
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Professur für Wissensrepräsentation
und -verarbeitung

Knowledge Representation for
Modeling and Simulation

– Bridging the Gap Between Informal PDE Theory and
Simulations Practice –

Master’s Thesis in Computational Engineering

Author:
Theresa Pollinger
theresa.pollinger@fau.de

Supervisor:
Prof. Dr. Michael Kohlhase

November 9, 2017





Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung an-
derer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher
oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die
wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 09. November 2017





Contents

1. Automated Assistants for Mathematical Modeling and Simulation 2
1.1. Related Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. The Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3. A Running Example: Solving the Heat Equation . . . . . . . . . . . 4
1.4. Scope and Aims of This Thesis . . . . . . . . . . . . . . . . . . . . 6

2. Preliminaries 7
2.1. Mathematical Description of Partial Differential Equations . . . . . 7

2.1.1. Second Order Linear Partial Differential Operators . . . . . 7
2.1.2. Boundary Conditions for (Unique) Solvability . . . . . . . . 9

2.2. Solving PDEs Numerically: The Finite Difference Method . . . . . 15
2.3. The ExaStencils Framework for Stencil Codes . . . . . . . . . . . . . 17
2.4. Theory Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5. Systems for Mathematical Knowledge Management . . . . . . . . . 22

2.5.1. Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2. OMDoc: Open Mathematical Documents . . . . . . . . . . 23
2.5.3. STEX: Semantic Extension for LATEX . . . . . . . . . . . . . 23
2.5.4. MMT: Meta-Meta Theories . . . . . . . . . . . . . . . . . . 25

2.6. Active Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Bridging the Gap Between Informal PDE Theory and Simulations
Practice 30
3.1. A Software Architecture Proposal . . . . . . . . . . . . . . . . . . . 30
3.2. A Dream: The Perfect Interview . . . . . . . . . . . . . . . . . . . . 33
3.3. Ephemeral Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4. A Theory Graph to Rule Them All . . . . . . . . . . . . . . . . . . 41
3.5. A Prototype Proposal: Conducting an Interview . . . . . . . . . . . 45

4. Formal and Flexiformal PDE Knowledge 47
4.1. Formalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2. Flexiformalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3. A First Implementation: TheInterview . . . . . . . . . . . . . . . 52

5. Conclusion and Future Work 54

A. The Full Theory Graph for PDEs 62

B. Formalizations and Code Developed 63



Abstract

This thesis deals with the knowledge gap that is commonly encountered with sim-
ulations: The simulation knowledge of the person wanting to solve a partial differ-
ential equation (PDE) is often times not sufficient to set up the solver program, in
a way that the model is formally well-defined. These persons are experts in their
own domain and not in simulation technology. The knowledge mismatch is usually
resolved by intense collaboration with simulation experts.
This problem is also encountered with the PDE solver code ExaStencils. It al-

ready uses a domain-specific language, ExaSlang, attempting to allow for a math-
ematically natural interface. However, ExaSlang is currently lacking the capability
to transform the user’s informal model to a formal programmatical representation.
This work points out which elements such a user interface needs to employ:

Methods from mathematical knowledge management (MKM) are tailored for the
task. Conclusively, an architecture for the upper layer of ExaSlang is proposed,
called the MoSIS architecture. It consists of the formal and flexiformal knowledge
about PDEs as well as an active document to communicate said knowledge to the
user. The MoSIS architecture is found to support the central requirements for
the desired “translation”.
Based on the idea of a technical interview, the MoSIS architecture is made

concrete with a MoSIS prototype that uses the Mmt and STEX systems for the
formal and flexiformal knowledge representation, respectively.
Finally, TheInterview is developed as a proof-of-concept implementation of

the MoSIS prototype. Chances and current limitations of the MoSIS prototype
are evaluated.



1. Automated Assistants for Mathematical
Modeling and Simulation

Imagine you want to go to Mars. Not just like that, of course, you probably have
made quite some money to actually dare thinking about this – unless you are one
of the lucky talented persons to become an astronaut.1 Anyway, let us just say
you have made a considerable fortune and are now in the position to dream about
actually having your own rocket built for your very own Mars expedition.
You would probably need to hire a lot of experts for this kind of thing: engineers,

physicists, mathematicians, . . . There are quite a few disciplines that might be of
interest to you, and alone for one single aspect, such as the heat shield, you would
need a whole team of smart people. Very importantly though, you would always
hire people that are good with large-scale simulations, because every prototype
that catches on fire in the real world is literally burnt money.
Now as we have seen before, the facts that many people are involved in the devel-

opment and that they have different backgrounds can sometimes cause problems.
For instance, the varying vocabularies may cause the loss of important information
in the course of “translation”. This happened with the Mars Climate Orbiter in
1998: Because of different systems of measure for the impulse – non-SI units of
pound (force)-seconds versus SI units of Newton-seconds – the Orbiter was on the
wrong trajectory and ultimately crashed into the Mars surface.
Differences in vocabulary can also happen between mathematicians, construc-

tion engineers and programmers: looking alone at the word “domain” rings a bunch
of different meanings. It may denote the space a function or operator is map-
ping from (in mathematics), a physical space, such as a structural component
made from steel (in construction), or a general discipline (in programming), cf.
domain-specific programming language. Obviously, notions that are essential for
one person may not be understood by another in professional discussions.
This becomes problematic in situations where there are prerequisites needed for

applying a certain method. It may just be so obvious for one person that the finite
volume method (FVM) can only be used for the conserved properties in a model,
that they would never explicitly point it out to others. And of course, the other
persons involved might then try to use the FVM for a non-conserved property and
will fail at some point – hopefully soon and in an obvious manner.

1.1. Related Approaches

Currently, the problem of conserving all the relevant information in collaborative
dialogue between people with different vocabulary is usually resolved by just hiring

1In that case I would just like to say: Wow, this is amazing! I am really jealous of you.
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more smart people to re-think and re-test the setup again and again – we will hear
about the one-brain-barrier in section 2.5. If you were Elon Musk for example,
you could just hope to hire some NASA researchers to support your team.2
In smaller teams with less complex problems, for instance structural engineers

simulating the heating efficiency in houses, it is common to rely on out-of-the-box
simulation suites. They may use Finite Element solvers such as ANSYS [ansys]
to reliably do the job on the designer’s local machine, and use a coarse enough
resolution so that it can be handled in reasonable time. More mathematically
versed people, such as researchers in structural engineering, will use programs
that are formulating this on a more abstract level: MATLAB [MAT] has the
functionality pdepe [MATpe], and Mathematica [Wol17] offers NDSolve [WolND].
Both are functions for solving partial differential equations (PDEs) numerically.
They share similar properties: As the programs are closed-source, we cannot say
too much about the implementation, in particular the solution algorithm(s) used
– apart from the fact that the user cannot choose it themselves. And again, the
problems to be solved should be small enough that the computation can be carried
out on the user’s local machine.
For simulating something more complex and/or in less time, there are now highly

parallel solvers under active development. As an example, the research code Ex-
aStencils [Kro+17] for the Finite Difference Method and other stencil-based algo-
rithms can be set up to run on almost any architecture, such as a high performance
cluster – we will learn more about ExaStencils in section 2.3. Currently it takes
some expertise in PDEs to correctly set up the program, either requiring special-
ist knowledge from people that are experts in something else, or even making it
necessary to consult somebody with that knowledge.
You see we had this problem before with our rocket, right?
But looking closely, there are always similar questions that come up in this

situation: Did the user enter everything correctly? Have they fully specified the
problem they want to solve? Can there even exist a sensible solution to this
problem? Can it be obtained with the chosen method? What do they need to do
to get their results?
From this perspective, there should be some room for automation in this ever-

same modeling process.

