Integrating a Logical Framework and a
Knowledge Management Framework

Maria Alecu,
Supervisors: Florian Rabe, Michael Kohlhase
Jacobs University, Bremen, Germany

February 14, 2012

Abstract

The study of mathematical knowledge and theoretical computer sci-
ence has been concerned with the development of two different types of
frameworks, one related to representation techniques for mathematical
concepts and mechanizations of theorems, and the other related to com-
munication of the knowledge on a large scale and in an interactive way.
For this purpose, logical frameworks such as LF and Knowledge Manage-
ment systems such as OMDoc have been developed. The purpose of this
thesis is to combine the benefits offered by both kinds of frameworks into
a single framework by integrating LF into the MKM system offered by the
MMT platform. In this way, we will have available in a single framework
logic tools such as unification and type-checking but also the advantage
of scaling to large knowledge bases.

1 Introduction

Mathematics has been a central activity of the intellectual efforts to un-
derstand better the world we live in and continues to play a crucial role also
nowadays. Mathematical knowledge continues to grow - even exponentially as it
has been estimated - with the total number of papers being published doubling
every ten - fifteen years [A.M95]. Given this situation, it is crucial to organize
this knowledge in order to be accessible in an efficient way to as much as pos-
sible of the mathematical community. In the meantime, starting with Hilbert’s
program in 1920 [Hil26] and with the ”Principia Mathematica” [WR13], there
has been a constant preocupation for the formalization of mathematics. This
enables the construction of tools that provide assistance to the mathematician
in his efforts to solve problems and verify the correctness of his proofs. We are
thus confronted with two different, even independent research areas, which are
united by a common goal, that is to contribute to the progress of mathematics.

The process of assisting the mathematician in his attempt to solve prob-
lems or verify proofs starts with one of the oldest activities of human knowledge

- logic. Formal logics provide a precise language and a strict set of rules in
which properties and information can be formulated and then exploited via the
set of inference rules. Different logics are suited for different purposes, depend-
ing on the things one needs to represent and explore, thus the next effort was
in providing a uniform way in which one can talk about all logics. This is were
logical frameworks come into play as a general meta-language for specifying and
implementing deductive systems given by axioms and rules of inference. There
are two essential properties of logical frameworks: first of all, they are inde-
pendent of the deductive system one might want to represent and secondly, the
system implementing logical frameworks are focused on in-memory and batch-
processing. The pipeline of processing for such systems usually follows the
following pattern: input file written in concrete syntax - lexing - parsing - in-
memory abstract representation. The abstract syntax enables the use of logic
tools such as automated theorem proving, type-checking, type-reconstruction
etc. Logical frameworks come in two main flavors: hereditary Harrop formulas,
which are implemented by systems such as Isabelle [Pau89] and dependantly
typed A-calculi such as LF [HHP93], with the most notable implementation in
the Twelf system [PS99]. These two implementations serve different purposes:
Isabelle focuses more on the tool support such as semi-automated reasoning,
while Twelf focuses more on the breadth of the logics that can be encoded with
it.

The other part of the mathematical activity with which we are concerned
is providing a uniform way to organize all the new mathematical knowledge as
well as providing tools for querying and updating the base knowledge. This is
the focus of the field of Mathematical Knowledge Management. MKM systems
use large knowledge bases, usually written in a content markup language which
makes them easy to read for a machine without knowledge of the type system:;
thus, we can say that MKM systems are independent of the underlying deductive
system, in the same way as logical frameworks are. However, MKM systems are
very different in the sense that they allow large-scale [KRZ10] and interactive
processing [GLR09]. OpenMath [BCCT04] and OMDoc [Koh00] are two such
markup, content-oriented languages used as standards for representing mathe-
matical knowledge, developed by the research in the MKM area. The fact that
both MKM systems and logical frameworks are independent of the underlying
deductive system stands as a motivation and foundation of the MMT language
[RK11] which basically provides a new abstraction layer in which logical frame-
works such as LF function as plugins and MKM standards such as OMDoc offer
the scaling to a wide class of documents. MMT is a generic, formal module
system for mathematical knowledge that is designed to be applicable to a large
scale of declarative formal base languages and all of the MMT notions are fully
abstract in the choice of the base language.

