
Semantic Tools for Web 2.0 Educational
Platforms

Vlad Catalin Merticariu

Computer Science
Jacobs University Bremen
Campus Ring 1
28759 Bremen
Germany

Type: Guided Research Thesis
Date: May 11, 2012
Supervisor: Prof. Dr. M. Kohlhase

Abstract

Today’s web is moving towards a Semantic state and, with it, the existing
educational platforms will shortly follow up. Having a set of tools which al-
low the gradual migration from Web 2.0 to Web 3.0 constitutes an important
asset when trying to avoid losing the features and advantages that the current
implementations offer.

Localized discussions, the first of the proposed tools, has the purpose of
improving the level of interaction of the user with the content, allowing him
to make context related comments following a natural work flow.

Books 3.0, the second semantic tool, represents a framework for publish-
ing modular content objects in an independent, uncoupled manner, with high
emphasis on context adaptation.

Contents

1 Introduction 3

2 Related Work 4

3 Framework - The Planetary System and Drupal 4

4 Components 5
4.1 Localized Discussion . 5

4.1.1 Description . 5
4.1.2 Technical details . 7

4.2 Books 3.0 - Framework for Semantic Publishing of Modular Con-
tent Objects . 10
4.2.1 Description . 10

4.3 Technical Details . 13

5 Future Work 16
5.1 Localized Discussions . 16
5.2 Books . 16

6 Conclusions 17

2

1 Introduction

The web is moving towards a new form, one that facilitates participatory infor-
mation sharing, interoperability and collaboration between users. Following this
idea, the project proposes two tools which aim at building a system in which the
user represents one of the main components, increasing his incentive to participate
in the development of the community and providing new means of access to the
content.

Transitioning from Web 2.0 to Web 3.0 1 is something to be done incrementally for
the existing platforms, in such a way that the current functionality is not replaced,
but rather used as a base on top of which new pieces are built. This allows the user
to take advantage of the new features, without forcing him to use them, but rather
encouraging him to discover them by himself.

The first focus point of the project is the improvement of the level of interaction
that the user has regarding the content, by introducing the concept of localized dis-
cussions: comments can be made on specific parts of content so that the context
of the discussions is always visible. Especially useful on educational platforms,
where the subjects are often open for discussion and the users encouraged to com-
municate, localized discussions create the perfect environment for developing new
ideas and improving existing ones.

A simple use case of this tool is represented by the course notes of a general univer-
sity course. Students have the possibility to discuss, together with the instructors,
specific parts of the presented content, directly referencing it in their comments.
Besides saving important time for all the categories of users, this also helps the
students to gain a better understanding of the subject and the instructors to identify
the parts which raise the greatest difficulties.

The second focus point of the project is the creation of a framework which allows
independent content modules to be published in a context dependent manner [1].
Starting from a repository of semantically annotated documents, the tool allows
documents to be published in the form of hierarchically organized books. Unre-
lated before publishing, the documents are adapted to the context in which they are
displayed at the presentation time, making their reuse cost and time effective.

The most prominent use case for this tool comes again in the academic environ-
ment, or for educational platforms in general, where parts of the same document
are often presented in different contexts.

1We adopt the nomenclature where Web 3.0 stands for extension of the Social Web with Semantic
Web/Linked Open Data technologies.

3

2 Related Work

Localized discussions are a relatively new concept in WWW. A few implementa-
tions of the idea exist, the most reliable one being on TurnItIn website 2. It focuses
on the user’s experience, addressing issues of navigation, personalization and pre-
sentation.

Comments are added using a navigation menu implemented by a Flash application
3 and their presentation is done by marking the commented text and displaying,
both on place and outside the page, in an overview menu, the discussions. Their
model works well, receiving a great amount of positive feedback on communi-
ties as Stackoverflow4, reason for which I decided to use the same main ideas of
implementation.

Electronic books are a much older concept, considered to have started in the early
1960s, with the NLS project headed by Doug Engelbart at Stanford Research In-
stitute (SRI), and the Hypertext Editing System and FRESS projects headed by
Andries van Dam at Brown University [2] [3] [4].