2If you actually are Elon Musk: I admire your work, and if I can give you a bit of advice, please
do try to focus more on electric cars than space.
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1.2. The Vision

Thinking on a long time scale, it should be possible to create a generic simulations
interface that “knows” about the mathematical backgrounds to PDE problems. By
checking the inputs it should be able to give information about the solvability of
the problem, just like a human expert would. And it could offer different suitable
solution algorithms, both locally and remotely executable. We can even think of
an interface that allows the user to understand the modeling process better as they
use it, because the components are being explained by the program.
Up until now, there has been little research in this topic, most likely because

there was little exchange between the logicians interested in the formalizations of
knowledge and their potential “customers”, namely numerical programmers that
are tired of talking to people on how to user their algorithms. This led to the
fact that only small portions of the – comparably complex – mathematical PDE
knowledge were given a formal representation. This may slowly be changing now
with the models library [Koh+], where concrete physical problems are beginning
to be formalized with Mmt, a framework that will be introduced in section 2.5.4.
This thesis however aims at something different from the models library: it

wants to automate the process of thinking about PDEs itself.
To illustrate this, we will take a look at the following concrete example.

1.3. A Running Example: Solving the Heat Equation

We have been talking about simulating the heat shield before, but actually we
want to concern ourselves with a similar, yet more common, example for now.
Let us say that we know some engineer who has built her house in accordance to

every possible architectural optimization. She has been striving to minimize energy
losses due to heating – going far beyond the so-called “Energieeinsparverordnung”
(German Energy Saving Ordinance). Still, she thinks that there may be room for
improvement, which is why she counsels her friend, who is an expert in numerical
simulations, to find out what would happen to the temperature distribution in her
walls if she applied another layer of insulation at a specific spot on the outside.
As a first approximation, they may set up a simple variant of her problem: the

1-D simulation to describe the temperature distribution throughout a solid wall.
We will later talk about the full heat equation in section 2.1.1. The boundary
conditions simplify to two values, we can think of them as the warm temperature
on the inside of the building complemented by the colder temperature on the
outside. Thermal conductivity may vary among layers: for instance, the outermost
insulating layer of a building will be of a less conductive material. Additionally,
there can be heating pipes midway through our wall which act as sources of heat.
The physical domain – time and space – is often times denoted Ω.

4
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Figure 1: Schematic of the one-dimensional heat conduction problem

Simplifying further, they would consider the stationary solution, where there is
no change over time any more. This would correspond to a night with constant
(cold) temperature on the outside and our house owner constantly heating on the
inside. The equilibrium is reached when the distribution of heat in the wall and
therefore the flow of heat through the wall become constant. Then, the actually
parabolic heat equation will be elliptic, see section 2.1. The relation is now given
by the equation

∇ · (k∇T ) = q̇V in Ω (1)

with

k the thermal conductivity
q̇V the volumetric heat flux / “heat sources” in the material

This is what the simulations programmer would ask their house-owning friend
to note down. They would discuss about reasonable values for every parameter,
such as the boundary conditions

T (a) = Ta, T (b) = Tb on ∂Ω. (2)

Only when everything is defined, and the meaning is perfectly clear and sensible
to both of them, would the computational scientist give their ok and start the
simulation.

As you might have guessed already, the aim of this thesis is to get closer to
providing this “automated friend” that helps our engineer solve her problems –
only the ones concerned with PDEs of course.

Because if you imagine a world where there is a program helping people to cross
the simulations expertise valley, they would suddenly have access to many tools
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to advance their science and research. People like our engineer essentially would
have a lower barrier to a “playground” – the simulation – which allows them to
understand their world a tiny bit better.
And not only that – there would even be a record of the things that happened

along the discussion in the form of different types of files, containing the negoti-
ations, the checking, the result. This will make it easier for our engineer to come
back after some years and revisit the considerations, and exactly comprehend what
happened then.

1.4. Scope and Aims of This Thesis

The example and motives that we have described so far open up a huge scope of
approaches that could be pursued to solve the problem in question. Only some
of them can be addressed in this thesis, which is why some explicit aims are now
introduced as follows:

O1 to explore the structure of reasoning about PDEs

O2 to provide a simple implementation of an interface that allows users to enter
their PDE problem in a natural way

O3 to use the output of that interface for numerical simulation.

Throughout this thesis, we will stick with the simple heating example to give us
a starting point.
First of all, we need to discuss a variety of different aspects connected to our

problem – and its possible solutions.
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2. Preliminaries

2.1. Mathematical Description of Partial Differential
Equations

Definition 2.1 A partial differential equation or PDE is an equation that
contains multivariate functions fi as well as their partial derivatives ∂fi

∂xj
. Its order

is determined by the highest order of partial derivatives occurring in it.

Many processes in nature can be described with PDEs: electromagnetism, fluid
mechanics, quantum dynamics. . . . For a thorough introduction to PDE definitions
and analysis please refer to Numerik partieller Differentialgleichungen [KA00].

As an abbreviation to the partial derivative operator ∂
∂x
, often times the short

form ∂x is used.

2.1.1. Second Order Linear Partial Differential Operators

A linear second order PDE applied to some unknown function u can generally be
expressed as

(∂αMαβ∂β + ∂αkα + r)u = f (3)

For determining the type of operator, we are only interested in the first part,
which are the second-order partial derivatives, here expressed in matrix notation:


∂x1
∂x2
...
∂xd


>

M︷ ︸︸ ︷
A B · · · X
B C · · · Y
...

... . . . ...
X Y · · · Z



∂x1
∂x2
...
∂xd

 (4)

The entries A,B, . . . , Z may be variable over the domain. We used the fact that
u is assumed to be continuously differentiable to make M symmetric, in case that
it was not symmetric before: ∂αβ = ∂βα.

The Heat Equation
The heat equation is a second-order PDE that describes the distribution of heat
T in an arbitrary spatial domain Ω over time [Can84].
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(heat equation)


ρ cp

∂T
∂t
− (∇ · k ∇T ) = q̇V in Ω

T = T0 in Ω at t = 0

T = T ′ on ∂Ω

(5)

Here, the following parameters were used to describe the problem:

ρ the mass density of the material
cp the specific heat capacity
k the thermal conductivity
q̇V the volumetric heat flux / “heat sources” in the material
T ′ the temperature profile at the boundary
T0 the initial temperature distribution

Expanding the nabla/del operators ∇ =
[
∂x1 , ∂x2 , . . .

]> for the gradient ∇ and
the divergence ∇ · term, we get the matrix representation of the heat equation.
In two space dimensions, it looks like:

ρ cp

 ∂t∂x1
∂x2

> 1
0
0

 T (x)−

 ∂t∂x1
∂x2

> 0 0 0
0 kx1x1(x) kx1x2(x)
0 kx2x1(x) kx2x2(x)

  ∂t∂x1
∂x2

 T (x) = q̇V (x)

(6)
This assumes that k(x) is a tensor that is constant over time.

Types of PDEs
Let us have a look at the nomenclature for different types of PDEs.If the eigenvalues
of the matrix all have the same sign on every part of the domain, we call the
operator elliptic. If additionally there are zero-eigenvalues, we call the operator
parabolic. And in case the eigenvalues are both positive and negative, the operator
is hyperbolic [KA00].
So in order to classify the operator provided by the user, we need to know the

entries in M and determine its eigenvalues.
We immediately see that the Poisson equation

(Poisson Equation)
{
−∆u = f in Ω
u(x) = 0 on ∂Ω,

(7)

is elliptic, as the Laplace operator ∆ is defined as

8



∂x1x1 + ∂x2x2 + · · ·+ ∂xdxd =


∂x1
∂x2
...
∂xd


>

M︷ ︸︸ ︷
1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1



∂x1
∂x2
...
∂xd

 (8)

in the matrix notation introduced before: ∆ has only eigenvalues of 1 [KA00].
Coming back to our example, the heat equation described above clearly is

parabolic, as the eigenvalue associated with time t equals zero. If we then look at
the stationary solution to the heat equation, we are only interested in these situ-
ations where there is no change over time. As a consequence, all the observations
connected to time drop out of the equation, so that the PDE reduces to space
dimensions only, and becomes elliptic with positive eigenvalues determined by k –
if k is symmetric [Can84].

2.1.2. Boundary Conditions for (Unique) Solvability

For our vision to come true, the well-posedness of the boundary value problem
written down by some user needs to be asserted. To this end, it is central to
understand what we are actually looking for. For example, it does not suffice to
check for every point on the boundary if there is a boundary condition specified.
Depending on the kind of problem, this may be too little or already too much
information.

