj. (13)
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Due to the analyticity of the potentials at the axis of
symmetry, a;; and b;; must vanish when ¢ is odd. The
coefficients in the above power series can be calculated

p= g j)_ ot zZ= g j_ ot b= o, (12) by using the relations [24]
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where m =r—k—p,0 <k <r,0 <p < r—Fk with
kand peven, and n = s—1—g, 0 <[ < s+ 1, with
—1 < g < s — 1. These recurrence relations could build
the whole power series of ¢ and ¢ from their values on
the axis of symmetry

Ep=0,2) =Y mz, §p=072=> ¢z, (I6)
1=0 1=0

where the coefficients in the above series expansion are
related to the values of the multipole moments of the
space-time ¢; = bg; and m; = ag; [23, 24].

IIT. APPROXIMATE FORMULAS AT ISCO

Following the scheme given by S&S [16] we assume that
the only non vanishing multipole moments are the mass
My = M, the angular momentum M; = ¢M?, the mass
quadrupole My = —QyM?3, the current octupole mo-
ment Mz = —QzM?, the 2%-pole My, = Q,M® and
additionally, the magnetic dipole moment M = uM?
where ¢, Qs, O3, Q4 and p are dimensionless parameters.
In order to keep the approximation consistent up to

O(e*), we formally set ¢ — eq, Qa — €2Qz, Q3 —

303, Q4 — €*Qy and pu — €.

With the aim to calculate the approximate potentials (13)
as a truncated power series, we carry out the following
steps: (i) We compute the gravitational and electromag-
netic multipoles up to order twelve (using the corrected
formulas given by Sotiriou and Apostolatos [24]), as a
function of the coefficients on the symmetry axis, ag,;
and by ;. (ii) By inverting these expressions, we then get
the coefficients ag ; and by ; as a function of the multi-
poles (see the Appendix and the note [25] at the end of
the paper). (ili) Then, we use the expressions for ag;
and bg ; along with the recurrence relations (14)-(15), in
order to calculate the coefficients a; ; and b; ; up to O(e?).
We do not present here these quantities because of their
cumbersome form, but they are available under request
to the authors.

Once we know the approximate expressions for the com-
plex potentials (13), it is possible to obtain the approxi-
mate expressions of the Ernst potentials £ and ® by ap-
plying Eq. (11). Consequently, we compute the metric
functions f and w (9)-(10), by expanding in power series



of the inverse of p:
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where Cy, and C,, j, are functions of the multipoles.

By using the Egs. (17) and (18) we can cast the Eq. (7)
as

4
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(19)

Solving it for p, we obtain for the circumferencial radius

R = /95, at ISCO:

Risco

= 1-—0.54433¢ — 0.22651¢° + 0.17992Q,

—0.003231% — 0.23122¢° + 0.26353¢ Qs
—0.05318Q3 — 0.00765¢u> — 0.29981¢*
+0.44887¢* Q5 — 0.06260Q3 — 0.11325¢Q3
+0.01546Q4 — 0.01572¢%42 + 0.00312 Q12
—0.000044*, (20)

and for the angular velocity, the energy and the angular
momentum at ISCO:

1
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GW( q q 2
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+0.07433Q3 + 0.01608¢.% + 1.38828¢"
+0.12813Q2 + 0.25050¢Q3 — 0.02132Q,
—0.00596 Qo2 — 1.42351¢2Q5 + 0.04191¢%u2
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IV. RESULTS AND ANALYSIS
First, we verify our results in the vacuum case. We

check our formula for the radius at ISCO (20), by set-
ting Qs = ¢, Q3 = ¢, Q4 = ¢* and p = 0, and compar-
ing it with the exact expression given by Bardeen et al.
[26]. Here, we find that the error for ¢ < 0.5 is smaller
than 1%. Next, we compare our expression (20) with the
six—parametric exact solution given by Pachén et al. [27]
along with the numerical data given by Berti and Ster-
gioulas (hereafter B&S) for selected EOS [28]. In this
case, for ¢ < 0.3, the error still being smaller than 0.6%
in all the cases. It should be noted at this stage that de-
spite the mistake in Eqs. (2.24), (2.25), (B1) and (B2) of
S&S (see note [25]), the difference with our expressions
(20)—(23) is smaller than 0.1% and therefore negligible.

