
Master’s Thesis

Translating of the IMPS library

Author:

Jonas Betzendahl

Program:

Intelligent Systems

Supervisors:

Prof. Dr. Michael

Kohlhase

Prof. Peter Ladkin Ph.D.

April 16, 2018

Contents

1 Introduction 2

1.1 Related Work . 4

1.2 Structure of This Thesis . 5

2 Preliminaries 6

2.1 Preliminaries: LUTINS . 6

2.1.1 Languages . 6

2.1.2 Sorts, Types and Kinds . 7

2.1.3 Expressions . 8

2.1.4 Partial Functions, Undefined and Non-Denoting Values . . 9

2.1.5 Definite Description . 12

2.2 Preliminaries: IMPS . 14

2.2.1 Little Theories . 15

2.2.2 Def-Forms . 15

2.2.3 Theories . 16

2.2.4 Theorems . 16

2.2.5 Definitions . 17

2.2.6 Theory Morphisms . 17

2.2.7 Quasi-Constructors . 18

2.2.8 Processors . 21

2.2.9 Proofs and Macetes . 21

2.2.10 The Kernel Theory . 23

2.3 Preliminaries: OMDoc/MMT . 24

2.3.1 The MMT System . 25

2.3.2 Theory Graphs . 26

2.3.3 The Logical Framework LF 27

3 The IMPS importing process 28

3.1 The IMPS Math Library . 28

3.2 The LUTINS Theory in MMT 29

3.3 Translation to OMDoc . 30

3.3.1 Dead and Delayed Def-Forms 30

3.3.2 Def-Form Specifics . 32

3.4 Validation of Output . 37

4 Implementation 38

4.1 Overview . 38

4.2 IMPS to JSON Export . 39

4.2.1 Intermediate Structures 40

i

4.2.2 S-Expressions . 41

4.3 Importing and Combining Sources 42

4.3.1 Internal Representation . 42

4.4 Translation Specifics . 45

4.4.1 Subsorting . 46

4.4.2 Rewriting Quantifiers to Fixed Arities 46

4.4.3 Literals . 47

4.4.4 Opaque Data . 48

4.4.5 Quasi-Constructors . 48

5 Discussion 50

5.1 Results . 50

5.2 Future Work . 52

5.2.1 Possible Additions to MMT 53

5.3 Conclusion . 54

A List of Figures 59

B Details on Intermediate Structures 61

C lutins.mmt, LUTINS implemented in LF 64

D The IMPS Math Library 66

ii

Abstract

The IMPS system, by Farmer, Guttman and Thayer, was an influential

automated reasoning system, pioneering mechanisations of features like

theory morphisms, partial functions with subsorts and the little theories

approach to the axiomatic method. It comes with a large library of for-

malised mathematical knowledge covering a broad spectrum of different

fields.

Since IMPS is no longer under development, this library is in danger of

being lost. In its present state, it is also not compatible for use with any

other mathematical system.

To remedy that, I formalise the logic of IMPS (LUTINS), and draw

on both the original theory library source files as well as the internal data

structures of the system to generate a representation in a modern knowl-

edge management format.

Using this approach, I translate the foundation section (a crucial sub-

set of the IMPS theory library) to OMDoc and verify the result using type-

checking in the MMT system against my implementation of LUTINS.

These results can serve as a solid foundation to making the whole IMPS

theory library available in the future.

1

1 Introduction

The technologies of the internet and inexpensive computing have had a profound

impact on how mathematics is performed in the 21st century. Computer systems

are not only being used to store and retrieve mathematical knowledge, but have

also taken their rightful place in the process of creating new math itself. They

help to guide, verify, and – in a few specific cases – even generate new proofs and

theorems.

Today, there are many libraries of formal knowledge for many different mathe-

matical software systems. However, this wealth of information can also impose

an undue penalty on anyone venturing to work with more than one of them, since

the knowledge is often represented in a format that is only compatible with the

system it was originally written for.

This barrier of non-interoperability severely limits possible uses of any one math-

ematical software system as well as progress on that system itself. Helpful tooling

that was implemented with one system in mind often can not be used for devel-

oping another.

Some translations between different systems exist but they are often ad-hoc, only

one-directional (although both systems are in frequent use) or overly restricted

by the logical frameworks or foundations.

Most theorem proving systems today tend to fix (in what we will refer to as the

big theories approach) one particular logical foundation along with its primitives

(i.e. types, axioms, rules, . . .) and only use conservative extensions to model

domain knowledge (i.e. theorems, definitions, . . .).

This goes against the way that modern mathematics is usually done on chalkboard

or paper, where the foundation is often hidden and almost never directly referred

to. It also makes it harder for two systems with different logical frameworks to

successfully interact.

Approaching the problem with only direct system-to-system translations without

common ground also means inviting threats of scale, since there would be O(n2)

different translations necessary to fully connect n systems with each other.

The second danger to effective use of mathematical knowledge libraries across

software systems is that if one of these systems eventually falls out of use, the

library is in danger of being lost to bitrot as fewer and fewer machines are actually

capable of running the required software to interpret it.

In this thesis, we will discuss an attempt to “rescue” one library in particular from

this fate. IMPS is an I nteractive M athematical Proof System, originally devel-

oped at The MITRE Corporation by William M. Farmer, Joshua Guttman, and

2

Javier Thayer. Its library is home to a large amount of well-developed formalised

mathematics with over 180 different theories and over 1200 distinct theorems and

their proofs.

The system itself has not been in active development or regular use for well over

20 years now1 and thus the library is in acute danger of being lost.

The IMPS system (and its library) is especially interesting because it was the

first theorem proving assistant (to my knowledge) to make heavy use of theory

morphisms and with emphasis on the little theories approach to mathematics.

Concretely, we want a translation of the IMPS library into OMDoc– the Open

Mathematical Document format [Koh16]. OMDoc is a content markup scheme

for (collections of) mathematical documents (including articles, textbooks, . . .)

with support for multiple degrees of formality. It can also serve as a medium

/ content language for communication between mathematical software services.

It is being actively developed and used in research, which makes it a suitable

candidate for our purposes.

MMT (short for M eta-M eta-T ool) is a foundation independent framework / lan-

guage based on OMDoc for developing theories and meta-theories for knowledge

representation. It is already being used to translate libraries of other theorem

proving systems such as Mizar and PVS.

It also shares a few key design choices with the IMPS system, such as the focus on

theory morphisms and adherence to the little theories approach, which makes it

especially useful for this task and especially interesting to have the IMPS library

available in the future.

This thesis builds on and advances the efforts by [Li02] of translating the IMPS

library of mathematical knowledge to OMDoc. I extend and adapt their export

mechanism to create a comprehensive JSON representation of the internal IMPS

data structures. Both this and the original source files of the mathematical library

are then parsed by my importer extension to MMT to create a structured and

typed representation of almost all mathematical objects in the source files, with

the only notable exception being proof scripts and macetes2.

This representation can then easily be translated into the OMDoc/MMT lan-

guage, with a formalisation of the foundational logic of IMPS (called LUTINS,

see Section 2.1) serving as a formal basis for the translation.

The implementation of this process successfully translates the foundation section

of the IMPS library, a small but crucial subset, mapping mathematical expressions

in the source to usable mathematical expressions in the target language.

1The relevant entry on theoremprover-museum.github.io lists the active development
phase as 1990 to 1993 [Far15]

2Macetes are tactic-like primitives for proofs, see Section 2.2.9

3

theoremprover-museum.github.io

The generated output is verified (i.e. type-checked) by the MMT system against

the implementation of the underlying logic LUTINS to ensure correctness of the

translation progress.

This implementation has the benefit of future-proofing the OMDoc export against

potential changes in the format. The results also provide a solid foundation for

efforts of translating the entire IMPS library in the future.

The OMDoc output of the translation does not (only) need to be archived for

the inherent value in not losing a rich database of formalised knowledge. The

generated output could also be used in various ways by mathematical knowledge

management systems or function as a reference point for other knowledge in a

(partially) shared meaning space.

1.1 Related Work

There have been multiple attempts at translating libraries from one theorem

proving system to another in an ad-hoc manner. For example, there exist trans-

lations from HOL Light to Coq [KW10], from Isabelle/HOL to Isabelle/ZF [KS10]

(benefiting from the shared logical framework) and from HOL to Isabelle/HOL

[OS06].

The translation approach using OMDoc/MMT has been previously used (and

shown to be successful) in a number of importers for the MMT system for different

mathematical systems, such as PVS [Koh+17b], Mizar [IKR11] and HOL Light

[KR14], as part of the OAF (Open Archive of Formalisations) project [OAF].

In all of these, the underlying logical foundation of the system has first been

formalised natively in OMDoc/MMT as part of the LATIN library – an OMDoc-

based atlas of formal logics, type theories, foundations and various translations

between them ([Cod+11], [Rab14], available online at [LATIN]).

The resulting theory is then used as a meta-theory for importing the correspond-

ing libraries. As in the case of this thesis, these imports tend to focus on trans-

lating the statements of theorems only, and pay less attention to the proofs, since

proofs are often highly system-specific and difficult to translate without also re-

producing all of the machinery of the system in question.

Li previously made an attempt to translate the IMPS math library to OMDoc in

[Li02] to a reasonable degree of success. However, there have been a number of

substantial changes to the OMDoc format since then (including multiple version

bumps from 1.2 to 1.6). Furthermore, Li’s approach was limited in a number of

ways that are also addressed.

For one, this work differs from Li’s previous attempt in that it doesn’t try to

translate from only the internal IMPS data structures. The implementation parses

the source files those structures are generated from in a separate line of attack,

4

allowing to compare and corroborate data from one direction of inquiry with data

from the other.

The output of the translation is also verified by type-checking it in MMT on the

basis of LF (short for Logical F ramework, see [HHP93b] and [Rabb] and Section

2.3.3), whereas Li only checks the syntactic validity of the generated XML by an

external tool.

1.2 Structure of This Thesis

In Section 2, I will introduce the necessary theoretical preliminaries for all in-

volved systems, including MMT, IMPS and OMDoc. After that, I outline the

general idea and some theoretical specifics of the translation process in Section

3. Section 4 elaborates on the specific implementation in MMT, Lisp and Scala.

Finally, Section 5 concludes the thesis with a discussion of possible future work

and a recap.

5

2 Preliminaries

2.1 Preliminaries: LUTINS

LUTINS (pronounced /ly.tẼ/, as in French, short for “Logic of Undefined Terms

for Inference in a Natural Style”, also the French translation of the English word

“imps”) is the underlying logic of the IMPS system.

LUTINS is a variant of Church’s simple theory of types [Chu40]. It was devel-

oped to allow computerised mathematical reasoning that closely follows mathe-

matical practise as performed by mathematicians “in the wild”. And since stan-

dard mathematical reasoning often focuses on functions, their properties and

operators on them, LUTINS allows for partial functions (meaning they are not

necessarily defined on all arguments), and features a definite description operator

as well as a system of subtypes.

LUTINS is a classical logic in the sense that it allows non-constructive reasoning,

but non-classical in the sense that terms in LUTINS can be non-denoting. It

also supports the following mechanisms:

• λ-Notation for functions;

• An infinite hierarchy of function types for higher-order functions;

• Full quantification (existential and universal) over all function types.

In this section, I will give a basic overview of LUTINS. A more thorough presen-

tation of the logic can be found in [Gut91], focus is given to subtypes in [Far93a]

and to partial functions in [Far90]. An overview of the semantics can also be

found in [FGT98].

2.1.1 Languages

The notion of languages is central to LUTINS. Languages are 4-tuples 〈A, ξ,V , C〉
where (A, ξ) is a sort system, V is a countable set of variables and C is a countable

set of constants. For a detailed explanation, see [Far93b].

On a more abstract level, LUTINS languages contain two classes of objects:

sorts (Section 2.1.2) and expressions (Section 2.1.3). Sorts denote (non-empty)

domains of mathematical objects and expressions denote members of these do-

mains. Expressions can be used to directly reference mathematical objects and

to make statements about them.

6

2.1.2 Sorts, Types and Kinds

In the following, let L be the name of a hypothetical language. The set S of

sorts of L is generated inductively from a finite set A of atomic sorts (that are

explicitly stated by L):

• Every α ∈ A is in S.

• If α1, . . . , αn (n ≥ 1) all are in S, then [α1, . . . , αn+1] is in S.

The latter class of sorts is called compound sort, denoting the domain of n-ary

functions from α1, . . . , αn into αn+1. Compound sorts can have arbitrary arity, so

currying is not required (though it later became necessary in the implementation,

see Section 4.4.2). Taking functions is, however, the only type-forming operation

in LUTINS. Sorts may overlap, but they cannot be empty.

The range of a given sort α is defined as follows: if α is a function sort of the

form [α1, . . . , αn, αn+1], then ran(α) = αn+1. Otherwise, ran(α) = ran(β), where

β is the enclosing sort of α. The notation for the range of α is ran(α).

Every language includes the base type ? (sometimes also defined as ∗), denoting

the set {T, F} of standard truth values.

Sorts are divided into two kinds3, ? (read: star or prop) and ι (read: ind). A

given sort α is of kind ? if either α = ? or α is a compound sort into ? (i.e. a

compound sort of the form [α1, . . . , αn, ?], sometimes also called a predicate). In

all other cases α is of kind ι. This includes all atomic sorts except ? itself.

Note:

Although it is possible to encode mathematical objects to be of kind ?, most

mathematics encoded in IMPS is of kind ι, and the deductive machinery reflects

that. Predicates and formulas tend to be the only useful objects of kind ?. In

particular, any term of kind ? with an undefined component denotes F.

Subsorts

LUTINS prominently features subsorts in its type theory. Sorts can be defined

to be subsorts of other sorts in multiple ways that will be discussed further in

Section 2.2. For instance, the natural numbers N form a subsort of the real

numbers R and the continuous (real) functions a subsort of the functions from R
to R.

Each atomic sort is also assigned a unique enclosing sort by the language L that

defines it. This gives rise to a particular partial order on S, which we will call �,

that has the following properties:

3not to be confused with LF kinds

7

Definition 1 Properties of LUTINS subsort relation

1. If α ∈ A and β is the enclosing sort of α, then α � β.

2. α1 � β1, . . . , αn � βn if and only if [α1, . . . , αn] � [β1, . . . , βn]

3. If α, β ∈ S with α � β and α is compound, then β is also compound and

has the same length as α.