Example
For illustration purposes, we are using a very basic example:
If we consider the Laplace equation, which is equivalent to the Poisson equation

(cf. eq. (7)) with f(x) = 0 [KA00]

(Laplace equation)
{

∆u(x) = 0 in Ω (9)

in just one dimension, it simplifies to an ordinary differential equation

∂2u(x)
∂x2

= 0 in (0, 1). (10)

This can obviously be solved by simply integrating over x twice:

u(x) = c1x+ c2, (11)

where c1, c2 ∈ R are still undetermined. This means that the boundary conditions
will have to contain at least two units of information in order to fully determine

9



u. The fact holds true for other choices of f in the Poisson equation, as all the
other variables occurring will be determined by the choice of f .
The different kinds of boundary conditions to supply this information can gen-

erally be described as follows. Note however, that existence and uniqueness of
solutions need to be proven individually for each type of problem.

Definitions

Definition 2.2 Boundary conditions are equations that need to hold for an un-
known function on (parts of) the boundary of its domain. They are used together
with partial differential equations to form a boundary value problem.

Definition 2.3 The following types of boundary conditions are often times em-
ployed for an unknown function u defined on Ω, where Γ⊆ ∂Ω is the part of the
boundary where the condition shall hold.

• Dirichlet boundary conditions set u to a certain value f on the boundary:

u(x) = f(x), x ∈ Γ

• Neumann boundary conditions fix the derivative of u with respect to
the normal n of ∂Ω to a certain value g:

∂u(x)

∂n
= ∇u(x) ·n(x) = g(x), x ∈ Γ

• Robin boundary conditions require that the sum of u and its normal
derivative, weighted by c1 and c2, be equal to a certain value h.

c1 u+ c2
∂u(x)

∂n
= c1 u+ c2 (∇u(x) ·n(x)) = h(x), x ∈ Γ

• Cauchy boundary conditions require both Dirichlet and Neumann bound-
ary conditions to hold on the same part of the boundary.

• Periodic boundary conditions require that u and its derivatives have the
same value on one side of the domain as the opposite side. They are usually
used on one-dimensional, rectangular and cuboid domains only.

10



Visualization
We would like to illustrate the peculiarities of the different kinds of boundary
conditions (BCs) using the Laplace equation example eq. (10).

• For Dirichlet conditions everywhere, existence and uniqueness of a (weak) so-
lution can be proven for elliptic PDEs by way of the Lax-Milgram lemma [KA00].
The only additional constraint for applying it is the L2- or square-integrability
of the right hand side function f .

For our 1-dimensional example this might look like figure 2. The Dirichlet
conditions are indicated as dots of a given value.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 2: 1-dimensional solution with Dirichlet boundary conditions

• For Neumann boundary conditions everywhere, we cannot obtain an unique
solution. What is worse, the conditions may even be contradictory, as we can
see in figure 3. Neumann boundary conditions are shown in the graphs as a
certain slope on the boundary: The blue ones in figure 3 are consistent but
allow for more than one solution. The orange one cannot be fulfilled, because
our solution must be linear and therefore a straight line in this graph.

The requirement for consistency with the describing PDE can be obtained
by the divergence theorem [KA00]∫

Ω

∆u dV =

∮
∂Ω

∇u · n dS, (12)

meaning that it can only be consistent, if the integral over the Neumann
terms is equal to the integral over f . In our simple example, this means that

11
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Figure 3: 1-dimensional solution with Neumann boundary conditions

the sum of the two values given for the derivative must equal zero. But in
order to make the solution unique, a Dirichlet condition needs to additionally
give the “height” of the graph.

• If we have mixed Dirichlet and Neumann boundary conditions, we can always
find a unique solution for our simple problem, cf. figure 4. Things can get
more complicated when we are going to higher dimensions.
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0.2
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0.8

1

Figure 4: 1-dimensional solution with mixed boundary conditions

• In the case of periodic boundary conditions, we can use the same argument
as for Neumann boundary conditions, to find that the sum of the two values
given for the normal derivative must equal zero. In fact, we can only find

12



solutions to the periodic problem, if∫
Ω

f(x) dV = 0 (13)

holds true. In our linear example, since the boundary points also must have
the same value, we implicitly need to have zero derivatives at the boundary.
But again there is an undetermined parameter to the solution, as we see in
figure 5.
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Figure 5: 1-dimensional solution with periodic boundary conditions

Generalization to higher dimensions
As we have seen, a problem’s boundary conditions directly influence the solvability
of its describing PDEs, even for the most basic cases.

But we can in fact state a bare minimum of information that we need in order for
the boundary value problem to be uniquely solvable. Staying with cuboid shaped
domains, every single dimension needs to specify boundary conditions defined on
a certain measure of the domain boundary

Arequired,x = A⊥x ·Ox, (14)

where x is one cuboid space dimension, A⊥x denotes the measure of a cut of the
domain normal to x (the measure of the “box side” seen from the x direction), and
Ox is the order of the PDE with respect to x.
In our simple 1-dimensional example, the cut of the domain perpendicular to

the x-Axis gives us a set of measure zero – A⊥x is a point. Since the derivative
with respect to x is of order two, we need to specify boundary conditions for two
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points. And we have seen in the examples that the boundary sections may coincide
(or in higher dimensions, overlap), as long as the conditions are independent.
This leads us to a second requirement: There generally needs to be an “anchor-

ing” on some defined value in order to avoid ambiguities. Therefore, if there are
only Neumann or periodic conditions given, we must make sure that a Dirichlet
boundary condition is added on at least one point of the boundary. As an example,
in the case of the non-stationary parabolic heat equation the anchoring may also
be the initial temperature distribution for t = 0; then, it suffices to use consistent
Neumann boundary conditions for the x coordinate(s).
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2.2. Solving PDEs Numerically: The Finite Difference
Method

The finite difference method or FDM, sometimes also finite differences is the ear-
liest approach to solving PDEs. The reason is that the idea is derived from simple
difference quotients, as will be shown in the following.
In the FDM, the differential operators are approximated as a system of equations

that needs to hold on the points xi of a regular grid on the domain

x̄i+h = x̄i + h (15)

where we call h the grid spacing. In the following, the i indices will be omitted
without loss of generality.
The forward difference quotient operator D+ is well-known to the mathemati-

cally versed reader, as its limit for h → 0 is how we usually define the derivative
of any differentiable function u:

D+u(x̄) ≡ 1

h
[u(x̄+ h)− u(x̄)] (16)

The backward
D−u(x̄) ≡ 1

h
[u(x̄)− u(x̄− h)] (17)

and central
D0u(x̄) ≡ 1

2h
[u(x̄+ h)− u(x̄− h)] (18)

difference quotients can be written down in an analogous manner. We can easily
agree that all of the limits limh→0D are the same as the derivative. However, the
quality of the approximation is better for the central difference quotient, where
the truncation error is of order O(h2), such that we call the approximation second-
order accurate [LeV07, p.5]. Conversely, the discretization error for the forward
and backward difference quotients scale in O(h), and we call them first-order ac-
curate [LeV07, p.5].
Now in order to get the standard centered approximation to the second deriva-

tive, we just take the difference quotient of difference quotients:

D2u(x̄) ≡ 1

h2
[u(x̄− h)− 2u(x̄) + u(x̄+ h)] = D+D−u(x̄) (19)

This can also be viewed as a double centered difference quotient on a grid with
half the spacing h

2

D̂0u(x̄) =
1

h
[u(x̄+

h

2
)− u(x̄− h

2
)], (20)
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because

D̂0(D̂0u(x̄)) =
1

h
[(
u(x̄+ h)− u(x̄)

h
)− (

u(x̄)− u(x̄− h)

h
)] = D2u(x̄) (21)

is identical to the standard second order centered approximation D2, cf. eq. (19).
And in fact, the error analysis of D2 by way of the Taylor expansion

D2u(x̄) = u′′(x̄) +
1

12
h2u′′′′(x̄) +O(h4) (22)

shows that the standard approximation is second-order accurate. We will from
here on be concentrating on the standard second order finite difference operator
only.