Now, we turn our attention to the electrovacuum case.
Starting from the following limiting statements: (i) Mag-
netars lose rotational speed very quickly due to their
high magnetic field. (ii) Given their rarity, the possi-
bility to observe a new-born rapidly rotating magnetar
is negligible. (iii) The amount of data for observed mag-
netars is minimum (¢f. [29]) without any data of their
higher—order multipolar structure. (iv) Theoretical stud-
ies reporting numerical data of the multipolar structure
of magnetars (¢f. [15]), did not present numerical data
for the radius at ISCO nor numerical data for higher
mass-rotation multipole moments. (v) The Pachén et
al. solution [27] fits very well with realistic numerical
interior solutions for slowly rotating neutron stars, pos-
sessing an arbitrary magnetic dipole parameter. Let us
to assume that the Pachon et al. solution is a good model
for realistic slowly rotating magnetars.

With the aim of testing our approximate formulae, we use
the parameters calculated by B&S for neutron stars, ex-
trapolated to the case of a non-vanishing magnetic dipole.
In order to observe the effect of the magnetic field on the
radius, hereafter we restrict ourselves to the use of the ap-
proximate formula (20) in the presence of magnetic dipole
1 # 0, where this approach will be labeled as “Mag” or
in its absence p = 0, where this approach will be labeled
as “Non-Mag”.



A rough estimate of the numerical solutions of the
Einstein-Maxwell equations presented by Bocquet et al.
(see Table 2 in [15]) for models of rapidly rotating mag-
netized neutron stars, suggest that the magnetic dipole
M Dbelongs, in average, to the interval 0 to 10%2Am?,
corresponding to magnetic fields in the range 0 to 10*2T.
Hence, from the proportionality between M and the mag-
netic field B, the observed magnetic field for magnetars
ca. 1011T [29], should roughly correspond to a magnetic
dipole moment of about 103'Am?. Moreover, in natural
units the magnetic dipole moment has an order of

I VITYE:
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which represents a value of the magnetic dipole of M ~
1km? for observed magnetars (see for instance the para-
graph around Eq. (20) of Ref. [27]).

For the particular case M = 1km?, in Fig.1 we plot
the radii at ISCO for the six parametric exact solution
presented by Pachén et al. (Six-Parametric), the ap-
proximate formula (20) with magnetic dipole (Mag) and
the approximate formula without magnetic dipole (Non-
Mag). Here, we use the data of B&S for EOS AU se-
quence with constant rest mass corresponding to a non—
rotating model of 1.578 M, (panel a) and the EOS APRb
sequence with constant rest mass corresponding to the
maximum-mass model in the non-rotating limit 2.672M,
(panel b). As can be easily noted from the insets in Fig.1,
for the case of a dipolar magnetic moment of 103'Am?,
the changes introduced in the radius at ISCO by the ap-
proximate formula (20) taking into account the magnetic
dipole are negligible.

In Fig.2 we plot the radii at ISCO for the same param-
eters as in Fig.1, but using the high value M = 10km?.
For EOS AU (panel a) the error for the case gmax ~ 0.7 is
around 4% for the Non-Mag. case, while it is just close
to 1% for Mag. For EOS APRD (panel b) the errors are
1% for Non-Mag. and 0.5% for Mag. Therefore, it can
be concluded that for very strong magnetic fields (ten
times larger than the ones observed for magnetars) the
influence of the magnetic field on the radius at ISCO is
significantly important, producing a decreasing tendency
on the radius at ISCO with the increasing of the magnetic
dipole strength.

Finally, just to illustrate the influence of the magnetic
dipole M on the radius at ISCO for magnetars, in Fig.3
we plot the radii at ISCO for the six-parametric exact
solution, the magnetized approximate solution and the
non-magnetized one. Here we set the multipole moments
in accordance with typical values for observed magne-
tars: M = 1.402Mg, ¢ = Qo = Q3 = Q4 = 1073, Tt
can be seen that the radius at ISCO is affected by the
existence of magnetic dipole, with an appreciable varia-
tion with respect to the non-magnetized case. At u ~ 2
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FIG. 1: Case Myay = lkm?: Radius at ISCO (henceforth
measured in Km) for the EOS AU sequence with constant
rest mass corresponding to a non-rotating model of 1.578 Mg,
for prograde orbits (panel a) and for EOS APRb sequence
with constant rest mass corresponding to a sequence that ter-
minates at the maximum-mass non-rotating model in the
non-rotating limit of 2.672Mg, for prograde orbits (panel b).
The difference between the Mag. and Non—-Mag. cases is neg-
ligible, as depicted in the enlargements (insets). Color insets
online.
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FIG. 2: Case M = 10km?: Same EOS as in Fig.1. The differ-
ence between the Mag. and Non—Mag. cases is appreciably
more marked. Color insets online.