4. For every α ∈ S, there exists a unique (!) β ∈ S s.t. α � β and β is

maximal with respect to �.

The relation� (also sometimes called “the subsort relation”) is intended to denote

set inclusion. A sort that is maximal in relation to � is called a type. The type

of a given sort α has the notation τ(α). A type is called a base type if it is atomic

(i.e. non-compound).

β t γ is notation for the least upper bound of the sorts β and γ with respect to

the partial order �. The least upper bound of two sorts with the same type is

always defined.

Subsorting also applies to compound sorts, which integrates nicely since functions

in LUTINS can be partial.

In particular, if σ0 � τ0 and σ1 � τ1, then (σ0 → σ1) � (τ0 → τ1). More precisely,

the members of (σ0 → σ1) are exactly those functions that are never defined

outside of σ0 and never yield results outside of σ1.

All of this is helpful for mechanised deduction because the subsorting relation can

give important information about the value of an expression, should it be defined.

Furthermore, many theorems have constraints that can easily be expressed in

terms of a subtype and the prover can be programmed to handle these with

special algorithms.

2.1.3 Expressions

Every language L also defines a set of constants, called C. Each constant is

assigned a sort in S. The set of expressions of L (of sort α) is then also inductively

defined via C and application of the constructors to the elements of C.

Constructors in LUTINS are logical constants and can be used to form compound

expressions. They are not part of any special language or scope, but rather are

available for every theory and language.

While users of IMPS/LUTINS can not add additional constructors in this exact

sense, it is possible to add so-called quasi-constructors (more closely examined

in Section 2.2.7).

8

Constructor Mathematical Syntax
the-true T

the-false F

not ¬ϕ
and ϕ1 ∧ · · · ∧ ϕn
or ϕ1 ∨ · · · ∨ ϕn

implies ϕ ⊃ ψ
iff ϕ ≡ ψ
if ifι(ϕ, t1, t2)

if-form if?(ϕ1, ϕ2, ϕ3)
forall ∀v1 : α1, . . . , vn : αn, ϕ
forsome ∃v1 : α1, . . . , vn : αn, ϕ
lambda λv1 : α1, . . . , vn : αn, t
equals t1 = t2
apply f(t1, . . . , t2)
iota ιv : α, ϕ

iota-p ι?v : α, ϕ
is-defined t↓
defined-in t↓ α
undefined ⊥α

Figure 1: The logical constructors in LUTINS

For example: one of the quasi-constructors that IMPS supplies natively is quasi-

equality. Two terms are quasi-equal if they are either both undefined or both

defined and equal.

All the fixed logical constructors available in LUTINS can be found in Figure 1.

The precise rules for expression construction can be found in Figure 2 on page

10.

2.1.4 Partial Functions, Undefined and Non-Denoting Values

The stated goal of IMPS (and therefore LUTINS) is to allow for reasoning that

is very close to mathematical practice. This means that there needs to be a way

to deal with partial functions and undefined values since these make frequent

appearances in chalk-and-whiteboard mathematics.

For example, all of the following terms are undefined in the standard theory of

arithmetic over the real numbers:

5

0

√
−3 ln(−4) tan

(π
2

)
Perspectives on undefined values

Historically, since at least [Rus05], there has been a plethora of opinions by logi-

cians on how to approach the problem of non-denoting terms and non-denoting

9

Definition 2 Rules for LUTINS expressions.

1. If x is a name and α ∈ S, then x : α is an expression of sort α.

2. If A ∈ C has been assigned sort α, the A is an expression of sort α.

3. If A,B,C,A1, . . . , An are expressions of sort ?, then T, F, ¬(A), (A ⊃ B),
(A ≡ B), if-form(A,B,C), (A1 ∧ · · · ∧ An), and (A1 ∨ · · · ∨ An) are also
expressions of sort ?.

4. If x1, . . . , xn are distinct names; α1, . . . , αn ∈ S; A is an expression of sort
β; and n ≥ 1, then (∀x1 : α1, . . . , xn : αn, A) as well as (∃x1 : α1, . . . , xn :
αn, A) are expressions of sort ?.

5. If A and B are expressions of sort α and β respectively, with τ(α) = τ(β),
then (A = B) is an expression of sort ?.

6. If F is an expression of sort α and type [α1, . . . , αn, αn+1]; A1, . . . , An are
expressions of sort α′1, . . . , α

′
n; and α1 = τ(α′n), . . . , αn = τ(α′n), then

F (A1, . . . , An) is an expression of sort ran(α).

7. If x1, . . . , xn are distinct names; α1, . . . , αn ∈ S; A is an expression of sort
β; and n ≥ 1, then (λx1 : α1, . . . , xn : αn, A) in an expression of sort
[α1, . . . , αn, β]

8. If x and y are names; α and β are sorts of kind ι and ? respectively; and A
is an expression of sort ?, then (ι x : α,A) and (ι? y : β,A) are expressions
of sort α and β respectively.

9. If A,B,C are expressions of sorts ?, β, γ respectively, with τ(β) = τ(γ),
then if(A,B,C) is an expression of sort β t γ.

10. If A is an expression and α ∈ S, then (A↓) and (A↓α) are expressions of
sort ?.

11. If α is a sort of kind ι, then ⊥α is an expression of sort α.

Figure 2: LUTINS rules for creating expressions

definite description (e.g. “the present king of France”) in particular. This is

discussed more extensively in [Far90], where three perspectives are presented.

The perspective of the (philosophical) logician is different from that of the working

mathematician. Often, the mathematician is less concerned with the meaning of

non-denoting terms than the philosopher.

For example: while a mathematician usually takes terms like 1
0

to be legitimate

expressions that can be manipulated and reasoned with, but with absolutely no

denotation. The logician, on the other hand, may think that an expression like

“the present king of France” should absolutely denote something that at least “is

a king”, even if it doesn’t exist.

Farmer attributes a third perspective to the computer scientist, for whom the

10

denotation of a term like 1
0

would more likely be an “error” value, to be treated

much like any other value (which – in turn – would be unpleasant for the mathe-

matician). Even though functions are usually strict in regard to error values (i.e.

a function applied to an error value also evaluates to an error value), some are

also non-strict. Consider, for example, the following function:

f(x, y, z) =

y, if x = 1

z, if x 6= 1

The function f is non-strict, because f(1, b, c) = b, even if c is an error value.

Non-strict functions are common in programming since they can lead to great

increases in efficiency, especially if evaluating one or more of the branches is

computationally expensive or would incur side effects.

The perspective that IMPS takes is – not too surprisingly – the mathematician’s

perspective. To live up to this, Farmer discusses several different approaches and

their pros and cons, eventually settling on “Partial valuation for terms, total val-

uation for formulas”. This is represented in LUTINS in the dichotomy between

kind ? (terms of which evaluate to F if they have undefined subterms) and kind

ι (terms of which can be genuinely non-denoting).

Note that there is a subtle difference between a term that is “undefined” and

one that is “non-denoting”. According to Farmer, a term is undefined if it is not

assigned a “natural” meaning (e.g. “top of an empty stack”) and non-denoting

if it is not to be assigned any meaning at all.

Often, an undefined term is also non-denoting, but it can still have a denotation.

In particular, a term of type ? always has a denotation (if one of its constituents

is undefined, that denotation is F).

Indicator Functions

An indicator function (sometimes just called an indicator) is a function used to

represents a set over a given sort α. Normally, one could expect such a function

to have a type of (α → Boolean). In IMPS, however, since functions of kind ι

can be partial, they instead map elements of the sort that are supposed to be

included in the set into unit%sort, a sort from IMPS’s the-kernel-theory (see

Section 2.2.10) that only has one element (called an%individual).

This largely reduces the problem of membership in a set that is defined by an

indicator function to definedness, for which the simplifier of the IMPS system is

especially well-equipped.

Indicator functions over a sort α are used extensively in the library (for example

to talk about ideals, compare Figure 3), with their own sort usually presented not

11

(def-constant ideal

"lambda(x:sets[zz],

nonempty_indic_q{x} and

forall(a,b,c:zz, a in x and b in x

implies

(a+b) in x and c*a in x))"

(theory h-o-real-arithmetic))

(def-theorem divisibility-preserves-ideal-membership

"forall(x:sets[zz], k,m:zz ,

ideal(x) and k in x and k divides m

implies

m in x)"

(theory h-o-real-arithmetic)

(proof ...))

Figure 3: IMPS expressions (from “primes.t”) using indicator functions

as (α → unit%sort), but just as sets[α]. This is not a true type-constructor,

however, but merely syntactic sugar.

2.1.5 Definite Description

One of the more prominent features of LUTINS is the possibility of reasoning

with definite description via the ι (or iota) constructor.

Given a variable v of sort α of kind ι (not to be confused with the constructor

itself) and an unary predicate ϕ over α, the expression

ι v : α . ϕ(v)

denotes the unique v, such that ϕ(v), if there exists such a v. If there is no or

more than one v that fulfils the predicate, the ι-expression is undefined.

For example, the following expression denotes
√

2 ∈ R:

ι x : R.(0 ≤ x) ∧ (x · x = 2)

While this expression is undefined:

ι x : R.x · x = 2

Definite description can be very useful for dealing with functions, especially par-

tial functions. For example: division over the reals of sort [R,R,R] (undefined

whenever the second argument equals 0) can easily be defined over its relation to

multiplication with the ι constructor:

div = λ x, y : R. ι z : R. x · z = y

12

The same applies to the square root or even the nth root. The analogue to the

following expression defines the sqrt-constant in the reals.t source file:

sqrt = λ x : R. ι y : R. (0 ≤ y) ∧ (y · y = x)

Definite description for kind ?

There is a second definite description operator in LUTINS, called ι? (or iota-

star). It has fundamentally the same semantics as ι, with one key difference:

since kind ? does not allow for non-denoting expressions, if the predicate can

not be uniquely fulfilled, instead of being non-denoting, the expression here is

actually false.

However, this operator is of little practical use and is not well supported by the

IMPS deductive machinery. Hence, it is also not used in the library.

13

2.2 Preliminaries: IMPS

IMPS (short for “Interactive Mathematical Proof System”) is an interactive the-

orem prover developed by William Farmer, Joshua Guttmann and Javier Thayer

from 1990 to 1993 [Far15]. It was one of the influential systems in the era of

automated reasoning.

It was originally developed in the T programming language (see [Kra+86] and

[RAM88]) and later ported to Common Lisp [FGT98].

One of the goals in developing IMPS was to create a mathematical system that

gave computational support to mathematical techniques common among actual

mathematicians.

The development of the IMPS system has been heavily influenced (see [FGT98])

by three insights into real-life mathematics:

• Mathematics emphasizes the axiomatic method. The characteristics of math-

ematical structures are captured in axioms. Theorems are then derived from

these axioms for all structures that satisfy the axioms.

Often, what is needed for a proof is a clever change of perspective to see that

one structure is indeed an instance of another theory, bringing additional

theorems to bear.

• Many branches of mathematics emphasise functions, including partial func-

tions. Moreover, the classes of objects studied may be nested, as are the

integers and the real numbers; or overlapping, as are the bounded functions

and the continuous functions.

• Mathematical proofs usually employ a mixture of both formal inference and

computation.

Special attention is directed at the interplay of computation and proof. Farmer,

Guttman and Thayer emphasise that, for example, a mathematician might devote

considerable effort into proving lemmas that justify computational procedures4

but are ultimately uninterested in the part of the derivation that is the “imple-

mentation” of these procedures.

Therefore, IMPS also allows for inferences based on sound computation and not

merely formal inference. These are treated as atomic inferences, although a full

formalisation in – for example – a Gentzen-style system might require hundreds

or thousands of inference steps.

4[FGT98] gives the example of the algorithm for differentiating polynomials for this.

14

(def-atomic-sort nn ;;; Name

"lambda(x:zz, 0<=x)" ;;; Defining Expression

(theory h-o-real-arithmetic) ;;; Home Theory

(witness "0")) ;;; Witness to show the sort non-empty

Figure 4: IMPS Source Code (from “reals.t”): Def-Form defining the atomic sort
N

2.2.1 Little Theories

When following the axiomatic method to do mathematics – that is, logically

reasoning from a given set of sentences in a formal language – there are two

prominent approaches to chose from, which we will refer to as the “little theories”

and “big theories” approach.

In the “big theories” version of the axiomatic method, all reasoning is carried out

in one highly expressive axiomatic theory. The set of axioms selected is powerful

enough, such that any model of them will contain all the mathematical objects

that are of interest to us, and deduction from these powerful axioms will be

enough to prove the relevant theorems in the theory.

Popular examples for a “big” axiomatic theory would be ZFC (Zermelo–Fraenkel

set theory plus the axiom of choice), often cited as the “standard axiom set for

set theory”([Bag17]), but also the Calculus of Inductive Constructions, the logic

behind the Coq Theorem Prover [BC04].

Contrasted with that, the “little theories” approach uses a number of different

theories with smaller, less powerful sets of axioms, to develop mathematics in.

For example, one theorem could be true for all semi-rings, while another is only

true in the theories of commutative rings.

Theorems are proved by logical derivation from the axioms of whatever theory

supplies the necessary structure for the proof.

Both IMPS and MMT subscribe to the “little theories” approach to formal math-

ematics, a design choice that was informed by the face that the little theories

approach lends itself well to the mechanism of theory interpretations [FGT92].

2.2.2 Def-Forms

IMPS source files contain information in so-called “def-forms” (short for “definition

forms”). Each def-form is essentially the specification of one IMPS entity, from

constants, theories, languages to translations.

For an example, see Figure 4.

15

All def-forms have a required argument of either (theory ...), (home-theory

...) or (language ...) indicating in which language or theory the resulting

mathematical object is to be installed.

For a complete list of all def-forms and their precise meaning within IMPS, refer

to chapter 15 of [FGT98]. In section 3.3.2, we will discuss some of the more

important def-forms and how they are translated.