Stencils
Stencils are a way to express a local algorithmic kernel operation. For example,
D2 can be represented as a stencil

1

h2
·
[
1 −2 1

]
(23)

that can be applied to u on an arbitrary grid point x̄ to get the approximation to
the second derivative at that point.
Now to make for example a Poisson equation (cf. eq. (7)) “come true”, that is to

solve it using finite differences, we first initialize a regular grid u, say with value
0 everywhere. We can then access different non-boundary grid points x̄ to update
the value u(x̄) in a way to fulfill the discrete equation

1

h2
[u(x̄− h)− 2u(x̄) + u(x̄+ h)] = f(x̄), (24)

which results in

u(x̄) =
1

2
[−h2f(x̄) + u(x̄− h) + u(x̄+ h)]. (25)

This process provides us with an iterative solver to the Poisson equation. De-
pending on the “pattern” with which we update u, the algorithmic properties can
vary. A commonly known algorithm that can be applied to stencils is the Jacobi
method, cf. [KA00], which results in a row-wise access pattern on the u field.
In order to get the discretization of the Laplacian, we see from its definition in

eq. (9) that it is the sum of the second derivatives in each direction. Accordingly,
the standard second order centered approximation of the Laplace operator in two
dimensions can be shown as a two-dimensional stencil

1

h2
·

0 1 0
1 −4 1
0 1 0

 . (26)
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2.3. The ExaStencils Framework for Stencil Codes

The ExaStencils project is centered around the aim of writing a code that generates
highly optimized stencil codes with the Scala programming language [Kro+17].
The PDE to be solved can be defined in a generic way, while the code that is
actually doing the computation is produced automatically and will be heavily
parallelized and platform-specific.
As we have seen in the last section 2.2, finite difference schemes can be expressed

as stencils, so ExaStencils is a suitable software. In addition to the finite difference
method and other stencil-based techniques, there was an algorithm implemented
that allows for solving the problem, e. g. the PDE on different scales, which is
called the multigrid method [Kro+17]. The finer workings of multigrid are not
needed for understanding this thesis and are beyond scope; the interested reader
may be referred to A multigrid tutorial [BHM00].
The ExaStencils project also developed a domain specific language (DSL), Ex-

aSlang [KK16], for the description of the problem to be simulated, and for the
solver to be used. It is designed in different layers of simulation detail as shown in
figure 6.

Layer 1 : Continuous model

Layer 2 : Discretization

Layer 3: Solution algorithm

Layer 4: Application specification

Figure 6: The ExaStencils language stack

“Below” the stack, the code generation, compilation and execution happen in a
fashion that is adapted to the problem type and system architecture it should run
on.

From the layer 2 syntax, we get a glimpse at the ExaSlang DSL:
Domain global< [ 0 ] to [ 1 ] >

Field Solution with Real on Node of global = 0.0
Field Solution@finest on boundary = vf_boundaryCoord_x ∗∗ 2
Field Solution@(all but finest) on boundary = 0.0

Field RHS with Real on Node of global = 0.0
Operator Laplace_1D from Stencil {

[−1] => −1.0 / ( vf_gridWidth_x ∗∗ 2 )
[ 0] => 2.0 / ( vf_gridWidth_x ∗∗ 2 )
[ 1] => −1.0 / ( vf_gridWidth_x ∗∗ 2 )

Equation solEq@finest {
Laplace_1D ∗ Solution == RHS

}
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Equation solEq@(all but finest) {
Laplace_1D ∗ Solution == 0.0

}

Listing 1: The 1-dimensional Laplace equation eq. (10) in layer 2 syntax

This is a formal – in this case we may call it programmatic – representation of
a PDE problem already, and in the lower layers also of a possible solution.
Layer 1, in contrast, should allow to note down the continuous model in a way

that is natural for mathematicians. Currently however, the layer 1 information
is not processed further, and the other layers of the language need to be filled
in by hand. Clearly, the transition from the informal (or possibly flexiformal, cf.
section 4.2) PDE model in the user’s mind to the formal one in ExaSlang currently
requires profound expertise, and is even redundant in some respects: Information
that is given in layer 1 could be used to infer most of layers 2 and 3.
First steps towards the automatic generation of layer 2 from layer 1 informa-

tion were taken with the thesis Automatische Diskretisierung elliptischer partieller
Differentialgleichungen in ExaSlang [Fla17], where the automatic discretization of
the partial differential operators was analyzed and implemented.
There is an essential aspect which has not been investigated so far: ExaSlang

has no mode of feedback for the user while entering their model into layer 1, as to
whether something is unclear, not fully specified or even over-specified. Thus, the
user has no means of correcting or formulating the model in a different way.
Also, the means of detecting when the input is unclear, under- or over-specified

have not been looked at yet. This would, e. g.,s be interesting for the boundary
condition specification, as we know from section 2.1.2. One obstacle to realizing
it is for example that it is not straightforward to have the boundary conditions
written down without requiring the user to use a rigid, heavily formalized repre-
sentation.
So this point – the transition from the informal model in layer 1 to the formal

one in layers 2 and 3 – is exactly where our solution approaches must be focused
on.
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2.4. Theory Graphs

In the course of formalization of mathematical content, it became apparent that
there are some patterns occurring regularly when working with mathematical the-
ory.
For instance, we will generally start with basic definitions and a set of assump-

tions or axioms that we are relying on. We will build more definitions based on
that and conclude some more facts. In due course we will apply some renamings
in order to capture the current situation better.
Finally, we will apply abstract analogies to the objects that we are working

with: The A that we have been thinking about so far, can also be considered a
B, because it has all the same properties – of course then we need to prove that
A in some way covers all the assumptions that we had for B. So we can apply
something we know about B to A.

These actions that are typically led by intuition can actually be represented in
a very structured way: by using theory graphs. A theory graph [Koh14]relies on a
paradigm of small theories, where basically everything for which we can think of
a new name is considered a new theory. Then, each theory will be a node on the
graph, and the different kinds of relations – then called theory morphisms – can
be drawn as arrows on the graph.
This structure can for example be seen in a theory graph for fundamental al-

gebra, cf. figure 7. In the left column, we see the theory of natural numbers
evolving, based on the Peano axioms P1,. . . , P5. Going upwards, it is continu-
ously extended with the definition of the plus and times operators. Ultimately,
the integers are created by extension to negative numbers. On the right-hand side,
there is a “background theory” growing on a higher level of abstraction. It starts off
with the definition of magmas (as a set and an operator), which with associativity
become semigroups, and adding a neutral element makes them monoids.
Until here, we have only extended theories with additional properties, which

corresponds to the theory morphism of inclusions. Now we can also start to
transfer these definitions by way of views : The natural numbers, both with the
plus and times operators correspond to a monoid, which can be proven by mapping
all the symbols in the monoid theory in a suitable manner. This is shown as
curled arrows with the ψ and φ operations. Additionally, the monoid itself can be
considered a monoid by symmetry, which is denoted by the circular view arrow.
Now we can show that the naturals with plus and times are not a group yet:
both operations are not invertible for all naturals. The dotted arrow shows a
contradiction: anything that is not a group can never be a group - because the
definitions apply to distinct sets.
If now, however, the numbers are extended to the integers, they can be consid-
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e
e◦x=x◦e=x
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i :=λx.ιy.x◦y=e
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NonGrpMon
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CGroupRing
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+ : N→ N→ N
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
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


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


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◦ 7→ +
e 7→ 0





ψ′ =
{

i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ d

}

e:ϕ

f:ψ

d:ψ′

g

c:ϕ

ng

a

m

i:ϑ

s:{x◦y 7→y◦x}

Figure 7: A theory graph for algebra: Integers viewed as a ring., source: [KM]

ered both a commutative group under addition (by the unique invertibility of +
by −) and a ring (by the distributivity of multiplication with respect to addition).
So we learned that a view is a morphism that can transport meaning between

theories, sometimes called a truth-preserving relation [Koh14]. Another theory
morphism that is not shown in the graph is the structure (in theory graphs usu-
ally denoted by a normal straight arrow). The structure signifies that all of the
contents present in the initial theory are copied to the target theory. Renaming
and/or assignment of constants is possible, and is shown in the graph just like the
assignments for views, next to the arrow.