The purpose of our research is to combine the advantages offered by these
two fields into a single platform, the MMT platform. Our aim is to study logical
frameworks and LF in particular as foundations for MMT. We are interested to
see how much of the logic tools provided by LF can be generalized up to the level
of abstraction provided by MMT. The rest of the work that cannot be managed

by MMT will be handled by the LF plugin in MMT. The research is focused
on two important algorithms, the type-checking algorithm and the unification
algorithm and how they scale up to MMT. Type-checking in LF is an important
algorithm since LF allows us to internalize proofs as objects inside the language,
so type-checking means correctness of the proof. The unification algorithm can
be integrated with other tool support that provide valuable information, such as
automated theorem proving, but it also gives interesting applications by itself.

Since MMT does not have types, the type-checking algorithm is partic-
ular for the LF foundation. We have already implemented the type-checking
algorithm for LF; we will further test it and develop applications for it. Our
next goal is the unification algorithm. We will study unification in the general
setting of MMT and then we will particularize to LF for the processes that
cannot be supported by MMT.

The paper is organized as follows: section 2 describes the theoretical pil-
lars of our research, i.e we will present LF, MMT and the subject of unification.
Section 3 sketches the development of the implementation of LF in MMT and
provides a general discussion about foundations in MMT. Section 4 presents
some interesting applications of our work. We conclude with section 5 that
gives a final overview and the work schedule.

2 Preliminaries

21 LF

LF [HHP93] is a meta-language that allows the representation of de-
ductive systems given by axioms and rules of inference. It achieves this goal
by providing a minimal type systems based on dependent types which pro-
vides many attractive tools such as higher-order abstract syntax [PE88] and
the Curry-Howard isomorphism [How80]. LF occupies the bottom right corner
of Barendregt’s A-cube of abstractions [Bar92], responsible for the type-term
abstraction characteristic to dependent types.

LF contains entities on three levels: terms, types and kinds. Terms are
classified by types and types and type families are classified by kinds. We use
K to range over kinds, A to range over types, M to range over terms, X to refer
signatures and I to refer contexts. The grammar of the system is the following:

K :=type Il

A :a|A1—>A2|AM|Hx:A1.A2
M:u=cla| MMy | x: AM

Y ou=.]c: A%

I v=.|z: AT

One of the principal judgements in LF are the typing and kinding judge-
ments, ' Fx ¢t : Aand I' by A : K. They are parametrized by a signature
containing constants and a context containing the free variables within a term.

We exhibit here two of the typing rules: (see [B.P05] for the complete system)

I'kS:type I'z:SkHt:T
F'FXx:St:x: ST

FFtlsﬂz:SLT FFtQSSQ FFSHESQ
Fl—tltg : [tg/l‘]T

As it can be noticed, the typing judgement uses an additional judgement,
namely the equality judgement. The notion of equality we are using is that of
the definitional equivalence, namely two terms are equal when they are [-n
reducible to one another. We show here two of the equality rules:

T'F whnf(s) =wn whnf(t)
'Es=t

Fx:Sks=tr t not a X\
X :Ss=,nt

The equality judgment uses the reduction to the weak-head normal form,
which is defined by the following rules:

t — t)

b1ty — s

(/\x : A.tl)tg — [tg/l‘]tl

The function whnf(t) applies these rules to the term ¢, until no rule is
applicable. The judgement t; =, t2 tests two terms in weak head normal
form for equivalence. It is necessary to introduce this additional judgement as
testing for equivalence at weak head normal form is much easier than the usual
equivalence. In the case of whnf, we are basically testing the components of
the term for equivalence.

2.2 Unification

Unification has a long history of research [AA01] and it was first started
on first-order logic. The study was extended to higher-order logic, but this led
immediately to complications.