(corresponding to a value of the magnetic dipole of about
0.5 x 10%2Am?), the errors are close to 3% for the non-
magnetized version and around 1% for the magnetized
version. With this example we intent to show that the
same tendency as discussed above holds for realistic val-
ues of magnetars.

From a mathematical point of view, the strong influence
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FIG. 3: Dependence of Risco with p for parameters of ob-
served magnetars. Note that when p becomes larger the ra-
dius becomes smaller and the formula with magnetic dipole
(labeled as Mag.) is close to the analytical solution (labeled
as Six—parametric.)

of the magnetic dipole for ;> 1, can be explained tak-
ing into account that the magnetic dipole parameter pu
appears into the metric functions by means of |®?| and
products of imaginary and real parts of ®, so for the di-
mensionless magnetic dipole parameter p its lower order
in the metric functions and therefore in the ISCO formu-
las is of the order p?. From a physical point of view, it
is a well known fact that in general relativity the mag-
netic field could induce observable effects into the space—
time (see e.g. [30] and references therein) and therefore
changes onto the dynamics of non magnetized neutral
particles orbiting around such sources can be expected
[31].

V. CONCLUDING REMARKS

In this paper, we have obtained simple approximate for-
mulas for the radius, the angular velocity, the energy and
the angular momentum of a neutral test particle at the
innermost stable circular orbit (ISCO). These formulas
correct the results obtained by Shibata and Sasaki [16]
and generalize it to the case of neutral test particles mov-
ing on the equatorial plane around a rotating source en-
dowed with magnetic dipole. In order to test the accuracy
of our approximate expressions, we first have compared it
with the radius at ISCO (calculated for non-magnetized
neutron stars) by means of the Kerr solution, the six-
parametric exact solution given by Pachén et al. [27] and
the numerical data given by Berti and Stergioulas [28] for
selected EOS. In all cases, our formula differs from the
numerical results by at most 0.6% in the slow-rotation
regime (i.e. for 7 < 0.3). As a main result, it was found
that when using realistic parameters for magnetars (in-

cluding the magnetic dipole moment of the source), the
radius at ISCO exhibits appreciable deviations with a ten-
dency to decrease away from its non-magnetized version,
only if the magnetic field strength is higher than 100GT.
Finally, we want to remark that theoretical models for
slowly rotating magnetars including numerical data for
the higher multipolar structure and the radius at ISCO
are desirable.
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APPENDIX: COEFFICIENTS FOR THE ERNST
POTENTIALS ON THE SYMMETRY AXIS.

The following expressions show the data on the symmetry
axis m; = ap,; and ¢; = bo,;, obtained by using the
procedure of FHP [23] with the formulas given by Sotiriou
and Apostolatos [24], in order to get a source with the
following multipole structure: Mass My = M, angular
momentum M; = gM?, mass quadrupole My = —Qy M3,
current octupole moment Mz = —Q3M*, 24-pole of mass
M, = Q,M?® and magnetic dipole moment M = pM?
(all the other multipolar moments are set to zero),
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3510

1669477 13g
344594250

3929054
64350

b — MU (_3466313uq3

172297125
2461259Q5uq _ 709967ug
26507250 689188500

+M11(’)(e5),

bon = 26189163 1454953500

25724987 Qo1 12/7/.5
436486050 ) +MEO(),

.Mlg( 334865.°  32283217¢%u
; _

976134
31177575

boi2 = M (-

11686577027pg> 35425155171
549972423000 ' 2749862115000
1582913357Q0uq  24121271pq
21152785500 7856748900

2022084893 137/.5
654729075 ) +MEO(E).
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