Current implementation vary widely, the ones that drew my attention being the
system implemented for the Jacobs University’s library 5 and the existing imple-
mentation of Drupal’s Books Module [5]. Common features include hierarchical
navigation and presentation, present in both implementations and developed under
constant user feedback. From this point of view, following their model seemed to
be the best choice in order to come up with a tool which satisfies the needs of most
of the users.

None of them, however, provides means for context adaptation, limiting this way
the conceptual models for the second part of Books 3.0.

3 Framework - The Planetary System and Drupal

Building a new framework would require a great amount of work and time invest-
ment, that is why I focused my attention on the already existing systems that fit my
needs. I used The Planetary System, a semantic environment for document collec-
tions based on Drupal, for several reasons which will be discussed in the following
lines [6].

Drupal code is freely available under the terms of GNU GPL 6, and it is required
2http://turnitin.com
3Adobe Flash (formerly Macromedia Flash) is a multimedia platform used to add animation,

video, and interactivity to web pages.
4http://stackoverflow.com
5http://www.jacobs-university.de/library
6http://www.gnu.org/licenses/gpl.html

4

to comply with the Open Source Initiatives (OSI) criteria for open source software.
These criteria mean open and accessible source code, free redistribution and a non-
restrictive license. The Principles of Drupal require the code to have low demands
on resources, to be standardsbased (XHTML and CSS), to be documented and to
be modular, extensible, scalable, and maintainable.

There are several categories of features that gave Drupal superiority compared to
other systems:

• The user management system - Through the finetuned user management sys-
tem, the site administrator can customize access levels for different parts of
the site and can define user groups, roles, and permissions assigned to roles.
Drupal also has a version control feature, which tracks the details of content
update and allows the incorporation of feedback from the community on the
website.

• The library modules - The Drupal core comes with tools for user manage-
ment, metadata functionalities using controlled vocabularies and XML pub-
lishing for content sharing purposes, tools for content creation, management,
publishing, and presentation.

• The Books module - Provides the implementation needed for hierarchical
navigation and storage [7].

4 Components

4.1 Localized Discussion

4.1.1 Description

Localized comments and references have the purpose of increasing the platform’s
usability by making pieces of relevant information available right away, in the con-
text they are needed, and also by giving the user the opportunity to surprise impor-
tant aspects of the article in a content dependent manner.

The implementation of this feature is based on Asynchronous JavaScript and XML
(AJAX) and consists of two parts: viewing and adding comments.

Inserting a localized comment is done by highlighting the area to which it corre-
sponds (Figure 1) and accessing a simple form which opens in a pop-up window,
so the navigation through content is not interrupted (Figure 2) .

5

Figure 1: Selecting the words ”Pellentesque habitant” in order to add a localized
comment.

Figure 2: Pop-up modal box opened in order to insert the localized comment.

For the presentation of the comments I used the already running model of TurnItIn
7, which consists in highlighting the area to which a comment corresponds and
displaying it on hover or on click, depending on the user’s preferences (Figure 3) .
A summary of all localized comments on the page is also available in the comments
section, making navigation through the article easier when it comes to following
suggestions or questions from the community.

A further component of this module is the integration with Drupal’s default user
7http://turnitin.com

6

Figure 3: Localized comment displayed on hover.

profile, leaving him in control of basic settings as the one mentioned above, in the
attempt to increase the user-friendliness of the platform [8].

At the infrastructure level, localized discussions are integrated into Drupal’s default
commenting system, fact that allows us to take advantage of the core features for
user roles and permissions [9].

4.1.2 Technical details

Implementing localized discussions raises several problems, from finding a mean-
ingful way of binding a comment to a piece of text, to making its insertion and
display in ways that don’t appear unnatural to the user. The implementation and
generated work flow follow several steps, which we are going to explore in the next
lines.

• Preparing the content
When displaying an article or a page, a way of identifying each word’s po-
sition is needed. Creating a localized discussion involves a relation between
the comment itself and the context to which it is bind, so the page should pro-
vide an easy way to access and store it. There are three obvious ideas which
could solve this problem, however none of them works straight forward.