While unification for first-order logic is decidable and for every solution,
there is a most general unifier, as shown by Robinson with the resolution prin-
ciple [J.A68], the problem is undecidable in higher-order logic even for simply
typed lambda calculus. However it is semi-decidable in the sense that if the
problem has a solution, it can be found. A first simple algorithm is a generate-
and-test one, in which the free variables are substituted with long normal forms.
Starting from this idea, Huet [G.H75] designed an algorithm in which this idea

is refined to choose only closed long normal forms for the free variables. Next,
the unification equations are reduced until we have only the so called flexible-
flexible equations in which the head of both of the two terms is a free variable.
It is easily provable that this equations always have a solution, provided that
every type is non-empty. Since we are only interested in a yes/no answer, we
don’t need to resolve these equations but only identify them. The idea was
improved by Miller’s mixed prefix strategy [D.M92] which gives rise to a more
natural formulation of the problem of constraints in the unification process by
formulating unification problems as propositions that need to be proven in an
unification logic.

The problem of higher-order unification in the dependent lambda calcu-
lus was firstly studied by Conan Elliott [C.E89], following the idea of Huet. The
AT calculus poses two additional complications: firstly substitutions for free
variables in terms may also lead to substitutions in types; thus not only terms
need to be unified but also types. Furthermore, the flexible-flexible equations
don’t always have a solution since in the AII calculus there are types that may
not be inhabited. Thus, in this case, we also need to solve the flexible-flexible
equations which leads to an exponential explosion in the cases that need to be
analyzed.

Other attempts at solving this problem were identifying decidable frag-
ments of this problem. The most important one is the pattern fragment which
basically restricts the language to that where symbols of higher order function
type are only applied to distinct bound variables. Starting from this observa-
tion, Miller designed a logic programming language in which all the unification
problems are decidable [D.M91]. However, this language prevents a number of
important representation techniques for LF, as discussed in the paper [F.P91].
One solution is to use the same algorithm as the one for the L) language and
to postpone the unresolved problems as contraints, as it is done in the Twelf
system [PS99].

2.3 MMT

MMT [RK11] is a generic, formal language for modular systems used for
mathematical knowledge representation. The novelty of MMT resides in the fact
that it provides the facilities of both an MKM system by making mathematical
knowledge easily accessible, retrievable and transferable across the Internet and
those of a meta-language in which other deductive systems may be represented,
in a way similar to that of logic frameworks, but one abstraction layer above.

In MMT, mathematical knowledge is defined in terms of four important
units: documents, modules, symbols and objects. The biggest unit of math-
ematical knowledge, the document is represented in MMT as a theory graph,
which is a directed acyclic graph where nodes are theories and edges are links.
A theory or a module is basically a declaration of symbols, while a link can
be thought as a morphism from a theory S to another theory 7. The symbol
level is characterized by constant and structure declarations. The object level

provides the structure of the symbols inside a theory; objects are basically terms
produced by a grammar in which the basic units are constants, variables, ap-
plications and bindings.

In order to scale to large implementation and be web-compliant, MMT
uses canonical identifiers such that evey knowledge item, including those that
are induced have a unique global URI. The URI is tranformed into a URL,
thus relating to the physical location of the items. The grammar of URIs dis-
tinguishes between the four levels mentioned above and provides a set of rules
such that the URIs formed are unambiguous and provide access to items at each
level.

A crucial property of MMT is its foundational independence. Mathemat-
ical knowledge can be produced in different reference systems such as set theory
or type theory. Each of these major directions come into multiple flavors, i.e.
for set theory we have the Zermelo-Fraenkel set theory or the Godel-Bernays
theory, or set theories with or without the axiom of choice. Thus, scalability
across knowledge requires a representation language that is not committed to
any foundation. MMT achieves this goal by encoding a foundation language as
a theory; for instance, the two major foundations, ZFC and LF are represented
as theories inside MMT. Then, the semantics of a specific theory T in terms of
either ZFC or LF is given by a theory morphism between T and the ZFC/LF
theory.

The semantics of the foundation is given externally by the typing and
equality judgements, which are fundamental for any mathematical theory. Each
particular foundation implements these judgements according to its own prin-
ciples.