2.2.3 Theories

In IMPS, a theory is a language L (i.e. an instance of a LUTINS language)

coupled with a set of sentences in L, called “axioms”. Theories are the basic unit

of representing mathematical knowledge in IMPS. In fact, Farmer (in [FGT98])

calls IMPS “a system for developing, exploring, and relating theories”.

Let T1 and T2 be two IMPS theories. We call T2 a supertheory of T1 (or, analogously,

T1 a subtheory of T2), if the language of T1 is a sublanguage of the language of T2
and every axiom of T1 is a theorem (not necessarily an axiom) of T2.

On definition, each theory T is assigned a (non-empty, at least the-kernel-

theory is always included, see Section 2.2.10) set of component theories. Every

component theory of T is also a subtheory of T .

T2 is a structural supertheory of T1 (or, analogously, T1 is a structural subtheory

of T2) if T1 is either a component theory of T2 or a structural subtheory of a

component theory of T2.

2.2.4 Theorems

A theorem of a given theory T in IMPS is defined as a sentence of that theory that

is true in all of T s models. Note that this is a semantic definition of theorem,

and does not directly depend on the IMPS proof system or any proof calculus for

LUTINS.

Naturally though, the user has to rely on said proof system to verify that a

theorem is actually a theorem and to install it in the theory so it can be used

and built upon.

When a theorem is installed in a theory T , it is also automatically installed in

every structural supertheory of T .

A theorem can be defined with a list of usages that tell the IMPS system how this

theorem can be employed down the line. For example, the theorem could be used

to create a rewrite rule, or a macete (see Section 2.2.9). For a precise listing of

all options, refer to Section 6.4 in [FGT98].

16

2.2.5 Definitions

IMPS allows for four kinds of definition within a theory:

1. Atomic Sorts

Examples: sort nn for N, sort zz mod for Z/nZ for some n.

2. Constants

Examples: constants like true%val, but also functions like floor or divides

3. Recursive Functions

Examples: functions like sum (Σ), product (Π)

4. Recursive Predicates

Examples: Predicates like even and odd

2.2.6 Theory Morphisms

A theory morphism (sometimes also called a theory translation or a theory inter-

pretation) is a translation between two theories that maps expression from the

one theory to expressions in the other, with the additional property that theorems

are always mapped to theorems ([Far93b] and [FGT98]).

This is an integral part of the “little theories” approach (see Section 2.2.1), as

theory morphisms are the tool to use to make results of one theory available in

the other.

It is also close to mathematical practice, since seeing one structure as an instance

of another (and therefore bringing all theorems of the other structure into play)

is often the critical insight in non-trivial mathematical proofs.

The approach IMPS takes to theory morphisms ([Far93b]) is closely modelled

after the standard approach to theory interpretations in first-order logic (see, for

example, [End72], [Sho67] or [Mon76]).

Translations

Let T1 and T2 be theories. We then call a translation from T1 to T2 any pair

Φ = (µ, ν) where

• µ is a mapping from the atomic sorts of T1 to the sorts, unary predicates

and indicators of T2 and

• ν is a mapping from the constants of T1 to expressions of T2.

17

We also in this context call T1 and T2 the source theory and the target theory,

respectively.

The translation of any expression e of T1 is also an expression in T2 and we write

it as Φ(e). It is generated from µ and ν in a manner that preserves expression

structure. In particular, if e is a closed formula in T1, Φ(e) is a closed formula in

T2.
We call a translation normal when µ maps all sorts of T1 to sorts in T2. If a

translation is not normal, then some constructors that bind variables – λ, ∃, ∀,
and ι – need to be relativised. Say – for example – the µ-part of Φ maps the sort

α to the unary predicate P . Then all constructors that bind variables of sort α

must be relativised.

Consider the following translation:

Φ (∀x : α.ψ) = ∀x : β.P (x) ⊃ Φ(ψ)

Something similar happens when µ maps a sort to an indicator instead of a

predicate.

A translation that maps theorems to theorems is called a theorem interpretation

or a theory morphism.

2.2.7 Quasi-Constructors

In addition to the LUTINS core logical constructors (see Figure 1 on page 9) it is

also possible for a user of IMPS to define additional constructor-like forms called

“quasi-constructors”. These are implemented as “macros” or “abbreviations”.

For example, in IMPS, there exists the notion of quasi-equality: two expressions

are quasi-equal if and only if they are either both undefined or are both defined

with the same value. In mathematical notation, this would be captured by the

following biconditional:

E1 ' E2 ≡ (E1↓ ∨ E2↓) ⊃ E1 = E2

If the IMPS system now encounters an expression of the form P ' Q, it builds

an internal expression of the form (P ↓ ∨ Q ↓) ⊃ P = Q. If it later finds an

expression of this form that it is supposed to print, it will print it in the syntax

P ' Q. These special syntax elements for quasi-constructors can also be defined

by the user via def-form.

18

More precisely, a quasi-constructor consists of

• a name,

• a list of variables and

• a schema

In our example of quasi-equality, the name would be something like quasi-equals,

the variables would be E1 and E2 and the schema would be (E1↓ ∨ E2↓) ⊃ E1 =

E2.

User-defined Quasi-constructors

Users can define their own quasi-constructors with the def-quasi-constructor

def-form. It takes a name, a mathematical expression and a designated language

as arguments. The quasi-constructor is then available to use like one would any

other constructor.

A possible implementation of quasi-equality in this def-form could look like the

following:

(def-quasi-constructor QEQUALS

"lambda(e1,e2:ind, #(e1) or #(e2) implies e1 = e2)"

(language the-kernel-theory))

Figure 5: A possible implementation of quasi-equality as a quasi-constructor

System Quasi-Constructors

While Figure 5 shows one way that quasi-equality could be implemented in IMPS,

this does not actually reflect the state of the system.

In addition to the user-defined quasi-constructors, the IMPS system also has a

small number of so-called “system quasi-constructors” that are hard-wired into

the deductive machinery. Quasi-equality is one of them. For a full list, see Figure

6.

Like logical constructors from LUTINS, these five system quasi-constructors are

available in every theory, and not bound to any one language.

19

Quasi-Constructor Schema
quasi-equals(E1, E2) (E1↓ ∨ E2↓) ⊃ E1 = E2

falselike([α1, . . . , αn+1]) λx1 : α1, . . . , xn : αn . falselike(αn+1)
domain(f) λx1 : α1, . . . , xn : αn . f(x1, . . . , xn)↓

total?(f, [β1, . . . , βn+1]) ∀x1 : β1, . . . , xn : βn . f(x1, . . . , xn)↓
nonvacuous(p) ∃x1 : α1, . . . , xn : αn . f(x1, . . . , xn)↓

A couple of specifics to note:

• E1 and E2 need to have the same type.

• The sort of f is [α1, . . . , αn+1]

• The sort of p is [α1, . . . , αn, ?]

• τ([α1, . . . , αn+1]) = τ([β1, . . . , βn+1])

Figure 6: The five pre-defined quasi-constructors in IMPS

The reason these particular quasi-constructors need to be treated separately is

that their schema can not accurately be represented using a LUTINS lambda

expression. Usually, this is because they contain variables that range over function

expressions without a fixed arity or over expressions of both kind ? and kind ι.

For example, quasi-equality is supposed to be well-defined as long as both ex-

pressions have the same type, no matter the kind. But if we were to go by the

definition for QEQUALS above, this would not hold in the case that both arguments

are of kind ?.

Polymorphism

Another thing to note about quasi-constructors is that they are polymorphic in

their schema variables, even if this polymorphism is not made explicit in the

notation. Consider the user-defined quasi-constructor GROUP in Figure 18 (on

page 35). It takes a subset of a sort gg (in this context specifically, gg is the base

type of GROUP-LANGUAGE), two functions (one binary, one unary) and an element

of the sort to a conjunction of the ordinary group axioms.

While the defining lambda-expression for this quasi-constructor is written using

the language of the theory it is being defined in (i.e. groups), this is done solely

because using the language of the home theory circumvents the need to introduce

a separate schema language.

The resulting quasi-constructor itself is actually polymorphic in the type gg and

can be used in theories that are entirely unrelated to the group theory itself.

20

(def-algebraic-processor FIELD-ALGEBRAIC-PROCESSOR

(language fields)

(base ((operations

(+ +_kk)

(* *_kk)

(- -_kk)

(zero o_kk)

(unit i_kk))

commutes)))

...

(def-theory-processors FIELDS

(algebraic-simplifier

(field-algebraic-processor *_kk +_kk -_kk))

(algebraic-term-comparator field-algebraic-processor))

Figure 7: Def-Forms for declaring and installing an algebraic processor

2.2.8 Processors

IMPS allows for so-called processors to be defined and installed within theories.

These have the purpose to give the simplifier context about what reductions

can be taken within a given theory, if the user has more information than the

simplifier.

For example, the expression 2 + 1 should reduce to 3, the expression x + x − x
should reduce to just x and the expression x < x + 1 should reduce to truth.

Under some circumstances, the simplifier can already infer these, however, in

some theories, it needs to be given extra information (e.g. “This field element

behaves like a 0, this operation behaves like +, . . . ”).

For an example of source code that defines and installs a processor, see Figure 7.

2.2.9 Proofs and Macetes

Macetes and proof commands are topics of significant importance for the IMPS

system itself. However, we will only take a short look at them here, because

neither play a big role in the translation (see Section 4.4.4).

The IMPS proof system is unusual in that it employs a deduction graph to repre-

sent proofs. A deduction graph consists of sequent nodes (i.e. an assertion and a

context) and inference nodes (i.e. a conclusion node, a (potentially empty) set of

hypothesis nodes and a justification5 for asserting the given relationship between

these).

5Also called an inference rule.

21

A user does not directly interact with the deduction graph, but only manipulates

it indirectly via so-called proof commands, convenient procedures that add ap-

propriate nodes by calling primitive inferences. The sequence of proof commands

that proves a theorem via deduction graph is called a proof script.

For a closer inspection of the proof system, see Chapters 10 and 16 of [FGT98].

A macete (pronounced /m5.’se.tSi/, from the Portuguese word for “chisel” or

“clever trick”) are a second way to manipulate expressions by applying theorems.

The other way to do this is the IMPS simplifier. However, macetes offer a more

direct and fine-grained control.

The general idea is that a macete M takes a context Γ and an expression e

called the source expression and returns another expression M(Γ, e), called the

replacement expression. Using a combination language, simple macetes can also

be formed into more complex ones.

The resulting functions can be used on the one hand to apply a (collection of)

theorems to a node in a deduction graph, but also, on the other hand, to compute

with theorems.

For a more in-depth look at macetes and their classification, see Chapter 12 of

[FGT98].

You can find a theorem including its proof in Figure 13 on page 33. An example

macete can be found in Figure 8.

(def-compound-macete GROUP-CANCELLATION-LAWS

(series

(repeat mul-associativity)

(repeat left-cancellation-law)

left-trivial-cancellation-law-left

left-trivial-cancellation-law-right

(repeat reverse-mul-associativity)

(repeat right-cancellation-law)

right-trivial-cancellation-law-left

right-trivial-cancellation-law-right))

Figure 8: IMPS Source Code (from “groups.t”): Example macete for group
cancellation laws

22

2.2.10 The Kernel Theory

IMPS has a default theory (named the-kernel-theory) that is a component of

every other theory.

It serves as the representation of LUTINS within the IMPS system in that it

introduces the base types prop, ind (for ? and ι, respectively) and unit%sort.

It also defines the constant an%individual to be of sort unit%sort.

It contains only one axiom:

∀ x : unit%sort . x = an%individual

And one theorem:

∀ x, y : unit%sort . (x = y) iff TT

The kernel theory also defines an identity-translation that maps all sorts and

constants mentioned above to themselves.

23

2.3 Preliminaries: OMDoc/MMT

OMDoc (short for Open Mathematical Documents) is a semantics-oriented markup

format for STEM-related documents extending OpenMath developed by the KWARC

work group (see [Koh16]). OMDoc/MMT ([Rabb]) extends a fragment of OMDoc

by additional language features.

OMDoc/MMT brings with it three distinct levels for expression of mathematical

knowledge:

• Object Level

Expressions (e.g. terms and formulae) expressed in OpenMath.

• Declaration Level

Constants (functions, types, judgements) with an optional (object-level)

type and/or definition.

• Module Level

Theories and Views; sets of declarations that inhabit a common namespace

and context.

(e.g. the theory of the lambda calculus)

Both formal and informal knowledge is supported at all three levels. This gives

OMDoc/MMT a higher flexibility and allows for use in more diverse contexts such

as data exchange between mathematical software systems (like theorem provers

or web services) and natural language text books for e-learning.

Theories in OMDoc/MMT are structurally similar to theories in IMPS and can

include other theories. Hence MMT-theories allow for library development in con-

cordance to the little theories paradigm. Views in MMT behave (for all purposes

relevant in this thesis) analogously to theory morphisms in IMPS. An example6 is

given in Figure 9.

6Taken from the theory test1 in https://gl.mathhub.info/Test/General/blob/master/

source/general.mmt

24

https://gl.mathhub.info/Test/General/blob/master/source/general.mmt
https://gl.mathhub.info/Test/General/blob/master/source/general.mmt

<omdoc>

<theory name="test1" base="http://test.kwarc.info">

<constant name="R">

<type>

<OMS base="http://cds.omdoc.org/urtheories" module="Typed"

name="type"></OMS>

</type>

</constant>

<constant name="O">

<type>

<OMS base="http://cds.omdoc.org/urtheories" module="Typed"

name="type"></OMS>

</type>

</constant>

<constant name="Ftp">

<type>

<OMS base="http://cds.omdoc.org/urtheories" module="Typed"

name="type"></OMS>

</type>

<definition>

<OMA>

<OMS base="http://cds.omdoc.org/urtheories" module="LambdaPi"

name="arrow"></OMS>

<OMS base="http://test.kwarc.info" module="test1"

name="R"></OMS>

<OMS base="http://test.kwarc.info" module="test1"

name="O"></OMS>

</OMA>

</definition>

</constant>

</theory>

</omdoc>

Figure 9: A simplified OMDoc/MMT example

2.3.1 The MMT System

The OMDoc/MMT language is used by the MMT system, which provides an

API to handle OMDoc/MMT content and services such as type checking, rewrit-

ing of expressions and computation, as well as notation-based presentation of

OMDoc/MMT content and a general infrastructure for inspecting and browsing

libraries.