Using the actual words as context to be stored is the first thing that may
come to one’s mind because retrieving their value can be easily done with
Javascript. There are several reasons for which this method doesn’t work
right away. The first, most important one, is that the same word can appear
in several places in the same article. This implies that the relation between
comments and context is not one to one, but one to many, which would make
the linking between the discussion and the context impossible. Moreover,
editing a word on which a comment exists or adding a similar word would

7

cause the bind to malfunction. Thus, this method wouldn’t be suitable, even
though the implementation effort would be minimal.

Another method for binding a comment to an article is using the page coor-
dinates of the point to which the discussion has been initialized. Even tough
it appears to do the job, this method is very artificial, unaware of the context
and very unstable between browsers. Moreover, any content modification
would cause all the comments to be misplaced, a problem that would be
very expensive to solve and which would occur frequently. For this reasons
I decided to look further, searching for less obvious solutions, which, at the
cost of a more difficult implementation, would confer more stability.

A third solution to this issue is finding a way to establish a word counter
and bind the discussions to the number or numbers of the selected words.
This has to provide a stable way of binding the comments to the article’s
text and has to be invariant to text editing. For this reason, the counting is
done right after the document has been displayed, on the client, every time
it is accessed. Its implementation is done using Javasript, operating on the
HTML of the page in the following way:

– Extract the HTML of the page.

– Define and initialize a global counter.

– Define and initialize a resulting HTML.

– Use a regular expression to identify the HTML tags, so only the text is
affected.

– Iterate over the text and, if an HTML tag is found, join it to the result.

– If a word is found, wrap it in a span HTML element, using the global
counter as id, increase the counter value and join the wrapped word to
the result.

– Use the result to replace the HTML of the page.

Applying this method causes the following HTML code to be transformed
as shown:

<p>
Lorem ipsum dolor sit

amet.

</p>

becomes:

8

<p>
Lorem
ipsum
dolor
sit

amet.

</p>

Now the page is prepared for inserting comments because selecting a word
or a group of words returns their counters as well, as ids of the wrapping
HTML elements. This is enough for creating a one to one relation between
comments and context, but requires additional actions when storing the com-
ment, in order to ensure invariance to editing, actions which we will discuss
in the next sections.

• Using a modal window to display the comment form and injecting HTML

In order not to interrupt the navigation throughout the article, the default
comment form provided by Drupal is used in a modal view. A simple service
is implemented for retrieving the form corresponding to the specified article,
which is then displayed in an iframe based on the Colorbox jQuery Plugin 8,
using an AJAX request to the service page.

Using the default comment form allows us to take advantage of Drupal’s
role-permission system, localized discussions being treated as normal com-
ments. Moreover, the binding between the comment and the corresponding
article is done automatically, leaving only the task of binding the comment
to the context.

From the page preparation part, word counters are returned and stored to-
gether with the unique identifier of the comment, by overriding the actions
performed at the submission of the comment form. The only remaining prob-
lem is invariance to editing. If words are added or removed to or from the
article, the counter changes. In order to avoid changing the binding of the
comments together with the counter, at the time the comment form is sub-
mitted, HTML markers are injected around the targeted words and a new
version of the document is saved. This ensures that the comments are going
to remain in the same context as they were initially inserted, no matter how
many changes are made in the article.

Deleting a piece of content which has a comment attached doesn’t trigger
any action initially. This problem is handled at the display time.

8http://www.jacklmoore.com/colorbox

9

• Displaying localized discussions

The display of the localized discussions is done in two steps:

– As normal comments, creating an overview of all the discussions on
the page, handled by Drupal by default.

– In place, on the page, at hover or click on a commented word, handled
by a Javascript binding.

The binding first checks whether commented words exist, searching for HTML
markups inserted in the previous step. Several actions follow:

– If the markup exists and is empty (i.e. the word has been deleted), the
markup is removed and the binding between the comment and the word
is unset, keeping the comment as unreferenced.