Pushouts
After this short recap of elementary algebra and how to structure the thoughts
behind it, we will now discuss how these theory graphs also illustrate the generation
of new knowledge: the so-called pushout theory morphism. A pushout always arises
when we have defined something in the more abstract theory which we then can
apply to the actual situation theory by way of a view.
An example of a pushout is illustrated in figure 8, where we have a theory T

based on S. Since S ′ can be viewed as an S, we know that T ’s statements also
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S
α : type
a : α

S’
α′ : type
a′ : α′

T
b : α

T’
b′ : α′

φ : α 7→α′
a7→a′

ψ : i 7→φ
b 7→b′

i

Figure 8: A very simple pushout setup., source: [KM]

hold for S ′, so we can directly conclude T ′ by naming the new objects that arise in
the mapping from T , which is denoted by Ψ. Whenever this ladder-like structure
occurs, we call the “concludable” part of it a pushout. It is sometimes denoted by a
right-angle-with-dot symbol, like in figure 8. Pushouts collect the knowledge that
was induced by our theory through views; when all of this accumulated knowledge
is written down, we call this process “to flatten” the graph [Koh14].
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2.5. Systems for Mathematical Knowledge Management

The research area of mathematical knowledge management (MKM) is concerned
with the problems that arise from developments starting in the last century: While
we have rapidly growing mathematical knowledge across different disciplines, the
abilities of one single person in understanding and knowing about maths remain
limited. This phenomenon is called the “one brain barrier”. Or, to describe the
problem more technically, there are many researchers – luckily! –, but the infor-
mation exchange between them just cannot scale well and happens practically only
with their direct research partners. It seems obvious that, if all researchers have
similar goals, the work done will often times be replicated by others, with varying
quality.
This is where MKM comes into play: It studies the possibilities to overcome

the one brain barrier by using automated tools. And since researchers, just like
everybody else who has an interest in math, use the Internet, one often studied
approach is the Semantic Web.

2.5.1. Semantic Web

Around the turn of the Millennium, we have seen the leap to the social web – or
Web 2.0 –, a massive change in the way that the Internet was used and perceived.
The standard usage has tremendously shifted from consuming to creating and
interacting with content.
The next big leap that was predicted to follow was the Semantic Web (or Web

3.0), an infrastructure to provide machine-understandable content alongside the
human-understandable content, and make it usable via specialized web services.
This would enable the user, among other things, to have these services explain the
content of websites to them.
However, the Semantic Web is still waiting for extensive adaptation with the

fields of Science, Technology, Engineering, Math (STEM). Catalin et al. [Cat+10]
attribute this to the following factors:

1. Both the STEM and Semantic Web user communities are small
compared to the social web as a whole.
2. There is significant inherent difficulty and complexity in STEM
subject matter.

Because of the expected benefits, it is natural that there is ongoing research in
potential systems for the Semantic Web and other fields of MKM.
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2.5.2. OMDoc: Open Mathematical Documents

The systems we will be introducing here are based on the OMDoc/Mmt on-
tology – we will get to the Mmt part in more detail later on in section 2.5.4.
The OMDoc or “Open Mathematical Documents” format [OMDoc] is an XML-
based representation for mathematical content – both formal (formulas) and infor-
mal (documents). It adds semantic structures to the OpenMath [Bus+04] and/or
MathML (“Mathematical Markup Language”) [Aus+10] standards in order to give
meaningful context, such as ontologies, to the expressions presented.
A simple example for a snippet of mathematical knowledge formalized in OM-

Doc is given in listing 2.
<theory xml:id="semigroup">

<symbol name="base−set"/>
<presentation for="#base−set"><use format="default">M </use></presentation>
<symbol name="op"/>
<presentation for="#op"><use format="default">◦</use></presentation>
<axiom xml:id="closed.ax"><FMP>∀x, y ∈ M .x ◦ y ∈ M </FMP></axiom>
<axiom xml:id="assoc.ax">

<FMP>∀x, y, z ∈ M .(x ◦ y) ◦ z = x ◦ (y ◦ z)</FMP>
</axiom>

</theory>

Listing 2: Formalization of semigroup in OMDoc [URL:omdocspec]

Simply enough, at first the base set is defined and given the symbol M . ◦ is
determined to be an operator. The closure of the set M under the operator is
stated as “closed.ax”, while the most important part, the associativity, is given
last, as “assoc.ax”. So, what we see here is just the definition of a semigroup in
algebra, which the reader might remember from figure 7.

We immediately observe that this representation, while being straightforward
to understand if walked through on a line-by-line basis, is not suited for direct
interaction with humans. Even the simplest of statements become long and clut-
tered with XML, which makes them tedious to read and even more so to write.
This is why the OMDoc format is intended to be used by machines, and more
human-understandable formats should be used for the creation and retrieval of the
information. This is where the STEX and Mmt systems come into play.

2.5.3. STEX: Semantic Extension for LATEX

The STEX system [Koh08; CTAN] is aimed at creating flexiformal content, that
is, both formulas and natural language can be used to describe (mathematical)
knowledge [Koh13]. It employs LATEXML [Mil] to transform the contents of se-
mantically marked-up LATEXdocuments to the OMDoc format. STEX is especially
useful in building knowledge bases such as lecture notes, as by cross-referencing
content in other modules, definitions become relatively easy to look up through
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hyperlinks. As an example, the MathHub mathematical glossary [SMG] was built
using STEX.
For instance, the definition of PDEs in section 2.1 was generated using the

following two modules.
\begin{modsig}[creators=tp]{partial−differential−equation}
\gimport[smglom/calculus]{partial−derivative}

\symiii{partial}{differential}{equation}
\symi{PDE}
\end{modsig}

Listing 3: A signature module in STEX

The signature gives the module its name, imports other signatures, and states
which terms will be declared – and explained – in the module. This structure will
in most cases expose an interface to use in all natural languages.

This is different for the natural language modules, which need to specify the
language they are written in. Here, we see the English description:
\begin{mhmodnl}[creators=tp]{partial−differential−equation}{en}

\begin{definition}
A \defiii{partial}{differential}{equation} or \defi{PDE} is an equation that contains

multivariate functions $\livar{f}i$ as well as their \trefiis{partial}{derivative}
$\pderivative{\livar{f}i}{\livar{x}j}$.

Its \defi{order} is determined by the highest order of \trefiis{partial}{derivative}
occurring in it.

\end{definition}
\end{mhmodnl}

Listing 4: A natural language description module in STEX

Now, we see roughly the same structure as in a LATEXdocument, including
the commonly used definition environment. What is different is that we
mark the terms to be defined by \def statements, where the number of trail-
ing “i”s tells how many words the term consists of. Analogously, we reference
the terms defined in other modules by \tref statements. And we can use the
notations from imported modules, such as the \pderivative{ . }{ . }. This
is a central part of the semantic markup aspect in STEX: instead of writing
\frac{\partial . }{\partial . } – which would have given the same typo-
graphic result – we are explicitly stating that we mean the partial derivative. In
the example, this requires even less syntactical effort.
Also, the MathHub mathematical glossary (SMGloM) [SMG] was built using

STEX.
There is of course no check whether we used the notations correctly and if all

our definitions make sense. This is why with STEX, we are still in the domain
of informal and flexiformal knowledge. For formal knowledge and the reasoning
based on it, we can use the Mmt system.
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2.5.4. MMT: Meta-Meta Theories

Mmt [MMT; RK13] is a foundation-independent system for the processing of
logics. It is complementary to STEX in that it deals with formal contents.