3 Foundations in MMT

We will study foundations and both their basic and advanced properties.
In particular, we will relate our discussion to the LF logical framework since type
theory is one of the main foundations of mathematics, along with set theory and
LF is one of the most important type theory. Moreover, we have a considerable
number of logics implemented in LF via the Twelf system in the Latin project
[CHK™11], an advantage which will be used for testing purposes.

3.1 Foundations and LF in MMT

At the language level, a foundation is encoded as a theory which acts as
a meta-theory for the other theories. The semantics of an arbitrary theory I"
with meta-theory F' is given by F' through the typing and equality judgements.
At the implementation level, a foundation is encoded as follows:
class Foundation {
def typing (tm : Option[Term], tp : Option[Term], G :
Context = Context()) {...} ;
def equality (tml : Term, tm2 : Term) {...} ;

LF is a particular instance of the Foundation class.

The typing and equality functions are well-established properties of foun-
dations since they give the meaning of the foundation. We will investigate what
other properties fit the characterization of a foundation. Unification is one possi-
bility. However, unification has a different status than the other two functions:
the semantics of the foundation is given already by the typing and equality
judgements while the unification ”inherits” from this semantics. But, it is nat-
ural to put the unification next to these two functions since the unification
algorithm is specific to every foundation.

The unification function will be implemented with the following param-
eters:

def unify(s : Term, T : Term, G : Context)(implicit lib
Lookup) : Boolean = {...}

3.2 Basic properties of foundations

The typing and equality judgements are particular for each foundation.
For LF, we have already implemented these two functions. The algorithms
are basically a translation of the algorithmic version of the typing and equal-
ity judgements described in section 2.1. An important characteristic of type-
checking is that it is decidable, thus our program always terminates.

MMT does not raise new problems to type-checking. On the contrary, it
provides all the necessary ”ingredients”, i.e the constructs of LF, namely A, II,
Y, I' and other necessary functions such as substitutions.

The functions are defined with the following parameters:

def equality (tml : Term, tm2 : Term) (implicit lib : Lookup)
Boolean = { equal(tml, tm2, Context()) }

def check(s : Term, T : Term, G: Context)(implicit lib
Lookup) : Boolean = {

To illustrate what we mean by ”translation” of the rules, consider the
following typing rule:

I'+-Ty:type T,x:T)+FTs:type
'z :T1.15 : type

In code, this appears as:

case Pi(x, a, b) =
val G2 = G ++ OMV(x) % a
(T = Univ(1l) || T = Univ(2)) &
check(a, Univ(l), G) && check (b, T, G2)

We still need to implement expansion of definitions for the typing and
equality algorithms. An algorithm for expanding definitions of constants is non-
trivial since every constant has associated with it a ”"tower” of definitions and
the algorithm is non-deterministic in the following sense: if we need to check
that ¢ == c/, we need to decide how to explore the tower of definitions for ¢
and ¢ such that we obtain the right answer with the minimal number of steps.

3.3 Advanced properties of foundations: Unification

We will implement unification in the general setting of MMT; the unifi-
cation steps that cannot be handled by MMT will be handled by the LF-specific
unification algorithm. The general unification algorithm will enable us to unify
expressions, independent of the semantics provided by foundation, thus avoiding
repetitive work that is handled in the same way by any foundation. However,
this approach has limitations in the sense that reduction operations on terms
are specific to every foundation. For example, the terms ¢ and (x : A.x)c, with
¢ - constant, are unifiable in LF, but would not be unifiable with the algorithm
described for MMT. We are thus interested in providing a coherent system that
will exploit foundation-independance as much as possible and then hand the
unsolvable unification tasks to the LF specific unification algorithm.

3.3.1 General unification for MMT

We will implement an algorithm that will unify generic expressions writ-
ten in the MMT language. The unification algorithm will unify two expressions
based on their forms. This will result in a simple algorithm: it will not take into
account any form of reduction on the terms since reduction rules are dependent
on a foundation.