– For the markups which are not empty, special CSS styles are applied,
comment bodies are loaded from the same page (they exist as normal
comments so they are rendered together with the page) and are regis-
tered for display at the user’s chosen events (hover or click)[10] [11].

– When the registered event is triggered, the comments are displayed in
place, in a tooltip, using the Selected Text Sharer jQuery Plugin 9.

• Granularity

The smallest granularity accepted by the module is a word. Localized com-
ments can be added on single characters, but at storing and processing time
they will be bind to the word containing the character.

There is no largest granularity imposed, a comment can be bind to as many
words as the document contains. The storage of the discussions bind to
several words is done taking advantage of the fact that the counter ids are
consecutive. When saving the comment, the relation between itself and the
context is saved relative to the smallest and largest ids of the selected words
and the HTML injected markers will wrap the entire selection.

4.2 Books 3.0 - Framework for Semantic Publishing of Modular Con-
tent Objects

4.2.1 Description

The Books 3.0 component is built on top of Drupal’s core module with the same
name. The module allows the user to create a set of pages tied together in a hier-
archical sequence, with chapters, sections and subsections. An important feature

9http://www.aakashweb.com/jquery-plugins/selected-text-sharer/

10

available in Drupal is the possibility of defining parents for each page of content
type book, feature which allows us to store the content objects in the form of trees
[5].

Books 3.0 handles, in the first instance, the import of semantically annotated doc-
uments together with semantic background ontologies from TNTBase 10, starting
from a single document and recursively finding all its children until the deepest
level is explored. An example can be observed in Figure 4, where the General
Computer Science course slides, at Jacobs University Bremen, have been imported
as a book in Drupal 11, starting from the cover, named ”This Document”.

Figure 4: The outline of the first chapters of the General Computer Science course
slides, hierarchically displayed.

After the book is imported, a set of Javascript bindings is applied in order to in-
crease the usability, ease navigation and bind the independent content modules,
representing now pages, to the context in which they are presented.

In the first phase, the references to the sub-chapters from the parent documents,
received as TNT Paths from TNTBase, are replaced with the corresponding doc-
ument titles. This is a necessary step in creating a suitable presentation for the
book pages, as relative paths are irrelevant for the users of a platform unrelated to
TNTBase. To each of this chapters, a further binding is applied in order to make
it expandable in place. This makes the navigation a lot smoother because it allows
the user to iterate through the entire book without leaving the page. Moreover,
relevant pieces of content from different chapters are made available on the same
page, emphasizing the context in which the information is presented (Figure 5).

A further binding in then applied in order to connect the pages to the context
10TNTBase is an open-source versioned storage for XML. http://tntbase.org
11http://panta.kwarc.info/GenCS-Notes

11

Figure 5: The first page of the ”Representation and Computation” book, with the
chapter ”Boolean Algebra” expanded in place.

in which they are presented, by modifying the numbering of the chapters, sub-
chapters and sections relative to the parent of the document. This feature allows
the reuse of any module of content in different books without any effort from the
user (Figure 6). For example, if the same page is used in notes for different
courses, renumbering of the chapters to match the structure of the current notes is
not necessary, as this is done automatically at the rendering time.

12

Figure 6: Numbering of the sub-chapters and sections in the ”Representation and
Computation” book, relative to the parent pages.

4.3 Technical Details

• Importing documents as modular content

The first focus point of Books 3.0 is the import of semantically annotated

13

documents from TNTBase into Drupal. This is done following several steps:

– Every document contains in its body the list of children.

– A parent document is set, its path being the root of the tree we are
building.

– A XQuery request is sent to TNTBase and the relative paths of the
children of the root document are received [12].

– The paths are resolved into absolute paths and added on the next level
of the tree.

– The procedure is repeated for every child .

Applying this simple algorithm starting from the root document, a tree rep-
resenting the entire book is constructed.

• Building books

The next step is creating the actual book in Drupal. The first implementation
idea for this feature involved the creation of book pages in Drupal at the time
the tree is built. This didn’t work however as the Drupal API 12 requires the
entire book tree in order to be able to correctly assign weights 13 to the pages.
Because of this drawback the books are built in the following way:

– A request is made to TNTBase and the XHTML presentation of the
root of the tree is received.