Mmt is suited for formalization of (mathematical) content and reasoning, for
example by way of a jEdit plug-in [JE]. Results can be stored and reused using the
OMDoc markup format. Having formalized axioms and definitions in the Mmt
surface language, the user can employ Mmt to check the validity of many state-
ments by type checking and inference, and to apply knowledge to new situations
by means of views – we already know about them from section 2.4.
Of course, even as the system is foundation-independent, there are logical foun-

dations required for every actual formalization. Various of these foundations or
“meta theories” can be employed in Mmt. In figure 9, there is an example of
the formalization of an interval. The meta theory used in the example is called
base:?Logic, which in turn employs the Edinburgh Logical Framework (LF)
[HHP93] as a meta theory. So to be concise, Mmt is the framework, while an
extended version of LF is the actual “language” used in the example.

MMT document contents
The following description aims at giving a quick overview of syntax and semantics
in the Mmt surface language. The interested reader may have a look at the Mmt
tutorial for mathematicians [KM] for further reference.
In figure 9, we see the jEdit Mmt environment: to the right, there is the normal

editor view where files can be written, and the left column (the “sidekick pane”)
shows the structure that Mmt has found out from parsing and type-checking the
file. We are looking at a simplified version of the PDE domain theory that will
be explained in section 3.4, and from it we can learn many concepts available in
Mmt.
In the preamble, we state the current namespace and import other namespaces

in order to use abbreviations for them. The OMDoc/Mmt namespaces are given
as unique resource identifiers or URIs as described by Dürst and Suignard [DS05]
– not to be confused with URLs.
For discussing the main document content, let us first have a look at the general

structure: Pieces of information are given in different levels of hierarchy, and each
is ended by its own delimiter. On the highest level, the document is partitioned
in modules : apart from the namespace and import statements, these can be the
logical objects theory and view. The next lower level is the declaration, for
example an include or the description of a constant; the latter may be divided
further into objects, giving type, definition or notation for the constant.
The first and quite simple theory GeneralDomains shows all of these levels.

Its name is given, followed by a colon and the meta theory base:?Logic, which
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Figure 9: A screenshot of the jEdit editor with Mmt plug-in loaded

is a Mmt theory itself. The declarations follow after the equals sign: There is
something called Vecspace of type type (indicated by the colon, the first object),
with a notation

∨
(indicated by the hashtag, the second object). DomainPred and

BoundaryPred are both of type
∨
→ bool – some function that returns a bool for

every given
∨
. The idea here is that their return values will indicate whether a
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point lies in the domain or at the boundary, respectively.
The next theory SimpleDomains is a bit more tricky. It includes the

theory realarith from the namespace arith a. k. a. http://mathhub.info
/MitM/smglom/arithmetics. Theories may also be nested, as seen in line 17,
where anyInterval is declared inside SimpleDomains. This is particularly useful
for the generation of record types. Record types are data types that are be gener-
ated with all the undefined constants as fields (called a struct or structure in other
programming languages). The mechanism is invoked in line 25 with the modelsOf
statement. So from this point on, we have access to a record type Interval with
fields a, b, interval_pred and boundary_pred.
Moreover, we state the type of all numbers that lie on an interval in lines 29 f.

The definition (indicated by the equals sign) tells us that given the interval int,
the type consists of all x ∈ R for which the int’s interval_pred holds true. The
brackets [x] are Mmt’s syntax for a lambda expression applied to some x (cf.
lambda calculus).
Now there may be different definitions of whether the boundary points a and b

are part of the boundary. To get a closed interval, the predicate closedclosed
can be used. Its type is R → R → R → bool, meaning that we can see it as a
function that takes three reals as arguments. Or alternatively we can take, e. g.,
closedclosed a b as a function of type R → bool – a relation that is called
Currying.
And this is just what we are doing in the ccInterval “constructor”: we are

generating an Interval by “filling in” the two defining points a1 and b1 as well
as the desired predicate using the same points. Also, we add the usual bracket
notation for a closed interval.
Finally, we can get these two theories together in the view in lines 41ff. The

syntax is, not surprisingly, similar to what we have seen in figure 7 in section 2.4: all
the constants that were undefined in the base theory GeneralDomains are mapped
to their counterparts in the target theory SimpleDomains/anyInterval.
Now, when we state more information that applies to GeneralDomains, we can

use it for intervals in particular, cf. section 2.4.

2.6. Active Documents

For the interaction with users interested in the STEM disciplines, the last years
have shown some increased use of notebook-based programs that allow for the
execution of codes, the analysis of formulae and, of course, the visualization of
the results. As especially the more recent open source variants Jupyter [Jup] and
SageMath [Sage] have made such functionality freely available to teachers and
students in the STEM disciplines, teaching and prototyping in this format has
now become a standard tool.
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The advantages are obvious: Within one user interface, things can be changed
and the changes can be visualized immediately. There are no effects to be expected
which are not caused by something in the very same document. This makes it easy
to set up a notebook illustrating a certain concept without the need for knowledge
about other things, such as the system it is running on.

Figure 10: Screenshot of a Jupyter notebook illustrating the maximum likelihood
estimation, source: [unp12]

To take this even one step further, Kohlhase et al. [Koh+11] have presented
the Active Documents Paradigm for use with STEM research papers. It aims at
combining the executability of presented code with semantic annotations for the
content as well as interaction with other users and authors, and services based on
these blocks.
The Active Documents Paradigm is in parts matched quite well by the system we

have illustrated as our “vision” in section 1.2: As the modeling and configuration
generation happen inside the computer explicitly, all steps of the modeling process
become storable and therefore replicable.
In fact, current efforts are aimed at making Mmt functionality available in
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Jupyter by way of a Mmt kernel [MMTJup17]. We will therefore see some progress
in the direction of more interactive ways of data flow – this will be relevant for the
MoSIS system presented in section 3.1.
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3. Bridging the Gap Between Informal PDE
Theory and Simulations Practice

After reading the last sections, we have a clearer understanding of what the prob-
lem initially described in the introductory section 1 entails:
The mathematical modeling and simulation of physical problems is in most

cases split up between two groups: On the one side of the great divide, there are
physicists, engineers, mathematicians who have a mathematical model in mind.
They just want to look at the solution to a PDE in order to infer more general
knowledge, like better design decisions, and have no knowledge about or interest
in simulation technology. We will call them domain experts – or, for our purposes,
users.
On the other side, there are programmers with some expertise on how to solve

PDEs efficiently, and on which kind of problems can be solved with the current
simulation technologies. We will call these people simulation experts. Sometimes,
there is a third kind of interest present: persons that have no mathematical back-
ground but still want to simulate using non-standard methods (for example because
their problem is very special). They will usually consult some of the aforemen-
tioned domain or simulation experts. We will not concern ourselves with them for
now, as our aim is to make simulations more easily accessible to mathematically
versed persons.
The gap between domain experts and simulation experts is only slowly starting

to be populated. As a central step, there were some study degrees set up in the
field of Computational Science and Engineering (CSE) since around the turn of
the Millennium. Graduates of these programs often times take the role of transla-
tors between the needs of the domain experts and the offerings of the simulation
experts, and are therefore highly sought after.
But maybe there are ways to use computers to make the “translations” happen

in a reliable and therefore verifiable way? This is what will be investigated in the
following.

3.1. A Software Architecture Proposal

As pointed out in section 2.3, the knowledge gap between the informal theory
in the user’s minds and the formal program lies exactly between layer 1 and 2
of ExaSlang. Furthermore, we learned that active documents are of interest for
communicating mathematical contents in section 2.6.
These factors were guiding in the software architecture that is introduced now,

and which we will call the Models-to-Simulations Interface System architecture,
or short MoSIS, architecture. It is shown graphically in figure 11: Layer 1 is
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designed to consist of flexiformal knowledge in the form of theory graph as well as
an active document making it accessible to our user.