Since OMDoc/MMT avoids committing to a specific semantics or logical foun-

dation, foundation-dependent services and features (e.g. type checking, presen-

tation) are implemented using (foundation-independent) generic algorithms ex-

tensible by foundation-dependent calculus rules via plugins (e.g. for handling

content imported from external systems such as IMPS).

25

2.3.2 Theory Graphs

Theories and theory morphisms naturally lead to theory graphs, with theories as

vertices and morphisms as edges. In fact, OMDoc/MMT-theories and morphisms

form a category, which is exploited by the MMT-system to induce and translate

knowledge in/between theories analogously to IMPS (see Section 2.2.6).

The possible arrows in OMDoc/MMT are:

• Includes, which import all declarations from the domain to the co-domain.

As morphisms, they behave like the identity morphism,

• Views, which are judgement-preserving maps from the declarations in the

domain to expressions over the co-domain,

• Structures, which are omitted for this thesis, and

• the Meta-theory-relation, which behaves like an include for most pur-

poses.

The meta-theory-relation connects theories that live on different meta-levels; e.g.

domain knowledge to its logical foundation and conversely the logical foundation

to the logical framework it is formalised in.

An example graph is given in Figure 10. Dotted lines represent the meta-theory-

relation (e.g. FOL and HOL are formalised in LF), hooked arrows are includes

(e.g. the theory of commutative groups CGroup includes Monoid), squiggly arrows

represent views (e.g. mod maps Monoid to ZFC, as sets with union and the empty

set form a monoid), the normal (labelled) arrows represent structures.

The MMT system also provides a theory graph viewer (see [RKM17]), an example

for which is given in Figure 34.

LF LF + X

FOL HOL

Monoid CGroup Ring

ZFC
f2h

add

mult

folsem

mod

Figure 10: An examplary theory graph with different meta-levels

26

2.3.3 The Logical Framework LF

For our purposes, we fix as a foundation the logical framework LF (see [HHP93a]),

since it is particularly well supported by the MMT system.

LF is based on a dependently-typed lambda calculus, intended as a framework to

formalise logical systems (such as type theories, lambda calculi or classical logics)

themselves. As such, it lends itself easily to standard formalisation practices such

as judgements-as-types and higher-order abstract syntax and is used to formalise

LUTINS in MMT (for details, see Section 3.2 and Appendix C).

Correspondingly, LF serves as a meta-theory for the LUTINS-theory, which in

turn serves as a meta-theory for all theories imported from the IMPS-library.

For a slightly more elaborate discussion of LF and its interplay with MMT, see

[Rabb].

27

3 The IMPS importing process

The IMPS theory library, developed in parallel to the IMPS system itself, is a

collection of theories, theory morphisms and theory constituents (e.g. theorems

or definitions)7 that serves as a database of mathematics.

The theory library provides a large variety of basic mathematics (such as cardi-

nalities, basic algebra and group theory, number theory, metric spaces, sequences,

calculus, . . .).

It formalises roughly 100 theories with over 110 theory morphisms and over 1900

distinct theorems. Its purpose was to provide the user with a solid starting point

to develop their own theory library suited to their personal needs and interests.

It also served as a collection of examples to demonstrate the different ways in

which mathematics could be formalised using the IMPS system.

For a detailed introduction to the IMPS theory library and details on the sections

contained therein, see also Chapter 18 of [FGT98].

3.1 The IMPS Math Library

IMPS theory libraries are typically (though not necessarily) organised in sections.

A section is defined via the def-form (def-section ...) and includes a set of

files and potentially also other sections.

For the purposes of this work, I decided to consider the imps-math-library

section, with special focus on its foundation subsection.

This section works as a sort of “standard library” for developing mathematics

in IMPS and defines the most essential and foundational theories, such as basic

number theory, multiple generic theories and the critical h-o-real-arithmetic,

the theory of the real numbers as a complete ordered field.

It also includes a few generic theories with no non-logical axioms, designed to

reason about such objects as sets, unary functions, and sequences.

The foundation section is relatively simple to translate as it uses only a fraction

of all def-forms available in IMPS (see Section 3.3.1). The wider imps-math-library

covers a much broader array of mathematics and makes use of almost all def-

forms. However, most of the interesting def-forms are already used in the foundation

section.

A complete listing of the section definition and therein included files can be found

in Appendix D.

7All of which are implemented in IMPS source files in the T programming language and
interpreted by the IMPS system.

28

3.2 The LUTINS Theory in MMT

To formalise LUTINS in MMT, I use the logical framework LF, which provides

a dependently typed lambda calculus with the following features:

• Two universes type and kind with type:kind

• Dependent function types ∏
x:A

T (x)

(in LF-syntax: {x:A}T(x)). If T does not contain the variable x, this is the

same as the simple function type A→ T .

Dependent function types are inhabited by lambda expressions λx : A.t(x)

(in LF-syntax: [x:A]t(x)). The usual rules in a lambda calculus (exten-

sionality, beta-reduction, . . .) hold.

The full formalisation of LUTINS is given in Appendix C. We will discuss some

of the core principles used therein:

Fundamentally, I declare:

1. a new LF-type tp:type, which serves as the universe of maximal IMPS-sorts,

2. a function sort : tp → type, and

3. a function exp : {A : tp} sort A → type.

Given some maximal IMPS-sort A, the type sort A then serves as the LF-type of

all IMPS sorts, and given a sort a : sort A, the type exp A a corresponds to

the LF-type of all IMPS-expressions of sort a.

I use the principles of higher-order abstract syntax to specify binders in IMPS. For

example, consider an IMPS expression λx : A.t, where the λ-constructor binds a

new variable x : A. I formalise this behaviour by declaring the IMPS lambda to be

an LF function lambda, that takes an LF lambda expression as argument which

binds the variable x. As a result we get the LF expression lambda ([x:A] t)

being the application of the function lambda to the LF function [x:A]t, effectively

“embedding” an LF function on IMPS expressions as an IMPS function. Quantifiers

and other binders are treated analogously.

For propositional judgements (i.e. axioms and theorems) in IMPS, I use the

judgements-as-types paradigm by introducing an operator thm : exp bool →
type, assigning to each proposition a type which we can think of as the “type of

proofs” for that proposition. Correspondingly, we consider a proposition A to be

“true” if the type thm A is inhabited. Axioms correspond to undefined constants

of type thm A, whereas theorems correspond to defined constants of that type,

their definition being a proof (although proofs are omitted in this thesis).

29

3.3 Translation to OMDoc

3.3.1 Dead and Delayed Def-Forms

To avoid unnecessary work in implementation, I conducted a survey on the T

source code via shell script to determine which def-forms were actually used and

which were factually “dead”. The script goes through a list of all def-forms (taken

from [FGT98]) and counts how often they are actually being used in the library.

A def-form is considered “dead” if it is not used in the source code we consider

(i.e. the section imps-math-library), even if it is used somewhere else in the

code base. We distinguish this from a def-form that is merely “delayed”, i.e.

it appears in the imps-math-library, but not in the foundation. The MMT

importer for IMPS does not support the semantics of dead or delayed def-forms

(but can be extended to).

The results of the survey can be examined in Figure 11. The first column denotes

the amount of def-forms of that particular sort in imps-math-library, the second

in foundation.

It determined fifteen def-forms to be dead or delayed, five of which are dead and

ten of which are delayed.

The def-forms that did not appear anywhere (dead) are the following:

• def-bnf

• def-cartesian-product

• def-primitive-recursive-constant

• def-record-theory

• def-sublanguage

And the def-forms that appeared in the imps-math-library but not in foundation

(delayed) are as follows:

• def-imported-rewrite-rule

• def-section

• def-theory-ensemble

• def-theory-ensemble-instances

• def-theory-ensemble-multiple

• def-theory-ensemble-overloadings

30

6 1 def-algebraic-processor
10 1 def-atomic-sort

DEAD 0 0 def-bnf
DEAD 0 0 def-cartesian-product

43 10 def-compound-macete
158 19 def-constant

DELAYED 1 0 def-imported-rewrite-rule
7 1 def-inductor
35 11 def-language
2 1 def-order-processor

DEAD 0 0 def-primitive-recursive-constant
56 33 def-quasi-constructor

DEAD 0 0 def-record-theory
14 3 def-recursive-constant

DELAYED 19 0 def-renamer
12 4 def-schematic-macete
14 1 def-script

DELAYED 1 0 def-section
DEAD 0 0 def-sublanguage

1239 207 def-theorem
91 18 def-theory

DELAYED 31 0 def-theory-ensemble
DELAYED 13 0 def-theory-ensemble-instances
DELAYED 3 0 def-theory-ensemble-multiple
DELAYED 12 0 def-theory-ensemble-overloadings
DELAYED 2 0 def-theory-instance

6 1 def-theory-processors
46 1 def-translation

DELAYED 20 0 def-transported-symbols
DELAYED 17 0 def-overloading

62 36 def-parse-syntax
117 66 def-print-syntax

Figure 11: Survey results for usage of each def-form.

• def-theory-instance

• def-transported-symbols

• def-overloading

• def-renamer

All of which were not considered in the implementation for this thesis, but might

be available in a future translation.

31

(def-language GROUP-LANGUAGE

(base-types gg)

(constants

(e "gg")

(mul "[gg,gg,gg]")

(inv "[gg,gg]")))

(def-theory GROUPS

(language group-language)

(component-theories h-o-real-arithmetic)

(axioms

(left-mul-id "forall(x:gg, e mul x = x)" rewrite)

(right-mul-id "forall(x:gg, x mul e = x)" rewrite)

(left-mul-inv "forall(x:gg, inv(x) mul x = e)" rewrite)

(right-mul-inv "forall(x:gg, x mul inv(x) = e)" rewrite)

(mul-associativity "forall(x,y,z:gg, (x mul y) mul z = x mul (y mul z))"

rewrite)))

Figure 12: IMPS Source Code (from “groups.t”): theory and language for groups

3.3.2 Def-Form Specifics

In this section, we will examine some of the most important and most frequent

def-forms in the foundation section and discuss their translation to LF.

def-theory and def-language

Since IMPS and MMT share so many design choices and philosophical approaches,

most parts of the theory structure easy to translate. Theories in IMPS, for exam-

ple, directly match theories in MMT.

MMT does not directly differentiate between theories and languages like IMPS

does. Instead I translate IMPS theories as MMT theories and include the con-

structs from the corresponding language as constants in the MMT theory.

Example source code for a theory and its language in the IMPS system can be

found in Figure 12.

def-theorem

To translate an IMPS theorem, one adds a constant of the name of the theorem

to the correct theory. The mathematical expression of the theorem (which has

the IMPS type prop) is combined with the thm operator to give it the LF-type of

proofs of the mathematical expression in question (judgements-as-types).

Usually, undefined constants of this type would correspond to axioms and defined

constants of this type would correspond to theorems. However, since proofs are

not considered for this translation, effectively all theorems from IMPS are treated

32

(def-theorem INV-OF-INV

"forall(x:gg, inv(inv(x))=x)"

(theory groups)

(usages rewrite transportable-macete)

(proof

((instantiate-theorem mul-associativity ("inv(inv(x))" "inv(x)" "x"))

(contrapose "with(p:prop,p)")

(force-substitution "inv(inv(x)) mul inv(x)" "e" (0))

(force-substitution "inv(x) mul x" "e" (0))

simplify

simplify

simplify)))

Figure 13: IMPS Source Code (from “groups.t”): Theorem proving (x−1)
−1

= x

(def-constant sqrt

"lambda(x:rr, iota([[[y],rr]], 0<=y and y*y=x))"

(theory h-o-real-arithmetic))

Figure 14: IMPS Source Code (from “reals.t”): Constant defining sqrt

as axioms (the assumption being that they do indeed hold). See also section 3.2

for details.

The proof scripts from IMPS can not be translated into LF in a sensible way; see

Section 4.4.4 for details.

An example of an IMPS-theorem, along with its proof script, can be found in

Figure 13.

def-constant and def-recursive-constant

Constants in IMPS-theories (both of the normal and the recursive variety) are

translated as constants in MMT-theories. When a constant def-form is to be

translated, a new MMT-constant is created and added to the correct theory. This

MMT-constant has the name of the IMPS-constant and the defining mathematical

expression as the definition.

For ordinary constants, we just use the normal mathematical expression as the

definition. For recursive constants, however, we use the ι-representation that

is provided by IMPS instead of the least-fixed-point-representation (also called

“functional representation”, compare Appendix B).

Examples of one normal and one recursive constant are in Figures 14 and 15.

Figure 16 shows the ι-representation of the recursive constant sum.

33

(def-recursive-constant sum

"lambda(sigma:[zz,zz,[zz,rr],rr],

lambda(m,n:zz,f:[zz,rr], if(m<=n,sigma(m,n-1,f)+f(n),0)))"

(theory h-o-real-arithmetic)

(definition-name sum))

Figure 15: IMPS Source Code (from “reals.t”): Recursive Constant defining sum

iota(f_0:[zz,zz,[zz,rr],rr],

forsome(g_0:[zz,zz,[zz,rr],rr],

g_0

=lambda(m,n:zz,f:[zz,rr],

if(m<=n, g_0(m,n-1,f)+f(n), 0))

and

forall(h_0:[zz,zz,[zz,rr],rr],

h_0

=lambda(m,n:zz,f:[zz,rr],

if(m<=n, h_0(m,n-1,f)+f(n), 0))

implies

forall(u_0,u_1:zz,u_2:[zz,rr],

#(g_0(u_0,u_1,u_2))

implies

g_0(u_0,u_1,u_2)=h_0(u_0,u_1,u_2)))

and

f_0=g_0))

Figure 16: Defining ι-expression for sum, string representation

def-atomic-sort

Atomic sorts in IMPS are also added to MMT-theories as constants of the LF-type

sort k (where k is the tp corresponding to the sorts kind). We also add a second

statement that declares this sort a subsort of its enclosing sort.

If a witness is defined, we also add a theorem to the theory that the witness is

of that sort.