– A book page is created and is set as book cover, having no parent.

– For every child on the following level of the tree, the XHTML presen-
tation is requested.

– Book pages are created for each of them, setting their parent to be the
parent node in the tree.

– Repeat for every level, until the deepest one is reached.

After the iteration through the entire tree is completed, the documents are
available in Drupal in the form of nodes 14 of type book.

• Defining a service for easily retrieving document names and bodies

During the implementation, I often encountered the need to access the titles
and bodies of the book pages from the client side. For this reason I imple-

12An application programming interface (API) is a specification intended to be used as an interface
by software components to communicate with each other.

13In Drupal, weight is used to establish an order among content with the same parents: content
with lower weight will float to the top of lists, while heavier items will sink.

14All content on a Drupal website is stored and treated as ”nodes.” A node is any posting, such as
a page, poll, article, forum topic, or book.

14

mented a simple web service 15 that provides JSON resources for clients to
consume it [13].

• Applying expandable Javascript binding

After the creation of the documents in Drupal, a set of Javascript bindings is
applied in order to increase their usability. The first of these bindings works
following the next steps:

– In the body of the document, sub-chapters are identified by their paths.

– For every path found, the name of the document is received through the
defined service.

– Event listeners 16 are added to the chapters for mouse clicks.

– At click, the body of the chapter is received through the service and
displayed on the page.

– At the following click, the body is hidden, but kept on the page, so no
further requests are needed for it. In this way, at most one request per
chapter is made, reducing the server load to the minimum.

The greatest challenge in implementing this feature has been the fact that
new elements are constantly added to the page. This means that event listen-
ers have to be added for each of them in a recursive way and at the time they
are added, not only when the original document is loaded. The solution to
this problem has been using the Javascript delegate pattern in event listeners,
which binds the event to a higher element in the DOM tree 17, that can later
on distribute to all the children that satisfy the initial access rules [14].

• Applying numbering Javascript binding

A further Javascript binding is applied for context adaptation of the chapters
and sections numbering. Especially useful for the re-use of the same con-
tent object in different contexts, this has been implemented by the following
steps:

– Chapters and section numbers are identified, using special HTML mark-
ers provided by the semantically annotated documents.

– The first parent of each section is selected, and its corresponding num-
ber is used as base.

15The W3C defines a ”Web service” as ”a software system designed to support interoperable
machine-to-machine interaction over a network”.

16In computer programming, event-driven programming or event-based programming is a pro-
gramming paradigm in which the flow of the program is determined by eventse.g., sensor outputs or
user actions (mouse clicks, key presses) or messages from other programs or threads.

17The Document Object Model (DOM) is a cross-platform and language-independent convention
for representing and interacting with objects in HTML, XHTML and XML documents.

15

– A global counter is defined and initialized.

– The counter is appended to the base and the number is assigned to the
first identified section.

– The counter is increased and the action is repeated until all the sections
have been numbered.

5 Future Work

5.1 Localized Discussions

The next step in further developing Localized Discussions is investigating a mean-
ingful way of displaying, in place, an entire thread related to the same piece of
content. One idea on how to implement this feature is using a navigation widget in
place, with a separate display for the comment bodies. This way, the user can eas-
ily navigate through an entire thread while viewing the context of the discussions.
The access to the comments is straight forward and, as the navigation is done from
a separate widget, the two won’t create impediments for each other.

5.2 Books

For Books 3.0, several features can be added in order to increase the usability
of the module. Given the strong connection with TNTBase, a synchronization
mechanism between Drupal and TNT is the first step in further development. The
synchronization consists of two parts:

• Constantly checking for document changes in TNT and update the Drupal
version. This can be implemented in the form of a cron job 18, strictly on
Drupal’s server, the drawback being a high number of requests, or can be
implemented both in Drupal and TNT, in the form of a callback defined by
Books 3.0 which is accessed by TNT whenever a document is modified,
through an HTTP POST operation.