Active
Document

Theory Graph

user

Layer 2 : Discretization

Layer 3: Solution algorithm

Layer 4: Application specification

Layer 1 flexiformal

Figure 11: A schematic of the proposed MoSIS architecture

This architecture proposal is based on the assumption that a clear understanding
of the domain knowledge is needed, and a (flexi)formal representation of the theory
frame may be desirable, to draw definite conclusions about the user’s problem.
This is what a human simulations expert would do, based on their knowledge and
experience. In the MoSIS architecture, the theory graph is the represented base
to taking this task of checking and “understanding”.
The active document is what the user interacts with, and can be realized in a

multitude of forms – the more interactive the better. It may request input from
the user, or give feedback about what is compatible with the current theory graph,
and what is not. In the best case, the active document will also be able to “explain”
the reasons for these judgments.
Even more, the output of the MoSIS program can be of interest for the veri-

fiability of the whole process. When there is a good formal representation of the
matter, it will be harder to make mistakes: if the input entered does not match
the program’s expectation due to the information it has gathered up to that point,
it will not accept it. Ideally, it will even tell exactly what the problem was and so
it will prevent the mistake from even happening.
We might also find a positive effect towards the long-term reviewability of the

simulation, as different files are generated on every step. At a minimum, this
must be the layer 2 and 3 files for the ExaSlang stack. If there are files generated
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describing the model used, this allows for an easier realization of the models-as-
research-data approach envisioned by Kohlhase et al. [Koh+17].
Should it turn out that there was something wrong with the simulation result, it

will be easier to find out at which stages errors happened: in the modeling (layer
1), discretization (layer 2), parametrization (layer 3), or in the solver (layer 4 and
generated code)? This will be possible even years after the project, when all the
scientists involved have long gone on to doing something else.
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3.2. A Dream: The Perfect Interview

As pointed out in section 1.2, the all-knowing program is still just a vision. Yet, it
is worthwhile to look at the processes that are happening inside the human expert
and should therefore happen in our imaginary program as well. This will help us
to find out if the architecture introduced in the last section 3.1 could potentially
be used in our perfect world, or if it can be extended to one day.
For our initial example from section 1.3 (the engineer who would like to simulate

the heat behavior of the walls of her house), the solution process would be clear:
She would explain the problem to her friend, describe the physical properties in
question, and chat about what else they need to know in order to simulate. When
all that is clear, there would probably be different methods of simulation and then
simulation parameters offered to her, depending on the problem.
This structure resembles a technical interview often times carried out between

domain experts and simulations engineers, so this is probably what we want to
achieve. Let us dive into the interviewer’s head and have a look at the goings-on.
Looking at the result of the interview, we would like to know about the following

things:

1. the domain

2. the unknown(s) or codomain(s)

3. the describing PDE(s)

4. the boundary conditions.

The ordering of these items is rising in complexity, and will make it easier for
the interviewer to tell the properties of

• the type of PDE

• whether there is enough information in the PDE(s) to allow for solvability

• whether there is enough information in the boundary conditions to allow for
solvability

• if it is a special case of boundary value problem for which solvability can be
asserted or denied.

To gather all this information, questions will be asked and answers will be
given. We will now walk through a symbol-based interview, with different possible
answers, and look particularly at the requirements for the program performing it.
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Interviewer thoughts and output possible user in-
put

1 To begin with, we ask for the physical domain of the sim-
ulation, that is time and space variables involved. The in-
put could be given as n-dimensional cuboids as products of
closed intervals and unions thereof. This allows to approxi-
mate any closed shape arbitrarily well. It should be possible
to name different dimensions, and to rename the usual do-
main symbol Ω into something else.

Ω =?
Ω = [0; 1]

If no name is given, the naming of the variable(s) defaults,
for example to xi. We could give feedback like

x1 ∈ [0; 1]
W =
(t ∈ [0; 1],
x = [2, 4],
y = [0; 1])

Note that there are different notations for elementhood and
interval separators. We still need to keep track of the order
of variables given, and name those without a name. We
could give uniform feedback like

t ∈ [0; 1]
x ∈ [2; 4]
y ∈ [0; 1]

A common user’s expression of the domain may be
Ω = (t ∈ [0; 1],
x = ([2, 4] ×
[0; 1]× [2, 3]))

which would lead us to t ∈ [0; 1]
x1 ∈ [2; 4]
x2 ∈ [0; 1]
x3 ∈ [2; 3]
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From these parts of information, we can infer the number of
dimensions and the actual size – mathematically speaking:
measure – of the domain, and also dimensions, coordinates
and measure of its boundary.

2 Next up, we would like to ask for the names and types of
the unknowns, that is for the functions that we would like
to know afterwards. Again, renaming should be possible.

u1 : Ω→?
v : Ω→ R

or
v : Ω→ R2

Which we could register as v1 : Ω→ R
v2 : Ω→ R

Furthermore, we would like to understand sub-naming of
variables

v : Ω→ R2

= (u,w)
u : Ω→ R
w : Ω→ R

The one thing that should never change is the type operator,
domain name and arrow “ : Ω→”. Now we can conclude the
number of unknowns, where each dimension can be consid-
ered an independent unknown, but their ordering and names
of unions of two or more variables need to be kept in mem-
ory.

3 Now we go on to look at the central piece, the partial
differential equation. Let’s just have our interviewee write
it down.

∆u = 0
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We should at this point make explicit what we think it is
that the user wrote down, ideally using a collection of for-
mally well-defined knowledge that can expand commonly
used derivation operators. For PDEs up to second order,
the best format to aim for is a matrix-like representation.[

1 ∂x1x1 +0 ∂x1x2
+0 ∂x2x1 +1 ∂x2x2

]
u = 0

Most likely, it is even desirable to have this representation
modifiable by the user, as some operators are ambiguous
or are implicitly defined on certain domain variables only.
This caveat becomes clearer for a slightly more complicated
example

∂u
∂t
−∆u = 0

which we may justifiably expand to

1 ∂t u+

 1 ∂tt +0 ∂tx1 +0 ∂tx2
+0 ∂x1t +1 ∂x1x1 +0 ∂x1x2
+0 ∂x2t +0 ∂x2x1 +1 ∂x2x2

u = 0,

while what the user meant was actually

1 ∂t u+

 0 ∂tt +0 ∂tx1 +0 ∂tx2
+0 ∂x1t +1 ∂x1x1 +0 ∂x1x2
+0 ∂x2t +0 ∂x2x1 +1 ∂x2x2

u = 0.

A simple but very central assertion to take is that the
number of PDEs given corresponds to the number of
unknowns. In a more advanced setting, it should also be
possible to enter PDEs in integral or boundary formulation.
This means to have an equation containing (boundary)
integrals that hold for arbitrary subsets of the domain,
which is often used with conservation laws, e. g. in the finite
volume method.

Once the equation is established, we should try to determine
the type of PDE described (as introduced in section 2.1).
Sometimes however, this may require further knowledge, or
the type may change inside the domain, so that the type
cannot always be told. In case we can conclude the type,
we use this information later on to make better predictions
about the solvability.

36



4 Finally, we can start to ask for the last yet very fundamen-
tal part of our interview: what are the boundary conditions?
We already know about the domain and PDE, so we can de-
termine the amount of information needed in each dimension
and unknown independently.
The first factor required is the (Lebesgue) measure of the
normal cut in this dimension. It can be determined from the
domain information, giving us a cuboid lower in dimension
than the domain. And the other factor is given in the PDE:
find the highest derivative (with respect to this dimension)
applied to the variable – occurrences in multi-indices need
to be taken into account – and subtract one from it, so that
all ambiguous constants can be uniquely determined.

We may communicate this “count” to the user like
BCs for u(0, x, y) or u(1, x, y)? 1·[2×1] still required.
BCs for u(t, 2, y) or u(t, 4, y)? 2 · [1×1] still required.
BCs for u(t, x, 0) or u(t, x, 1)? 2 · [1×2] still required.

and gradually “count down” as more and more information
is entered.

u(t, x, 0) = 0
for x ≤ 3

BCs for u(t, x, 0) or u(t, x, 1)? 1.5 · [1× 2] still required.

∇u(t, x, 0) · n
= 0
for x < 3

BCs for u(t, x, 0) or u(t, x, 1)? 1 · [1× 2] still required.