The grammar of MMT terms is the following:

E:=c|z|QE,FE*)|B(ET,E)
I = |1,z E]

The most important transformations implemented by the algorithm are
the following;:

- T+ Q(Ey, Ey,....,E,) = Q(E|,E,,...E,) =T+ E = E, ANEy = Ey A
..NE,=E,

-THB(E,S)=B(E,§,S)=>THFE=EANFA=AA[JAFS=5

The resulting algorithm is sound, but not complete. However, there is a
special case when the algorithm is complete, namely when Fq; = F; = ¢ and ¢

is injective. This case corresponds to the case of strict definitions, implemented
in the Twelf system [FC98]. This is a concrete example when a concept that
was tailored for the LF framework can be extended to the full power of MMT.

3.3.2 LF-specific unification

As it was mentioned, the problem of unification for higher-order logic is
undecidable; however, it is decidable for a fragment, called the pattern frag-
ment, which arises in most of the unification problems. The idea is to reduce
the higher-order pattern problems into first-order pattern problems. This is
possible with the aid of meta-variables and explicit substitutions [FCTG91].
Meta-variables enable to encode unification goals as variables in an unification
logic, while substitutions permit to collect the substitutions that are applicable
for variables in a term thorugh S-reduction and process them until they become
pattern substitutions which have the desirable property of being invertable. In
the end, we obtain equations of the form X[o], where X is a meta-variable and
o is invertible. Thus, from here, we find X, by inverting the substitution o. The
problems that don’t fall in the pattern fragment are postponed as constraints.

To implement this approach, we need the following steps, as described in
[FCTGI1]:

1. Transform the terms into a representation with de Brujin indices.
The de Brujin representation of a term allows an easier manipulation and
computation with terms since it deals with the problem of a-renaming of
bound variables. In essence, the de Brujin notation captures the form of a
term, without needing to account for the names of bound variables. The
representation of the term Az.\y.yx is AA12. The deBrujin function will
be implemented around the following stub:

def deBrujin(s : Term , G : Context) (implicit
lib : Lookup) : Boolean = {...}

2. The calculus of explicit substitutions.
We will need to define a theory that will enable us to operate with the
concepts of substitutions and meta-variables. This will be the signature
of the following grammar:

A:=K|A—B
n=nil | AT

m=1] X | (ab) | Aa.a| a[s]
n=idd| 1t |a:As|sot

» o

3. "Pre-cook” the terms. The idea of pre-cooking is described in the paper.
It basically raises the free variables to their proper context.

def lower(s : Term, G : Context)(implicit lib
Lookup) : Boolean = {...}

4. Solve the unification equations.

def unifyEquations(list of unification equations,
list of goals, list of constraints): Boolean =

(..

The unification problems are pairs of the form {s,t}, where s needs to be
unified with t; the goals are variables that need to be solved. Whenever we
find a solution to an unsolved variable, we immediately replace it in the set
of unification problems and continue with the new problem. Unification
problems that cannot be solves are postponed as constraints; whenever we
solve a new variable , we also replace it in the constraints and try to solve
again the constraints. The transformations applied to the equations are
those presented in [FCTGY1]

4 Applications

4.1 Type inference in the web browser

An application of the type-checking algorithm has already been devel-
oped, namely type inference in the web browser. Since MMT can also be run
as a HTTP server, this allows the Content Dictionaries of the Latin archive to
be displayed in the browser. The application offers the possibility to select an
expression and displays for each a menu of functions that can be used with those
expressions, among which there is also the type inference function. This sends a
query to the server which ultimately invokes the infer function of the foundation.

10

document derived omdoc

remote module FalsityEzxt
remote module NEGEz=t

theory [IMIPExE meta 1T
melade [IV[P

remote module COMNIExt

remote module DIZTExt

remote module Equiv

= ded Climpl ([pded Alimpl ([g:ded B1f g g))
— e

[prded Aldmp (Bimp C)[g:ded Allrided BlimpE (impE pag) r

o)

ded Aimp (Bimp C)

infer type

impzl ((ded A =dedB =ded) =ded Almp (Bimp C))
= [[ided A —=dedB
ImpZE : (dedAimp (Bimp) =ded A =dedB

reconstructed types
implicit arguments
implicit binders
redundant brackets
Fold

This is very convenient since it provides an interactive way to browse
through the documents in the archive and to quickly identify the type of the
desired expression, a process that for long expression could take the reader a

very long time.