• Synchronize documents edited in Drupal with the one in TNT base. This can
be implemented by importing the documents in omdoc format, edit it using
the Etherpad Latex editor, and recommit it to TNT once done [15] [16].

Another feature that can be integrated in Books 3.0 is creating the possibility of
using the same book nodes in several books. Currently, in order to use the same
page in several books, a copy of the corresponding node has to be created for

18cron is the time-based job scheduler in Unix-like computer operating systems. cron enables
users to schedule jobs (commands or shell scripts) to run periodically at certain times or dates.

16

each of them due to restrictions imposed by Drupal. This can be overridden by
creating a further level of abstraction of the book pages, keeping the corresponding
nodes only as storage mechanisms and separating their presentation completely
from Drupal’s defaults.

6 Conclusions

Most of the educational platforms today are built following Web 2.0 standards.
While the web is evolving, adopting new means of sharing and integrating in-
formation, there is a need for tools which can provide a progressive, incremental
adaptation of the existing sites to Web 3.0 standards.

Considering the current state of the web, my focus has be creating a set of mod-
ules which centers the platform around the user, with high emphasis on context
awareness as well as maintainability and extensibility, exposing an interactive way
of aquiring and sharing knowledge and information.

The proposed implementation is built on top of the Planetary System and Drupal,
which made a very rich starting point. However, the concepts can be implemented
in a framework independent manner as well, so they suit every platform to which
they might be applied.

Localized discussions and Books 3.0 constitute a small step towards Web 3.0.
Along with the already existing tools provided by the Planetary System, they push
the web one step further, extending the current possibilities and helping the user
discover new ones.

17

References

[1] Deyan Ginev Bogdan Matican Vlad Merticariu Stefan Mirea
Michael Kohlhase, Catalin David. A Framework for Semantic Publishing of
Modular Content Objects. 2012.

[2] Steven J. DeRose and Andries van Dam. Document Structure and Markup in
the FRESS Hypertext System. 1999.

[3] Theodor H. Nelson David Rice Steven Carmody, Walter Gross and Andries
van Dam. A Hypertext Editing System for the /360. 1969.

[4] Andries van Dam and David E. Rice. Computers and Publishing: Writing,
Editing and Printing. 1970.

[5] Dries Buytaert. Book module: Creating structured documents.
http://drupal.org/documentation/modules/book. Technical report.

[6] Catalin David Deyan Ginev Andrea Kohlhase Bogdan Matican Stefan Mirea
Christoph Lange, Michael Kohlhase and Vyacheslav Zholudev. The planetary
system: Executable science, technology, engineering and math papers. 2011.

[7] Cristina Tofan. The application of drupal to website development in aca-
demic. 2010.

[8] Ivo Van Geertruyen. Expanding user profiles.
http://drupal.org/documentation/modules/profile. Technical report, De-
cember 2010.

[9] Paul Brennan. Configuring comments.
http://drupal.org/documentation/modules/comment. Technical report,
May 2011.

[10] W3C Bert Bos. Cascading style sheets. http://www.w3.org/style/css/. Tech-
nical report.

[11] Drew Douglas. Javascript events. http://www.w3schools.com/js/. Technical
report.

[12] Robert MacKay. Xquery. http://www.w3schools.com/xquery. Technical re-
port.

[13] Jason Langstorf. Json, what is and how to use it.
http://www.copterlabs.com/blog/json-what-it-is-how-it-works-how-to-use-it.
Technical report.

[14] Ross Harmes and Dustin Diaz. Pro Javascript Design Patterns. 2008.

[15] Michael Kohlhase. An Open Markup Format for Mathematical Documents.
August 2009.

18

[16] Constantin Jucovschi. Editing knowledge in large mathematical corpora. a
case study with semantic latex (stex). 2010.

19

	Introduction
	Related Work
	Framework - The Planetary System and Drupal
	Components
	Localized Discussion
	Description
	Technical details

	Books 3.0 - Framework for Semantic Publishing of Modular Content Objects
	Description

	Technical Details

	Future Work
	Localized Discussions
	Books

	Conclusions