An example sort definition for the sort of natural numbers (as enclosed by the

integers) can be seen in Figure 17.

def-quasi-constructor

As we will discuss in more detail in Section 4.4.5, quasi-constructors form a

special case of being a prominent feature of IMPS and absolutely crucial for a fine-

grained, type-checkable translation of any sort, but also being uniquely difficult

34

(def-atomic-sort nn

"lambda(x:zz, 0<=x)"

(theory h-o-real-arithmetic)

(witness "0"))

Figure 17: IMPS Source Code (from “reals.t”): Definition of the sort N

(def-quasi-constructor GROUP

"lambda(gg%:sets[gg], mul%:[gg,gg,gg], e%:gg, inv%:[gg,gg],

forall(x,y:gg, x in gg% and y in gg% implies mul%(x,y) in gg%) and

e% in gg% and

forall(x:gg, x in gg% implies inv%(x) in gg%) and

forall(x:gg, x in gg% implies mul%(e%,x)=x) and

forall(x:gg, x in gg% implies mul%(x,e%)=x) and

forall(x:gg, x in gg% implies mul%(inv%(x),x)=e%) and

forall(x:gg, x in gg% implies mul%(x,inv%(x))=e%) and

forall(x,y,z:gg, ((x in gg%) and (y in gg%) and (z in gg%)) implies

mul%(mul%(x,y),z) = mul%(x,mul%(y,z))))"

(language groups))

Figure 18: IMPS Source Code (from “groups.t”): Group quasi-constructor

to translate automatically.

This is why for now, quasi-constructors and their semantics are implemented by

hand in the math parser, but when they are encountered in the T source files,

they are just translated as opaque data.

def-translation

IMPS translations (which are all interpretations in the focused part of the library,

i.e. all the obligations of the translation are theorems in the target theory) are

translated as MMT theory morphisms, or views.

For more on MMT views and theory graphs, refer to [Iac09].

There are some special cases that can not be captured directly by MMT views,

which we will look at more closely in the following paragraphs.

35

(def-translation GROUPS->SUBGROUP

(source groups)

(target groups)

(assumptions

"with(a:sets[gg], nonempty_indic_q{a})"

"with(a:sets[gg], forall(g,h:gg, (g in a) and (h in a)

implies (g mul h) in a))"

"with(a:sets[gg], forall(g:gg, (g in a) implies (inv(g) in a)))")

(fixed-theories h-o-real-arithmetic)

(sort-pairs

(gg (indic "with(a:sets[gg], a)")))

(constant-pairs

(mul "with(a:sets[gg], lambda(x,y:gg, if((x in a) and (y in a),

x mul y, ?gg)))")

(inv "with(a:sets[gg], lambda(x:gg, if(x in a, inv(x), ?gg)))"))

force-under-quick-load

(theory-interpretation-check using-simplification))

Figure 19: IMPS Source Code (from “subgroups.t”): Subgroup Translation

Theory-Translations from a theory to itself

Some theory morphisms in IMPS map a theory T to itself. An example would be

the identity translation of the-kernel-theory that maps everything to itself.

T

Figure 20: Theory morphism from T to itself. (IMPS)

MMT views, however, make the assumption that source and target theory are

different, so to model a view from a theory T to itself in MMT, we create a copy

of T called T ′ that plainly includes the original (and nothing else) and create a

view from T to that.

T T ′

Figure 21: Theory morphism from T to a copy of itself. (MMT)

Theory-Morphisms with assumptions

A few theory morphisms in IMPS also have a collection of assumptions that need

to be fulfilled (see Figure 19). These assumptions can be used to state that certain

conditions must be met (e.g. when translating a group to a subgroup, the target

set (indicator) must not be empty).

36

T1 T2
a1, . . . , an

Figure 22: Theory morphisms with assumptions. (IMPS)

Views in MMT, however, are not designed to have assumptions. What we do to

circumvent this is to create a copy of the target theory T2, called T ′2 that includes

T2, but has the assumptions as additional axioms.

T1 T2

T ′2

a 1
, .
. .
, a
n

Figure 23: Theory morphisms with axioms. (MMT)

In case the translation has both, assumptions and identical source and target

theories (as is the case with the example GROUPS->SUBGROUP in Figure 19), it is

treated as if it were merely an instance of the former, since a second copy of the

copy is not necessary any more.

3.4 Validation of Output

Once the content is translated against the implementation of LUTINS, it is also

type-checked by MMT to measure / verify correctness of the translation process.

This can help spot potential mistakes or mistranslations.

The goal for this mechanism is that everything that type-checks within the IMPS

system also type-checks in the LF-implementation. See section 5.1 for the results.

37

4 Implementation

4.1 Overview

The transformation process we will be discussing in this section starts with IMPS

library files8 and uses several software systems over a number of different steps,

which are outlined below.

The individual steps of the translation process are as follows:

• Generate JSON from IMPS sources

The first step is to generate usable JSON representation of the internal data

structures of the IMPS system. For this, I modified Li’s exporter to export

these data structures directly to JSON.

This has the advantage of being easy to read (for both human and machine)

and gives us direct access to the data in the internal data structures, instead

of an outdated OMDoc translation of those structures.

This part of the translation will be the topic of Section 4.2.

• Import and combine JSON and IMPS sources

Next, both the generated JSON and the original IMPS library source files

need to be parsed and interpreted to create a comprehensive data structure

containing all relevant information.

Parsing from both IMPS library source files and JSON generated from in-

ternal data structures, gives the possibility of including more data in the

translation, even data that is not represented on a symbolic level within

IMPS.

This will be discussed in Section 4.3.

• Translate combined structures to MMT/OMDoc

The last step is to translate the combined Scala data structures into MMT/OMDoc

format using the LF-implementation of LUTINS.

In this form, they can also be type-checked by MMT to verify their correct-

ness. The final OMDoc output is also generated by the MMT system, which

always produces OMDoc in the current standard of the format.

For details, see Section 4.4.

Figure 24 gives a high-level schematic view of all involved systems and processes.

8Which – like the original IMPS system – are written in the T programming language and
are hence often referred to simply as “T-files” in the following sections.

38

IMPS math
library source

the IMPS

system
JSON exporter

JSON referenceScala parser

Scala translator

the MMT
system

lutins.mmt

OMDoc Output

Figure 24: Overview of the architecture.
Red: Source Files, Blue: My contributions,

Yellow: Independent software systems
Cyan: Resulting OMDoc

4.2 IMPS to JSON Export

The first stage in the translation process is to create an easily parseable represen-

tation of the relevant internal IMPS data structures. Figure 25 shows the relevant

part of the overall architecture.

In [Li02], Li presents a LISP-based exporter (called “imps2omdoc”) from IMPS

directly to the then-current version of OMDoc, using information directly repre-

sented in symbol form in the IMPS system.

I modified this exporter (now called “imps2json”) so that it exports to JSON

instead, which are then easily readable from my MMT importer extension. This

made it a lot easier to import the data that IMPS provides since MMT already

has the capability to parse and load JSON.

39

IMPS math
library source

the IMPS

system
JSON exporter

JSON reference

Figure 25: Overview: export from source to JSON

It is also more practical because keeping the old target format would have en-

tailed writing an additional importer for an outdated version of OMDoc, a work-

intensive and potentially confusing endeavour.

Additionally, for such an importer to work, one would have to reverse some trans-

formations that Li applied to the data from the internal data structures. Simply

exporting the content of the data structures themselves to be read and used later

was a lot simpler.

The export into JSON has two major steps:

• Translation from IMPS to intermediate structures

These intermediate data structures are not internal to IMPS, but were in-

troduced in [Li02]. They are constructed to contain all relevant information

IMPS has on the mathematical object they represent.

For this to work, the IMPS system needs to run during the process of trans-

lation with all the def-forms loaded that are to be translated. The program

then has access to both the internal representation of data in IMPS as well

as functions on this data.

• Translation from intermediate structures to JSON

Once the data structures are assembled, they need to be transformed into an

easily parseable format. For this task, I chose the Javascript Object Notation

(JSON) format, since it is easy to read for both humans and machines. In

particular, MMT already has the capability to parse and interpret JSON, so

no additional work was required.

I use largely the same intermediate structures as [Li02] (with some additions and

modifications, see also Appendix B), but completely re-wrote the export into JSON

format, since we are only interested the content of the internal data structures,

in as easy a format to parse as possible, not a translation to something else.

4.2.1 Intermediate Structures

There are five intermediate structures presented in [Li02]. They are implemented

as Common LISP record structures with fields storing the relevant information.

40

• theorystruc

Structure for IMPS theories, including all associated data

Examples: h-o-real-arithmethic, groups, vectorspaces. . .

• languagestruc

Structure for IMPS languages,

Examples: pre-numerical-structures, monoid-language. . .

• objstruc

Structure for axiom, theorem, defined constant and defined atomic sort

objects

Examples: various theorems, functions like sqrt and factorial, etc.

• recursivestruc

Structure for recursive constants.

Examples: sum, prod, nn%quotient, . . .

• translationstruc

Structure for translations between IMPS theories.

Examples: complete-partial-order-to-h-o-real-arithmetic, . . .

These intermediate structures were left mostly as they were, with a few additions,

where necessary. For example, since we are interested in the precise types of

things9, objstruc was expanded by a field for the sort of a given object.

A precise listing of all used intermediate structures and what parts were modified

or added can be found in Figures 35 to 39 in Appendix B.

4.2.2 S-Expressions

We talked before about the different ways of representation in which IMPS displays

mathematical objects to the user (string syntax, etc.). One of the most important

features of the JSON export mechanism is the export of mathematical expressions

in s-expression syntax instead of string syntax.

For example, consider the axiom commutative-law-for-addition of the theory

h-o-real-arithmetic. In string presentation, it is printed like this:

forall(y,x:rr,x+y=y+x)

In s-expression syntax, however, this axiom is printed as follows:

(forall ((rr y x)) (= (apply-operator + x y)

(apply-operator + y x)))

9For example, the enclosing sorts of atomic sorts defined via def-form. This information is
not explicitly given by the user, but automatically inferred by IMPS, so it’s not available in the
T source code.

41

While the string representation might be more familiar to the human eye, s-

expressions are considerably easier to parse mechanically and make dealing with

binding strength and operator precedence unnecessary.

They also use quasi-constructors by name in the style of any other constructor

instead of by notation. This is advantageous because the notation of a quasi-

constructor is not defined in the same def-form as the quasi-constructor itself.

Going by string syntax would require a lot of additional effort.

An additional advantage of the s-expression syntax is that function application

is made explicit (see above). This greatly simplifies the correct parsing of math-

ematical expressions.

4.3 Importing and Combining Sources

The next part of the translation process involves parsing and interpreting both

the original IMPS T source files as well as the JSON created by imps2json. Then,

the information from both sources needs to be combined into a new form of

intermediate structure that can then be translated into MMT/OMDoc.

IMPS math
library source

JSON referenceScala parser

Scala translator

Figure 26: Overview: Integration of T and JSON sources

This is maybe the most significant difference to [Li02]. Instead of working only

with the internal IMPS data structures, the implementation of a translation from

IMPS to OMDoc works with both the internal IMPS data structures and the original

IMPS source files those data structures are generated from.

This gives us significantly more information to work with, especially some of the

information that is not represented on a symbol level in IMPS, like proof scripts

or defining expressions for quasi-constructors.

4.3.1 Internal Representation

IMPS structures

I created an abstract data structure called TExp (for T-Expression) and added

one instance for each kind of mathematical object in IMPS (minus those that

42

/* def-theorem

* Documentation: IMPS manual pgs. 184 ff. */

case class Theorem(name : String, /* Positional argument. Required. */

formula : IMPSMathExp, /* Positional argument. Required. */

lemma : Boolean, /* Modifier argument. Optional. */

reverse : Boolean, /* Modifier argument. Optional. */

thy : ArgumentTheory, /* Keyword Argument, Required */

usages : Option[ArgumentUsages], /* Keyword Argument, Optional */

trans : Option[ArgumentTranslation], /* Keyword Argument, Optional */

macete : Option[Macete], /* Keyword Argument, Optional */

hmthy : Option[HomeTheory], /* Keyword Argument, Optional */

prf : Option[Proof], /* Keyword Argument, Optional */

src : Option[SourceRef]) /* SourceRef for MMT */

extends TExp

{

override def toString: String =

{

var str : String = "(def-theorem " + name + "\n " + formula.toString

if (lemma) { str = str + "\n lemma"}

if (reverse) { str = str + "\n reverse"}

str = str + "\n " + thy.toString

if (usages.isDefined) { str = str + "\n " + usages.get.toString }

if (macete.isDefined) { str = str + "\n " + macete.get.toString }

if (hmthy.isDefined) { str = str + "\n " + hmthy.get.toString }

if (prf.isDefined) { str = str + "\n " + prf.get.toString }

str = str + ")"

str

}

}

Figure 27: Scala data type representing a theorem

were dead or delayed). These data structures collect all relevant information in

one place. They are created while parsing the T source code, but also draw on the

parsed JSON for things like sorts or mathematical formulae in s-expression form.

The MMT system offers a data type called SourceRef (for Source Reference).

Every structure representing an IMPS object carries one of these source references

that carries data about where (that is, file name and line numbers) the original

source (in our case: the original def-form) of the object is.

If one of these TExps carries another TExp as an argument (for example, theorems

carry proofs, both of which have a TExp representation), then the argument TExp

will also have a source reference that refines the source reference of its “parent”.

Figure 27 shows an example of such a structure (for theorems) along with its

.toString method, which can be used to create valid IMPS source code again10.

IMPS Mathematical Expressions

Mathematical expressions have a different abstract data type called MathExp. The

instances of this data type correspond to logical constructors, quasi-constructors

10Parsing a def-form followed by printing it via .toString is not guaranteed to give the
identity. Some arguments to def-forms can come in any order, and that information is not
saved, only what those arguments describe.