4.2 Auto-completion in a text editor

An interesting application for the unification algorithm will be auto-
completion in a text editor. We illustrate this by three use cases. Note that
the notation D7 superscripted by a symbol stands for the typed arguments of

a function that need to be completed.

send input to
MMT API

unify against
existing symbaols

S~

send result
to editor

Editor

imp

~ O

Knowledge base

o: type

nd: o-> type

imp:o->0->0

impl:({nd A'-=nd B')-=nd (A" == B)
impE: nd (A'=>B')-> nd A'-> nd B’

andi:nd A'->nd B' ->nd (A"\ B')

The above image ilustrates the case when the user wants to write a simple
connective symbol. The editor will indicate her how many arguments the symbol

needs and the type of the symbol.

11

Editor

dB
impl (p: nd A I:r)

send input to
MMT API

unify against
existing symbols

S~

send result
to editor

Knowledge base

o:type

nd: o -> type

o

impl:{nd A'->nd B')-=nd (A' => B')

impE: nd (A'==B")-= nd A'-> nd B’

andli: nd A'->nd B'->nd (A" \B')

Suppose that we have already obtained an information about the type of
an expression and now we want to complete it with the actual expression. In
our case, suppose that we want to write the rule ¢émpl. This will unify against
the rule already represented in the knowledge base and will provide the fields
that need to be completed in order to write the complete rule.

Editor

impl

impE

andl

send input to
MMT API

unify against
existing symbols

S~

send result
to editor

Knowledge base

o:type

nd: o-= type

imp:o->o0->0

impl:(nd A'->nd B')-=nd (A'=> B')
impE: nd (A'==>B')-> nd A'-> nd B'

andl:nd A' -=nd B'->nd (A" A B')

In this last case, multiple expressions unify with the type of the expression
that the user intends to write. All of these expressions will be returned and

displayed in a menu.

5 Conclusion and timeline

By the end of this project, the type-checking algorithm for LF will be
implemented and fully functional. Moreover, we will implement a general uni-
fication algorithm for the MMT language; this will be a simple algorithm that
unifies expressions based on their syntactic form. We will continue with the

12

unification algorithm for the LF foundations, using the steps described above.
The project will be built on top of the already existing implementation of the
MMT platform, written in the Scala language.

Our research effort entails future work in two directions. First of all, the
two algorithms stand as basis for other logic tools such as type reconstruction;
furthermore, they can be used as a basis for a logic programming language, thus
allowing proof search and automated theorem proving. Secondly, the algorithms
by themselves provide interesting applications, as we have shown above.

The expected timelineh for this project is the following:

- Implementing the general unification algorithm for MMT — February 29"

- Testing the type-checking algorithm and finishing the implementation —
February 29"

- Implementation of the unification algorithm for LF — May 1

- Improving readability for the code and documentation — May 15¢

- Final report — May 15"

References

[AAO1]

[A.M95]

[Bar92]

[BCC+04]

[B.PO5]

[C.E89]

[CHK*+11]

A.Robinson and A.Voronkov. Handbook of automated Reasoning.
The MIT Press, North Holland, 2001.

A M.Odlyzko. Tragic loss or good riddance? The impending demise
of traditional scholary journals. International Journal of Human-
Computer Studies, pages 42-71, 1995.

H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gab-
bay, and T. Maibaum, editors, Handbook of Logic in Computer Sci-
ence, volume 2. Oxford University Press, 1992.

S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical
report, The Open Math Society, 2004. See http://www.openmath.
org/standard/om20.

B.Pierce. Advanced Topics in Types and Programming Languages.
The MIT Press, Cambridge, Massachusetts, 2005.