43

abstract class IMPSMathExp

case class IMPSMathSymbol(s : String) extends IMPSMathExp {

override def toString: String = s

}

case class IMPSVar(v : String) extends IMPSMathExp {

override def toString: String = v

}

...

case class IMPSNegation(p : IMPSMathExp) extends IMPSMathExp {

override def toString: String = "not(" + p + ")"

}

...

case class IMPSIota(v1 : IMPSVar, s1 : IMPSSort, p : IMPSMathExp) extends IMPSMathExp {

override def toString: String = "iota(" + v1 + ":" + s1 + "," + p + ")"

}

...

case class IMPSUndefined(s : IMPSSort) extends IMPSMathExp {

override def toString: String = "?" + s.toString

}

...

case class IMPSLambda(vs : List[(IMPSVar, IMPSSort)], t : IMPSMathExp) extends IMPSMathExp

{

override def toString: String =

{

var str : String = "lambda("

for ((v, s) <- vs)

{

str = str + v.toString

str = str + ":" + s.toString

str = str + ","

}

str = str + t.toString + ")"

str

}

}

...

Figure 28: Part of Scala data type(s) that represent IMPS math expressions.

(more on this in Section 4.4.5) and generally follow the rules for expression-

building laid out in Figure 2 (on page 10).

There are no source references for MathExps directly, though usually they are

wrapped in a TExp that would have one.

As an example, see Figure 28 for a selection of instances of the data type for

typical mathematical constructs.

Sorts are implemented in a similar data type, called IMPSSort. This data type

does not extend MathExp (although one could make a reasonable case for that) as

to make type-errors (e.g. putting a sort where an expression needs to go) easier

to detect.

In cases where one needs an expression only as a stand-in for a sort, the im-

plementation falls back on passing an IMPSUndefined of the correct sort, as is

common practice in IMPS as well.

An example for the implementation of types of IMPS sorts can be seen in Figure

29.

44

abstract class IMPSSort

case class IMPSAtomSort(s : String) extends IMPSSort

{

override def toString: String = s

}

...

case class IMPSBinaryFunSort(s1 : IMPSSort, s2 : IMPSSort) extends IMPSSort

{

override def toString : String = "[" + s1 + "," + s2 + "]"

}

...

Figure 29: Part of Scala data type(s) that represent IMPS sorts

4.4 Translation Specifics

The last part of the translation process is taking the intermediate Scala structures

and translating them into MMT/OMDoc format. We will discuss the general

approach now and explain a few important special cases in the following sections.

Scala translator

the MMT
system

lutins.mmt

OMDoc Output

Figure 30: Translation to MMT/OMDoc

Translating against a reference implementation of the underlying logic gives us

the possibility of type-checking for correctness of the translation, as well as the

opportunity to benefit from MMT’s simplifier and solver.

It also makes the translation process robust against future changes of the OMDoc

format, since the actual export to OMDoc is now done by the MMT system itself.

The birds-eye view on the translation process is that mathematical expressions are

translated from their representation in MathExp form to an equivalent expression

in LF using the constructors and constants the implementation of LUTINS (see

Appendix C) provides. Compare also Section 3.2.

Constants (like theorems, but also like functions) are added along with their

name (if they have one) and their type (which in the case of theorems is best

understood as the type of proofs of the theorem) and can be referred to by other

elements. Every element is LF-type-checked by MMT.

45

Since the LF-constructors often take more arguments than the IMPS expressions

explicitly provide in some places (e.g. correct maximal sorts), it is sometimes

necessary to add unknowns to the translated expression. These are then later

solved by the MMT system through inference from the sum of information it has

available.

4.4.1 Subsorting

The implementation of LUTINS for MMT (see Appendix C) includes a construct

to declare one sort as a subsort of another.

In case of declared subsorts of theories, the enclosing sort is always indicated

directly in the same def-form and hence readily available. In case of atomic sorts

declared via their own def-form, however, the enclosing sort is never directly men-

tioned (neither could it be, the def-form does not support that kind of argument).

Here, the implementation falls back to the information in the JSON output. Since

IMPS still infers the enclosing sort of the defining lambda expression, from which

the enclosing sort of the sort being defined can be recovered with minimal effort11.

Note that we do not use subtypes of LF types, but merely apply an LF term

indicating that one sort is a subsort of another.

This can still be type-checked to ensure correctness, though the information will

only be available on the logical level, not on the meta-logical level.

4.4.2 Rewriting Quantifiers to Fixed Arities

Many constructors in LUTINS do not have a fixed arity. Quantifiers like forall

and forsome, connectors like and and or, the function sort constructor and mul-

tiple of the system quasi-constructors all accept lists of arguments of varying

length.

MMT, however, does not support flexary operators at time of writing. So, to

make it possible to represent these constructors correctly in OMDoc, they are

rewritten to fixed arity during translation.

The operators in MMT’s version of LUTINS are of a fixed arity (usually con-

nectors are binary and quantifiers can only bind a single variable), but can be

combined with each other to reconstruct the original input term.

So, for example, an expression like the following (from SURJECTIVE-ON-LEMMA)

11The sort of the defining lambda-expression is of the form [α, prop] since IMPS uses predicate
subtyping for sorts defined via def-form. From this, we learn that the enclosing sort we are
looking for is α.

46

∀a : sets[ind1], b : sets[ind2], f : (ind1 → ind2), x : ind1.

((surjective on q(f, a, b) ∧ (x ∈ a))⇒ (f(x) ∈ b))

would be rewritten into

∀a : sets[ind1].∀b : sets[ind2].∀f : (ind1 → ind2).∀x : ind1.

((surjective on q(f, a, b) ∧ (x ∈ a))⇒ (f(x) ∈ b))

during translation to OMDoc.

Naturally, to make the types fit these adapted constructors12, function sorts of

IMPS function terms need to be rewritten in a similar manner as well.

4.4.3 Literals

IMPS languages allow for three distinct types of literals, that can be added via

the extensible keyword along with a so-called “numeric type”. These languages

may contain an infinite amount of constants in one-to-one correspondence with

a sort of the theory that is also specified as an argument.

The three categories of literals / numeric types present in the library are:

• Integers

Keyword: *integer-type*

Examples: 0, -1, 2, ...

• Rationals

Keyword: *rational-type*

Examples: [1/2], [-1/3], [2/3], ...

• Octets

Keyword: *octet-type*

Examples: 32#8, 64#8, 128#8, ...

MMT supports arbitrary literals that do not depend on a fixed set of constants

that the framework needs to pre-commit to (see [Raba]).

The implementation of LUTINS includes one sort (of kind ι) each for the three

types of literals, along with appropriate rules for parsing and typing them in the

importer system.

If a language is translated that has the extensible keyword and assigns a numeric

type n to a given sort α (compare [FGT98], pgs. 172 to 174), a subsort judgement

12Also because the constructor for function sort creation in the LF implementation is of fixed
arity as well.

47

<opaque format="text">Opaque proof of theorem

DEFINEDNESS-OF-DANGLING-CONDITIONALS

(proof

(simplify))</opaque>

Figure 31: Generated opaque proof data for example theorem

n � α is added to the translation. That way, all literals are always of the correct

sort in a given theory.

4.4.4 Opaque Data

Every bit of information gathered from the T source code is represented in the gen-

erated OMDoc in one way or another. If one cannot represent it in a meaningful

and formal way directly (e.g. processors, proofs or macetes, but also arguments

to certain def-forms like usages), it is instead translated as so-called opaque data.

This means that the information is still added to the resulting OMDoc file, but

without typing or mathematical structure. In Figure 31, you can see the OMDoc

representation of a simple theorem’s proof.

Proofs were not considered at all in [Li02] because they don’t have an internal

representation in IMPS. The additional import of the T source files allowed us

to at least include the scripts themselves as opaque data, even if not as formal

mathematical properties.

4.4.5 Quasi-Constructors

The translation of quasi-constructors turned out to be quite challenging. As Li

states in [Li02], the corresponding lambda expressions for quasi-constructors are

not represented as symbols in IMPS and can therefore not be translated into JSON

directly, like other expressions.

However, user-defined quasi-constructors are used extensively throughout the

source. A survey of the t source files and the JSON output identified 33 quasi-

constructors used hundreds of times within the imps-math-library.

This shows clearly that any serious effort to translate this code base would be

incomplete without a rigorous treatment of quasi-constructors.

The solution I decided on was to represent each quasi-constructor that appears

in the section of the library we focus on as an instance of an abstract Scala data

type with an appropriate number of MathExps as arguments and also added a

parsing rule for each one.

48

(def-quasi-constructor I-IN

"lambda(x:uu,a:sets[uu], #(a(x)))"

(language indicators)

(fixed-theories the-kernel-theory))

Figure 32: T code defining the “i-in” quasi-constructor

def removeQCs(input : IMPSMathExp, addCs : List[IMPSMathExp]) : IMPSMathExp =

{

input match

{

...

case IMPSQCIn(e1_u,e2_u) =>

{

// "lambda(x:uu,a:sets[uu], #(a(x)))"

val e1 : IMPSMathExp = removeQCs(e1_u,addCs)

val e2 : IMPSMathExp = removeQCs(e2_u,List(e1) :::addCs)

val x_var = (freshVar("x",List(e1,e2) :::addCs), IMPSAtomSort("uu"))

val a_var = (freshVar("a",List(e1,e2,x_var._1) :::addCs), IMPSSetSort(IMPSAtomSort("uu")))

val inner : IMPSMathExp = IMPSIsDefined(IMPSApply(a_var._1,List(x_var._1)))

val lambda : IMPSMathExp = IMPSLambda(List(x_var,a_var), inner)

IMPSApply(lambda,List(e1,e2))

}

...

}

}

Figure 33: Example Scala code that eliminates quasi-constructors

During translation of the Scala structures to OMDoc, all quasi-constructors are

resolved when they are encountered. See figures 32 and 33 for the definition of a

quasi-constructor and the Scala code that resolves it during translation.

I also experimented with resolving the quasi-constructors directly when parsed.

However, this lead to unreasonably large and complicated expressions, especially

for expressions that used multiple quasi-constructors or expressions using quasi-

constructors that use other quasi-constructors.

The solution I ended up settling on had a much clearer representation of the

intermediate Scala structures, which turned out helpful for debugging purposes.

This act of manual translation and cherry-picking might suffer from a certain lack

of elegance and universality, but was unavoidable to be able to properly translate

the actual mathematical statements in the IMPS library at all. Since the defining

expressions for quasi-constructors are not represented in the internal IMPS data

structures, imps2json can not export any s-expressions for them.

49

5 Discussion

5.1 Results

JSON export

The imps2json exporter that I built on top of Li’s original imps2omdoc ex-

porter works reliably and produces valid JSON output, easily interpretable by

MMT’s JSON-importer and the human eye, for all relevant information in the

imps-math-library.

Parsing Mathematical Expressions

All mathematical expressions in the imps-math-library can be parsed and in-

terpreted, including (hand-implemented) quasi-constructors. Hence, the math-

parser is feature complete.

Parsing T Files

The implementation can parse all def-forms that are not either dead or delayed

(compare section 3.3.1), i.e. all that occur in the IMPS foundation-section.

Translating to MMT/OMDoc

All theories from the foundation section and their components can be translated

into OMDoc. Most of them can be translated meaningfully, with the exceptions of

proof scripts, macetes, processors and a few minor arguments to IMPS def-forms,

that need to be translated as opaque data.

All translated expressions successfully type-check in LF with two categories of

exceptions:

• ι-representations of recursive constants

• Expressions involving quasi-constructors

Theory Graph

I also generated an MMT theory graph from the produced OMDoc, that can be

viewed with tgview, an interactive theory graph viewer ([RKM17]) developed by

the KWARC group.

The graph resulting the translation of the foundation section can be seen in

Figure 34.

50

Software Sources

All software that is mentioned in this thesis is available online:

• imps2json

IMPS to JSON exporter, including original IMPS source files, is available at:

https://gl.mathhub.info/IMPS/theories

• MMT extension

The development of the MMT extension for can be found on this branch:

https://github.com/UniFormal/MMT/tree/imps

Some helpful tutorials can be found at the following address:

https://uniformal.github.io/doc/tutorials/

• MMT archive

An MMT archive with the IMPS files for foundation (no JSON) is at:

https://gl.mathhub.info/IMPS/imps

• Generated OMDoc

Generated OMDoc files for the foundation section can be inspected at:

https://gl.mathhub.info/IMPS/foundation

Interpretation

The translation process presented in this thesis is not complete and the generated

output is not yet 100% correct. However, the most crucial problems have been

solved:

Note that, although the foundation section is only a small part of the wider

imps-math-library section, it already includes 16 out of 26 (61.5%) kinds of

def-forms. Out of the 2037 individual def-forms that appear in the entire library,

the implementation supports 1918 (94.2%) already (compare Figure 11).

Note also, that the parser for mathematical expressions in s-expression form is

already complete. Adding support for a new kind of def-forms now “merely”

requires implementing a parser and finding a suitable MMT equivalence of the

term.

I also expect the effort to correct the parts of the translation, that currently

produce non-type-checking constants, to be minimal.

Given these results, one can be optimistic for a complete import of the IMPS

theory library in the near future.

51

https://gl.mathhub.info/IMPS/theories
https://github.com/UniFormal/MMT/tree/imps
https://uniformal.github.io/doc/tutorials/
https://gl.mathhub.info/IMPS/imps
https://gl.mathhub.info/IMPS/foundation

Figure 34: Theory Graph of the foundation section

5.2 Future Work

While the results for this thesis are promising, a lot of necessary and possible

future work remains open:

The first goal would be to refine the implementation so that all the structures in

the foundation section type-check successfully. This crucial step seems achiev-

able in the light of the results, even in short to medium time frames.

After that, the next obvious step is to extend the translation to include all of the

imps-math-library, instead of only the foundation section.

This will require a significant extension of the T-parser as well as the translation

process. It might also require to make use of some of MMT’s more advanced

features like parametric theories or LF subtyping (see also below).

A “deeper” structural representation of the IMPS subtyping information would

also be beneficial. LF does not support subtyping, but an extension to LF

might[Koh+17a]. The translation to OMDoc could benefit from this feature if we

would fix that extension instead of LF itself.

It also would be very beneficial to have a more structured interpretation of proofs

and macetes.

52

For this to be possible, the LF-implementation of LUTINS would probably need

to be adapted to support the proof commands and their combinators, as it cur-

rently has no support for these primitives.

There is also a significant body of supporting machinery that would need to be

added, a process that promises to be non-trivial and time-consuming.

An additional avenue of further research appears obvious. Like other importers

into MMT (such as the one from [Koh+17b]), the IMPS importer could be extended

by an IMPS exporter, translation from MMT/OMDoc back to IMPS source files.

Even though the IMPS system itself is not in use or development any more, it

could bring some insights about the translation process itself, to test if an import

followed by an export, would produce identical theories in IMPS.

5.2.1 Possible Additions to MMT

In the course of implementation, I came across some features that would have

been useful, but that MMT does presently not have:

1. MetaData for opaque elements

The implementation includes a lot of information (processors, macetes,

proofs, . . .) as opaque data in the generated OMDoc files. Opaque el-

ements in MMT currently can not be associated with metadata, such as

source references.

This means the source references and other available metadata for the cat-

egories of data mentioned above are forgotten during translation, making

the translation less complete.

Extending MMT by allowing opaque elements to carry metadata would

remedy this situation.

2. Structures across multiple files

Currently, MMT assumes that all relevant definitions for a given theory are

available in the same file as the theory definition itself. Not so, for example,

for IMPS, where theorems and definitions of theories like h-o-real-arithmetic

are spread out over a multitude of files.

It’s not too difficult to work around this, but it would be convenient if MMT

supported structures that are split over multiple files natively to reduce

doubled effort.

53

5.3 Conclusion

In this thesis, I endeavoured to make progress on “rescuing” the theory library

of the IMPS system, i.e. to make the formalised knowledge contained therein

available to mathematical knowledge management tools and saving it from the

dangers of inevitable bitrot.

For this, I built a pipeline of software systems that can translate the most im-

portant elements of the library into OMDoc format and can also be extended in

the future to translate the whole library without too much effort.

I used both, a JSON representation of the internal IMPS data structures, generated

by adapting Li’s imps2omdoc exporter, but also the original source files of the

theory library as input.

The data from both information sources was then corroborated and integrated,

before being translated against my LF implementation of the underlying logic

LUTINS.

The resulting translation is then type-checked by MMT to verify correctness and

used to generate valid and up-to-date OMDoc, which is available for use by ex-

ternal knowledge management systems.

This translation process provides an effective way to generate useful and usable

data from the mathematical library of the IMPS system. It serves as a solid

proof-of-concept as well as a first step towards future efforts.

We have seen the success of the two-pronged approach of using both information

sources mentioned above, allowing a more complete and more accurate repre-

sentation in the resulting OMDoc, as well as supplying useful metadata, such as

source references.

Interfacing with the MMT system for generating OMDoc instead of generating it

directly turned out to be an important part of the process. Type-checking against

an implementation of LUTINS in LF gives an additional level of certainty about

the correctness of the translation.

Making the IMPS library available in an accessible and machine-friendly format

opens up new possibilities for possible uses. For example, one could use the

generated OMDoc to compare similar mathematical objects in different prover

environments ore use the objects IMPS supplies as reference implementations.

Structured mathematical documents could also play a role in education, be it

about the field of provers themselves or just the mathematics they talk about.

Or maybe parts of the knowledge this saved can be useful to a bigger project in

the future (be it a proof effort or a new system entirely). Having this knowledge

available has many possible uses.

54

References

[Bag17] Joan Bagaria. “Set Theory”. In: The Stanford Encyclopedia of Phi-

losophy. Ed. by Edward N. Zalta. Winter 2017. Metaphysics Re-

search Lab, Stanford University, 2017.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and

Program Development. CoqArt: The Calculus of Inductive Construc-

tions. Springer, 2004. url: http://www.labri.fr/perso/casteran/

CoqArt/.

[Chu40] Alonzo Church. “A Formulation of the Simple Theory of Types”.

In: Journal of Symbolic Logic 5 (1940), pp. 56–68.

[Cod+11] Mihai Codescu et al. “Project Abstract: Logic Atlas and Integra-

tor (LATIN)”. In: Intelligent Computer Mathematics. Ed. by James

Davenport et al. LNAI 6824. Springer Verlag, 2011, pp. 289–291.

isbn: 978-3-642-22672-4. url: https : / / kwarc . info / people /

frabe/Research/CHKMR_latinabs_11.pdf.

[End72] H. B. Enderton. A Mathematical Introduction to Logic. Academic

Press, 1972.

[Far15] William Farmer. IMPS System Description. 2015. url: https://

github.com/theoremprover-museum/imps (visited on 03/25/2018).

[Far90] William M. Farmer. “A partial-function version of Church’s simple

theory of types”. In: Journal of Symbolic Logic 55 (1990), pp. 1269–

1291.

[Far93a] William M. Farmer. “A simple type theory with partial functions

and subtypes”. In: Annals of Pure and Applied Logic 64 (1993),

pp. 211–240.

[Far93b] William M. Farmer. “Theory Interpretation in Simple Type The-

ory”. In: HOA’93, an International Workshop on Higher-order Alge-

bra, Logic and Term Rewriting. LNCS 816. Amsterdam, The Nether-

lands: Springer Verlag, 1993.

[FGT92] William M. Farmer, Joshua Guttman, and Javier Thayer. “Little

Theories”. In: Proceedings of the 11th Conference on Automated De-

duction. Ed. by D. Kapur. LNCS 607. Saratoga Springs, NY, USA:

Springer Verlag, 1992, pp. 467–581.

[FGT98] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. The

IMPS 2.0 User’s Manual. 1st ed. The MITRE Corporation. Bedford,

MA 01730 USA, Jan. 1998.

55

http://www.labri.fr/perso/casteran/CoqArt/
http://www.labri.fr/perso/casteran/CoqArt/
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
https://github.com/theoremprover-museum/imps
https://github.com/theoremprover-museum/imps

[Gut91] J.D. Guttman. A proposed interface logic for verification environ-

ments. Tech. rep. The MITRE Corporation, 1991.

[HHP93a] R. Harper, F. Honsell, and G. Plotkin. “A framework for defining

logics”. In: Journal of the Association for Computing Machinery

40.1 (1993), pp. 143–184.

[HHP93b] Robert Harper, Furio Honsell, and Gordon Plotkin. “A framework

for defining logics”. In: Journal of the Association for Computing

Machinery 40.1 (1993), pp. 143–184.

[Iac09] Alin Iacob. Reasoning about Theory Morphisms. Bachelor’s Thesis.

2009. url: https://svn.eecs.jacobs- university.de/svn/

eecs/archive/bsc-2009/aiacob.pdf.

[IKR11] Mihnea Iancu, Michael Kohlhase, and Florian Rabe. Translating the

Mizar Mathematical Library into OMDoc format. KWARC Report.

Jacobs University Bremen, 2011. url: http://uniformal.github.

io/doc/applications/LATIN/docs/Mizar2OMDoc-Report.pdf.

[Koh+17a] Michael Kohlhase et al. “Knowledge-Based Interoperability for Math-

ematical Software Systems”. In: MACIS 2017: Seventh International

Conference on Mathematical Aspects of Computer and Information

Sciences. Ed. by Johannes Blömer, Temur Kutsia, and Dimitris

Simos. LNCS 10693. Springer Verlag, 2017, pp. 195–210. url: https:

//github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/

MACIS17-interop/crc.pdf.

[Koh+17b] Michael Kohlhase et al. “Making PVS Accessible to Generic Ser-

vices by Interpretation in a Universal Format”. In: Interactive The-

orem Proving. Ed. by Mauricio Ayala-Rincón and César A. Muñoz.

Vol. 10499. LNCS. Springer, 2017. isbn: 978-3-319-66107-0. url:

http://kwarc.info/kohlhase/submit/itp17-pvs.pdf.

[Koh16] Michael Kohlhase. “An Open Markup Format for Mathematical

Documents OMDoc [Version 1.6 (pre-2.0)]”. Draft Specification. 2016.

url: https://github.com/OMDoc/OMDoc/blob/master/doc/

spec/main.pdf.

[KR14] Cezary Kaliszyk and Florian Rabe. “Towards Knowledge Manage-

ment for HOL Light”. In: Intelligent Computer Mathematics 2014.

Conferences on Intelligent Computer Mathematics. (Coimbra, Por-

tugal, July 7–11, 2014). Ed. by Stephan Watt et al. LNCS 8543.

Springer, 2014, pp. 357–372. isbn: 978-3-319-08433-6. url: http:

//kwarc.info/frabe/Research/KR_hollight_14.pdf.

56

https://svn.eecs.jacobs-university.de/svn/eecs/archive/bsc-2009/aiacob.pdf
https://svn.eecs.jacobs-university.de/svn/eecs/archive/bsc-2009/aiacob.pdf
http://uniformal.github.io/doc/applications/LATIN/docs/Mizar2OMDoc-Report.pdf
http://uniformal.github.io/doc/applications/LATIN/docs/Mizar2OMDoc-Report.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-interop/crc.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-interop/crc.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-interop/crc.pdf
http://kwarc.info/kohlhase/submit/itp17-pvs.pdf
https://github.com/OMDoc/OMDoc/blob/master/doc/spec/main.pdf
https://github.com/OMDoc/OMDoc/blob/master/doc/spec/main.pdf
http://kwarc.info/frabe/Research/KR_hollight_14.pdf
http://kwarc.info/frabe/Research/KR_hollight_14.pdf

[Kra+86] D. Kranz et al. “Orbit An optimizing compiler for scheme”. In:

Proceedings of the sigplan ’86 Symposium on Compiler Construc-

tion. 1986.

[KS10] Alexander Krauss and Andreas Schropp. “A Mechanized Translation

from Higher-Order Logic to Set Theory”. In: Interactive Theorem

Proving: First International Conference, ITP 2010, Edinburgh, UK,

July 11-14, 2010. Proceedings. Ed. by Matt Kaufmann and Lawrence

C. Paulson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,

pp. 323–338. isbn: 978-3-642-14052-5. doi: 10.1007/978-3-642-

14052-5_23. url: http://dx.doi.org/10.1007/978-3-642-

14052-5_23.

[KW10] Chantal Keller and Benjamin Werner. “Importing HOL Light into

Coq”. In: ITP. Vol. 6172. Lecture Notes in Computer Science. Springer,

2010, pp. 307–322.

[LATIN] The LATIN Logic Atlas. url: https://gl.mathhub.info/MMT/

LATIN (visited on 06/02/2017).

[Li02] Yan Li. “IMPS to OMDoc Translation”. Bachelor’s Thesis. McMas-

ter University, Aug. 2002.

[Mon76] J.D. Monk. Mathematical Logic. Springer-Verlag, 1976.

[OAF] The OAF Project & System. url: http : / / oaf . mathhub . info

(visited on 04/23/2015).

[OS06] Steven Obua and Sebastian Skalberg. “Importing HOL into Isabelle/HOL”.

In: Automated Reasoning: Third International Joint Conference, IJ-

CAR 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings.

Ed. by Ulrich Furbach and Natarajan Shankar. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2006, pp. 298–302. isbn: 978-3-540-37188-

5. doi: 10.1007/11814771_27. url: http://dx.doi.org/10.

1007/11814771_27.

[Raba] Florian Rabe. “Generic Literals”. url: http://kwarc.info/frabe/

Research/rabe_literals_14.pdf.

[Rabb] Florian Rabe. “MMT: A Foundation-Independent Logical Frame-

work”. url: https://kwarc.info/people/frabe/Research/

rabe_mmtsys_18.pdf.

[Rab14] Florian Rabe. “How to Identify, Translate, and Combine Logics?” In:

Journal of Logic and Computation (2014). doi: 10.1093/logcom/

exu079.

[RAM88] J. A. Rees, N. I. Adams, and J. R. Meehan. The T Manual. Com-

puter Science Department, Yale University. 1988.

57

https://doi.org/10.1007/978-3-642-14052-5_23
https://doi.org/10.1007/978-3-642-14052-5_23
http://dx.doi.org/10.1007/978-3-642-14052-5_23
http://dx.doi.org/10.1007/978-3-642-14052-5_23
https://gl.mathhub.info/MMT/LATIN
https://gl.mathhub.info/MMT/LATIN
http://oaf.mathhub.info
https://doi.org/10.1007/11814771_27
http://dx.doi.org/10.1007/11814771_27
http://dx.doi.org/10.1007/11814771_27
http://kwarc.info/frabe/Research/rabe_literals_14.pdf
http://kwarc.info/frabe/Research/rabe_literals_14.pdf
https://kwarc.info/people/frabe/Research/rabe_mmtsys_18.pdf
https://kwarc.info/people/frabe/Research/rabe_mmtsys_18.pdf
https://doi.org/10.1093/logcom/exu079
https://doi.org/10.1093/logcom/exu079

[RKM17] Marcel Rupprecht, Michael Kohlhase, and Dennis Müller. “A Flexi-

ble, Interactive Theory-Graph Viewer”. In: MathUI 2017: The 12th

Workshop on Mathematical User Interfaces. Ed. by Andrea Kohlhase

and Marco Pollanen. 2017. url: http://kwarc.info/kohlhase/

papers/mathui17-tgview.pdf.

[Rus05] Bertrand Russell. “On Denoting”. In: Mind (New Series) 14 (1905),

pp. 479–493.