C.Elliott. Higher-order unification with dependant types. Inter-
national Conference on Rewritting Techniques and Applications,
355:121-136, 1989.

M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe.
Project Abstract: Logic Atlas and Integrator (LATIN). In J. Daven-
port, W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Com-
puter Mathematics, volume 6824 of Lecture Notes in Computer Sci-
ence, pages 287-289. Springer, 2011.

13

http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20

[D.MO1]

[D.M92]

[FC98]

[FCTGI1]

[F.P91]
[G.HT5]

[GLROY]

[HHPY3]

[Hil26]

[How80]

[J.AGS]

[Koh00]

[KRZ10]

D.Miller. A logic programming language with lambda-abstractions,
function variables and simple unification. Journal of Symbolic Com-
putation, pages 497-536, 1991.

D.Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, pages 321-358, 1992.

F.Pfenning and C.Schrmann. Algorithms for equality and unification
in the presence of notational definitions. In Types for Proofs and
Programs, page 1657. Springer-Verlag LNCS, 1998.

F.Pfenning, C.Kirchner, T.Hardin, and G.Dowek. Unification via
Explicit Substitutions: The case of Higher-Order Patterns. 1991.

F.Pfenning. Logic Programming in the LF Logical Framework. 1991.

G.Huet. A unification algorithm for typed A calculus. Theoretical
Computer Science, pages 27-57, 1975.

J. Giceva, C. Lange, and F. Rabe. Integrating Web Services into
Active Mathematical Documents. In J. Carette, L. Dixon, C. Sacer-
doti Coen, and S. Watt, editors, Intelligent Computer Mathematics,
volume 5625 of Lecture Notes in Computer Science, pages 279-293.
Springer, 2009.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining log-
ics. Journal of the Association for Computing Machinery, 40(1):143—
184, 1993.

D. Hilbert. Uber das Unendliche. Mathematische Annalen, 95:161—
90, 1926.

W. Howard. The formulas-as-types notion of construction. In To
H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and
Formalism, pages 479-490. Academic Press, 1980.

J.A.Robinson. New directions in mechanical theorem proving. In-
ternational Federation for Information Processing Congress, pages
63-67, 1968.

M. Kohlhase. OMDoc: An Infrastructure for OpenMath Content
Dictionary Information. Bulletin of the ACM Special Interest Group
on Symbolic and Automated Mathematics, 34:43—-48, 2000.

M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the
Large: Modular Representation and Scalable Software Architecture.
In S. Autexier, J. Calmet, D. Delahaye, P. Ton, L. Rideau, R. Rioboo,
and A. Sexton, editors, Intelligent Computer Mathematics, volume
6167 of Lecture Notes in Computer Science, pages 370-384. Springer,
2010.

14

[Paud9]

[PESS]

[PS99]

[RK11]

[WR13]

L. Paulson. The Foundation of a Generic Theorem Prover. Journal
of Automated Reasoning, 5(3):363-397, 1989.

F. Pfenning and C. Elliot. Higher-order abstract syntax. In Program-
ming Language Design and Implementation, pages 199-208, 1988.

F. Pfenning and C. Schiirmann. System description: Twelf - a meta-
logical framework for deductive systems. Lecture Notes in Computer
Science, 1632:202-206, 1999.

F. Rabe and M. Kohlhase. A Scalable Module System. see http:
//arxiv.org/abs/1105.0548, 2011.

A. Whitehead and B. Russell. Principia Mathematica. Cambridge
University Press, 1913.

15

http://arxiv.org/abs/1105.0548
http://arxiv.org/abs/1105.0548

	1 Introduction
	2 Preliminaries
	2.1 LF
	2.2 Unification
	2.3 MMT

	3 Foundations in MMT
	3.1 Foundations and LF in MMT
	3.2 Basic properties of foundations
	3.3 Advanced properties of foundations: Unification

	4 Applications
	4.1 Type inference in the web browser
	4.2 Auto-completion in a text editor

	5 Conclusion and timeline