[Sho67] J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

58

http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf

A List of Figures

1 The logical constructors in LUTINS 9

2 LUTINS rules for creating expressions 10

3 IMPS expressions (from “primes.t”) using indicator functions . . . 12

4 IMPS Source Code (from “reals.t”): Def-Form defining the atomic

sort N . 15

5 A possible implementation of quasi-equality as a quasi-constructor 19

6 The five pre-defined quasi-constructors in IMPS 20

7 Def-Forms for declaring and installing an algebraic processor . . . 21

8 IMPS Source Code (from “groups.t”): Example macete for group

cancellation laws . 22

9 A simplified OMDoc/MMT example 25

10 An examplary theory graph with different meta-levels 26

11 Survey results for usage of each def-form. 31

12 IMPS Source Code (from “groups.t”): theory and language for groups 32

13 IMPS Source Code (from “groups.t”): Theorem proving (x−1)
−1

= x 33

14 IMPS Source Code (from “reals.t”): Constant defining sqrt 33

15 IMPS Source Code (from “reals.t”): Recursive Constant defining sum 34

16 Defining ι-expression for sum, string representation 34

17 IMPS Source Code (from “reals.t”): Definition of the sort N 35

18 IMPS Source Code (from “groups.t”): Group quasi-constructor . . 35

19 IMPS Source Code (from “subgroups.t”): Subgroup Translation . . 36

20 Theory morphism from T to itself. (IMPS) 36

21 Theory morphism from T to a copy of itself. (MMT) 36

22 Theory morphisms with assumptions. (IMPS) 37

23 Theory morphisms with axioms. (MMT) 37

24 Overview of the translation system 39

25 Overview of JSON-export subsystem 40

26 Overview of Scala Importer and Integrator 42

27 Scala data type representing a theorem 43

28 Part of Scala data type(s) that represent IMPS math expressions. . 44

29 Part of Scala data type(s) that represent IMPS sorts 45

30 Overview of Translation Subsystem 45

31 Generated opaque proof data for example theorem 48

32 T code defining the “i-in” quasi-constructor 49

33 Example Scala code that eliminates quasi-constructors 49

34 Theory Graph of the foundation section 52

59

35 theorystruc: Data type to represent IMPS theories 61

36 langstruc: Data type to represent IMPS languages 62

37 objstruc: Data type to represent IMPS objects 62

38 recursivestruc: Data type for recursively defined constants . . . 62

39 translationstruc: Data type to represent IMPS translations . . . 63

40 The section for the imps-math-library 66

41 The dependency tree for the foundation section. 67

60

B Details on Intermediate Structures

These are the precise types and descriptions of the intermediate structures used

in the JSON export step, see Section 4.2.1.

Additions to these structures by us are shaded. Compare also Section 4.4.1 in

[Li02].

Note: The data type event is internal to IMPS. Events are translated according

to whatever data the event describes (events, axioms, constants, . . .).

Field Type Description
theoryname String The name of the theory
cotheory List[theorystruc] A list of intermediate

structures of all compo-
nent theories of this the-
ory.

language languagestruc The intermediate struc-
ture of this theory’s lan-
guage.

axioms List[objstruc] A list of intermediate
structures of all axioms of
this theory.

defconsts List[objstruc] A list of intermediate
structures of this theory’s
defined constants

def-recursive-consts List[recursivestruc] A list of intermediate
structures of this theory’s
recursive constants.

defsorts List[objstruc] A list of intermediate
structures of this theory’s
defined sorts.

theorems List[objstruc] A list of intermediate
structures of this theory’s
theorems.

events List[event] A list of all the events of
this theory.

translation List[translationstruc] A list of intermediate
structures of translations
where this theory is the
target.

Figure 35: theorystruc: Data type to represent IMPS theories

61

Field Type Description
langname String The name of the language.
embedlang List[languagestruc] A list of intermediate structures

of the language’s embedded lan-
guages.

sorts List[String] A list of the sorts of the language.
const List[String] A list of the constants of the lan-

guage.
primitive-sorts List[String] A list of primitive sorts of the lan-

guage.
primitive-consts List[String] A list of primitive constants of

the language.
languages List[String] A list of the names of the lan-

guage’s embedded languages.

Figure 36: langstruc: Data type to represent IMPS languages

Field Type Description
objname String The name of the object.
sorting String The sort of the object.
formula String The string representation of the object.
f-sexp String The s-expression representation of the object.
theoryname String Name of the home theory of the object.
usagelist List[String] List of usages for the object.

Figure 37: objstruc: Data type to represent IMPS objects

Field Type Description
objname List[String] The names of the objects.
functional-list List[String] A list of string presentations of the ob-

jects’ functionals
defining-expr-list List[String] A list of string representations of the

objects’ defining expressions
(Least Fixed Point)

defining-sexp-list List[String] A list of s-expressions of the objects’
defining expressions (Least Fixed Point)

sortings List[String] A list of sorts of the object.
theoryname String The home theory of the objects.
usagelist List[String] A list of usages for the objects

Figure 38: recursivestruc: Data type for recursively defined constants

62

Field Type Description
name String The name of the translation.
source-theory String The source theory of the translation.
target-theory String The target theory of the translation.
fixed-theories List[String] A list of the names of the fixed theories

of the translation.
assumptions List[String] A list of string representations of the

assumptions of the translation.
assumptions-sexp List[String] A list of s-expressions of the assump-

tions of the translation.
sort-pairs List[String] A list of string representations of the

sorts paired by the translation.
sort-pairs-sexp List[String] A list of s-expressions of the sorts

paired by the translation.
constant-pairs List[String] A list of string representations of the

constants paired by the translation.
constant-pairs-sexp List[String] A list of s-expressions of the constants

paired by the translation.
interpretation? String Denotes whether the translation is an

interpretation or not.

Figure 39: translationstruc: Data type to represent IMPS translations

63

C lutins.mmt, LUTINS implemented in LF

Note:
This representation of MMT syntax foregoes the special unicode delimiters for print-
ability.

namespace http://latin.omdoc.org/foundations/lutins

import rules scala://imps.mmt.kwarc.info

/T The underlying logic for IMPS is called LUTINS (Logic of Undefined

Terms for Inference in a Natural Style). This Higher-Order-Logic

incorporates partial functions, undefinedness and subtyping.

More details can be found at http://imps.mcmaster.ca/manual/node12.html

theory Lutins : http://cds.omdoc.org/urtheories?LF =

rule rules?IntLiterals

rule rules?RatLiterals

Type System

/T Lutins types (which are technically just maximal sorts)

are represented as LF terms of type "tp".

tp : type

/T Sorts refine types. They cannot be empty, but they may

overlap. A sort that refines type A is represented as

an LF term of the type "sort A"

sort : tp → type

/T Every expression can have many sorts, but only one type.

That type (i.e. maximal sort) is the unique type b such that the expression's
sort a is � b. with respect to the enclosing sort relation �.

exp : {A : tp} sort A → type # exp 2 prec -1

/T Function types are only needed to keep track of the type of function sorts.

funType: tp → tp → tp

/T Sorts are formed from the base types and by using function sorts.

All functions are partial.

The function sort constructor is actually flexary.

top: {A : tp} sort A # ' 1

fun: {A, B} sort A → sort B → sort (funType A B) # 3 ⇒ 4 prec 50

/T LUTINS has primitive booleans, often called ? in documentation.

boolType : tp

bool = ' boolType

/T λ-abstractions
lambda : {A, B, α : sort A, β : sort B}

(exp α → exp β) → exp (α ⇒ β) # λ 5

/T You can apply a function to any argument that refines the given type.

This will always be well-sorted but may still be undefined.

apply : {A, B, α : sort A, γ : sort A, β : sort B}
exp (α ⇒ β) → exp γ → exp β # 6 @ 7 prec 100

/T The description operator ι returns the _unique_ object (of kind ι)
if such an object exists. Otherwise, it is undefined.

description_i : {A, α : sort A} (exp α → exp bool) → exp α # ι 3

/T There's a second unique description operator for kind ?,
though little supported and hardly ever used. The difference being,

when this predicate isn't uniquely witnessed, the expression

is not undefined, but actually false.

description_p : {α : sort boolType} (exp α → exp bool) → exp α # ι? 2

/T An ordinary if-then-else operator. Branches can be undefined.

ifthenelse : {A, α : sort A} exp bool → exp α → exp α → exp α # if 3 then 4 else 5

/T A generic undefined Term, independent of sort.

Equal to false in ?, since booleans must always be defined.

64

Undefined functions mapping into ? are treated as if the returned false.

undefined : {A, α : sort A} exp α# ? 2

Logic

/T Standard stuff, no surprises here.

thetrue : exp bool # TT

thefalse : exp bool # FF

not : exp bool → exp bool # ¬ 6 prec 40

and : exp bool → exp bool → exp bool # 1 ∧ 2 prec 30

or : exp bool → exp bool → exp bool # 1 ∨ 2 prec 30

implies : exp bool → exp bool → exp bool # 1 ⇒ 2 prec 30

iff : exp bool → exp bool → exp bool # 1 ⇔ 2 prec 30

if_form : exp bool → exp bool → exp bool → exp bool # ifform 1 then 2 else 3

= [p,t,e] if p then t else e

forall : {A, α : sort A} (exp α → exp bool) → exp bool # ∀ 3 prec 20

forsome : {A, α : sort A} (exp α → exp bool) → exp bool # ∃ 3 prec 20

/T A theorem is a (boolean) expression T for which there exists a proof

(that is, an LF-term of type ` T).

thm : exp bool → type # ` 1 prec -1

/T Equality takes two expressions of the same type, though

not necessarily the same sort. Evaluates to false if either

argument is undefined. If this is inconvenient, consider quasi-equality.

equals : {A, α : sort A, β : sort A} exp α → exp β → exp bool # 4 = 5 prec 50

isdefinedin : {A, α : sort A} exp α → sort A → exp bool # 3 ↓ 4 prec 95

isdefined : {A, α : sort A} exp α → exp bool # 3 ↓ prec 100

= [A,a,x] x↓a

/T α being a subsort of β means everyting in α is also defined in β.
subsort : {A} sort A → sort A → exp bool # 2 � 3 prec 50

= [A,a,b] ∀ [x : exp a] x↓b

Quasi-Constructors

/T Quasi-Equality also holds, even if either (!) term is undefined.

quasiequals : {A, α : sort A, β : sort A} exp α → exp β → exp bool # 4 ' 5 prec 50

= [A,a,b,x,y] (x↓ ∨ y↓) ⊃ x = y

/T Predicate for checking a function for totality (actually flexary).

total : {A, B, α : sort A, β : sort B} exp (α ⇒ β) → exp bool # total 5

= [A,B,a,b,f] ∀[x: exp a] ((f@x)↓)

/T A meta-predicate that checks if a predicate is empty (actually flexary)

nonvacuous : {A, α : sort A} exp (α ⇒ bool) → exp bool # nonvacuous 3

= [A,a,p] ∃[x : exp a]p@x

/T A predicate for testing if a function is defined at an argument (actually flexary)

domain : {A, B, α : sort A, β : sort B} exp (α ⇒ β) → exp (α ⇒ bool) # domain 5

= [A,B,a,b,f] λ [x] (f@x)↓

Individuals

/T Like booleans, the type of individuals (and also a unit sort) are built-in.

indType : tp

ind : sort indType = ' indType

anIndividual : exp ind

unitsort : sort indType = ' indType

unitsortElem : ` ∀ [x : exp unitsort] x = anIndividual

/T Subsets of a sort are partial functions into the unit sort.

sets : {A, α : sort A} sort (funType A indType) # sets [2]

= [A, a] (a ⇒ unitsort)

Numeric Types

integerType : sort indType # Z
rationalType : sort indType # Q
octetType : sort indType # O

65

D The IMPS Math Library

(def-section imps-math-library

(component-sections

pre-reals

foundation

foundation-supplements

number-theory

machine-arithmetic

calculus-over-the-reals

pairs

sequences

binary-relations

iterate

advanced-cardinality

schroeder-bernstein-theorem-1

counting-theorems-for-groups

group-interpretations

real-arithmetic-exponentiation

auxiliary-monoids

groups-as-monoids

metric-space-subspaces

metric-space-continuity

abstract-calculus

binomial-theorem

schroeder-bernstein-theorem-2)

(files

(imps theories/algebra/quotient-structures)

(imps theories/metric-spaces/ptwise-continuous-mapping-spaces)

(imps theories/normed-spaces/normed-groups)

(imps theories/normed-spaces/real-derivatives)

(imps theories/partial-orders/intermediate-value-thm)

(imps theories/partial-orders/more-convergence-and-order)

(imps theories/partial-orders/linear-order)

(imps theories/reals/more-applications)

(imps theories/reals/additional-arithmetic-macetes)))

Figure 40: The section for the imps-math-library

66

== BUILDING DEPENDENCY TREE ==

Target section: foundation

> foundation

| pure-generic-theories-with-subsorts.t

| reals-supplements.t

| some-obligations.t

> generic-theories

| generic-theories.t

> basic-real-arithmetic

| arithmetic-macetes.t

| some-lemmas.t

| number-theory.t

> reals

| reals.t

| some-elementary-macetes.t

| arithmetic-strategies.t

> pure-generic-theories

| pure-generic-theories.t

| iota.t

> mappings

| mappings.t

| mapping-lemmas.t

| inverse-lemmas.t

> indicators

| indicators.t

| indicator-lemmas.t

> pure-generic-theories

| pure-generic-theories.t

| iota.t

> generic-theories

| generic-theories.t

> basic-real-arithmetic

| arithmetic-macetes.t

| some-lemmas.t

| number-theory.t

> reals

| reals.t

| some-elementary-macetes.t

| arithmetic-strategies.t

> pure-generic-theories

| pure-generic-theories.t

| iota.t

Figure 41: The dependency tree for the foundation section.

67

	Introduction
	Related Work
	Structure of This Thesis

	Preliminaries
	Preliminaries: LUTINS
	Languages
	Sorts, Types and Kinds
	Expressions
	Partial Functions, Undefined and Non-Denoting Values
	Definite Description

	Preliminaries: IMPS
	Little Theories
	Def-Forms
	Theories
	Theorems
	Definitions
	Theory Morphisms
	Quasi-Constructors
	Processors
	Proofs and Macetes
	The Kernel Theory

	Preliminaries: OMDoc/MMT
	The MMT System
	Theory Graphs
	The Logical Framework LF

	The IMPS importing process
	The IMPS Math Library
	The LUTINS Theory in MMT
	Translation to OMDoc
	Dead and Delayed Def-Forms
	Def-Form Specifics

	Validation of Output

	Implementation
	Overview
	IMPS to JSON Export
	Intermediate Structures
	S-Expressions

	Importing and Combining Sources
	Internal Representation

	Translation Specifics
	Subsorting
	Rewriting Quantifiers to Fixed Arities
	Literals
	Opaque Data
	Quasi-Constructors

	Discussion
	Results
	Future Work
	Possible Additions to MMT

	Conclusion

	List of Figures
	Details on Intermediate Structures
	lutins.mmt, LUTINS implemented in LF
	The IMPS Math Library