Obviously, the interviewer needs to have a good understand-
ing of euclidean geometry to measure the size of the defini-
tion space of the boundary conditions – and to notice if there
are some contradictory conditions given for the same part of
the boundary. Generally, it may be a good idea to directly
sort the given boundary conditions into the different types
(as introduced in section 2.1.2), to allow for later analysis.
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From the last input, we see that also the outside-pointing
normal vector n needs to be understood by our system, and
therefore it could be a reserved character or special button
to push.
As we know from section 2.3, having the boundary condi-
tions written down in a natural way is not an easy task. The
syntax presented here was the most natural one that came
up during work on this thesis, but we should keep an open
mind to allow for as many different representations as possi-
ble. As an alternative, we could provide stubs or some kind
of form to fill in different types of boundary conditions.
The strictness of handling the openness and closedness of the
domains of definition for the boundary conditions is still up
to discussion. In a measure theoretical sense, the line (0, 3, y)
is irrelevant, but for an accurate numerical representation
it may be necessary to evaluate the boundary conditions
exactly on this line. In that situation, it would be helpful to
have the property defined exactly once on the line, and not
undefined or defined twice.
At the end of the boundary conditions negotiation, we must
make sure that the boundary conditions do not consist of
Neumann and periodic types only, cf. section 2.1.2. If we
find that we are certainly running into the problem of am-
biguity, we can make sure that the consistency is fulfilled
(eq. (12)), and ask the user to determine a Dirichlet-type
condition on a single point of the boundary.

5 So we have finally arrived at the end of the interview. Now
we can see if we can find theorems that assert or deny the
unique solvability of the boundary value problem. In case
the existence of a solution is certain or can not be denied
directly, we should propose solution algorithms and make
them accessible to the user.
As a last step, we can invoke the simulation and return its
result.

These interviews went well – but they were only imaginary of course. However,
there is no fundamental reason why it should not be possible to have this kind
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of interrogation done programmatically. Of course, a lot of smart tools would be
needed to make it work in this extensive way, for example symbolic computations to
get the equations into the right shape. Most importantly, there are a lot of notions
and notations linked to partial differential equations that the program would need
to understand. But it seems like the architecture introduced in section 3.1 can
support this, if its parts are made strong enough.
Note that the order of the questions was important to build up our own idea of

the model that the user entered. It seems that there is some structure here, and
we will be making it more clearly visible in section 3.4.
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3.3. Ephemeral Theories

In the interview setting envisioned in section 3.1, we would like to apply our
knowledge to new parameters that can be changing with every interview. Imposing
this requirement on the MoSIS architecture (cf. section 3.1), said volatile values
can obviously not be made part of the original “background knowledge” – they
would clutter it and would most likely not be of use for the next active document.

This is why a new mode of creating Mmt theories is needed that allows for
volatile knowledge which need not be kept across sessions. We call these ephemeral
theories. Conversely, we will call the non-ephemeral background persistent theories
for the purposes of this thesis.
In fact, the foundations for this mechanism are already given in the standard

for the Symbolic Computation Software Composability Protocol (SCSCP) [Fre+]
describing the interaction with OpenMath [Bus+04] content:

store_session: store an object on the server side (possibly after com-
puting or simplyfying[sic!] it), returning a cookie (actually, an OM
reference) pointing to that object. This cookie is then usable within
the current session to get access to the actual object

There now exists an extension to the Mmt server [Rab] implementing this func-
tionality. It allows for the creation of ephemeral theories and views, as well as
adding declarations and assignments to them. It can be found in the MMT repos-
itory [Flo15] and is currently called mmt-interviews. This feature will be heavily
used in TheInterview implementation discussed in section 4.3.
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3.4. A Theory Graph to Rule Them All

Now, having discussed partial differential equations in section 2.1, and theory
graphs in section 2.4, as well as ephemeral theories (section 3.3), we can proceed
to present a theory graph for the application of PDE knowledge: the PE (Poisson
equation) theory graph. A full-sized image can be found in appendix A.
The graph shows the building blocks of the mathematical PDE theory applied

to our running heating example from section 1.3; in contrast to section 2.1, it is
presented as small theories that are highly structured, to show the logical connec-
tions. As in section 2.4, we will be walking through the theory graph step-by-step.
This time, we start in the lower right corner, with the domain theory, cf. figure 12.
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Figure 12: Theory graph for PDEs: Domain theory

On first sight, it becomes apparent that the graph is evolving from general
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theories about spaces to the very concrete example of one specific interval. Con-
sequently, the upper “application theory” is marked as ephemeral by the blue
coloring, in contrast to the general PDE domain knowledge in orange.
Looking at the details, the graph is building up like a ladder, starting at the

very bottom with the compact subspace of a vector space – the corresponding
boundary is placed exactly to its right. We are stating that it is finite-dimensional
and compact axiomatically with the deduction operator `; its semantics are “it can
be proven that...”, and it creates the type of “proofs that show that...”. On top of
the compact subset, there is an arbitrary Rn Domain, which is viewed as a Compact
Subset. All the properties in Compact Subset of course also have a mapping in Rn

Domain, but these have been left out in the diagram for convenience. Only one
additional property is given: the Rn Domain is required to be singly connected.
This is trivially true for a Cuboid in Rn, which is uniquely determined by two
Rn points from and to. The cuboid’s boundary is a union of cuboids of lower
dimension, which we get if one coordinate entry xi is equal to the corresponding
fromi or toi.
We are restricting ourselves even more to just one dimension, in which the

cuboid becomes an Interval, to be “prepared” for our example from the introduction
section 1.3. For the interval, the boundary is simplified to just two distinct points.
This fact can also be applied to our ephemeral Wall cross-section, so that we can
conclude the boundary coordinates by way of a pushout.
Using this structure allows us to formulate properties generally, restricting them

to the special case only when needed. For instance, the background knowledge in
the next part of the graph – the PDE theory in figure 13 – is connected only to
the Rn Domain.
Here, we see a very central notion of PDEs: even as we do not know the definition

of the Unknown yet – because it is just what we will be looking for in the simulation
– we need to know the Codomain it maps to, and also some name for it to use in
the definition of the PDE. This is what Temperature is illustrating. In contrast,
the Parameters Thermal conductivity and Volumetric heat flow are providing a
definition which may be constant or varying inside the domain. This resembles the
usual scientist’s method to abstract parameters through symbols before applying
them to new situations.
The PDE declaration is relatively simple, as we do not know so much about the

Parameters involved yet. This only changes when the definition is given in Static
heat equation. The Differential Operators symbols, which are based on imported
Calculus knownledge, can be directly used for this purpose.
As we know from section 2.1.2, a PDE can only be solvable with the right amount

of boundary conditions given, which is why the boundary conditions theory is
strongly linked to the solution theory, just like the PDE theory. We can see
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Figure 13: Theory graph for PDEs: PDE theory

these connections in figure 14. Apart from the definition of possible Boundary
Conditions, we can use our thoughts on required boundary conditions for cuboid
domains, which we had developed in section 2.1.2.
Now maybe we can find a proof that the operators of the PDE applied to the

unknowns are elliptic and linear, in which case we would deal with Elliptic and Lin-
ear PDEs, respectively. All of this, along with the required boundary conditions,
sums up to a Linear Elliptic Boundary Value Problem.
As it turns out, this is one of the cases where the existence of a unique solution

can be asserted by way of the Lax-Milgram lemma [KA00], such that we can create
a view. Of course, there are some other combinations of operators and boundary
conditions that assert or deny a solution – much more work would be needed to
note them all down, which is indicated by the ellipsis . . . on the right of figure 13.
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Figure 14: Theory graph for PDEs: Boundary conditions theory

The input entered so far matches this very problem, so we finally can tell –
depending on the user input regarding boundary conditions – whether we know a
proof of the unique solvability of their problem by way of a pushout.
If we recall the mind experiment of an expert interview from section 3.2, we find

that all the mathematical information needed to investigate on the user’s model
can be found in the PE theory graph. This is an essential requirement for the
MoSIS architecture.
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3.5. A Prototype Proposal: Conducting an Interview

In the last few sections we have “tested” two things in our thought experiments:
We now know that an interview can be a way of interacting with our user (cf.
section 3.2), and that the PDE knowledge needed for it can be realized as a the-
ory graph (cf. section 3.4). Accordingly, we can now “instantiate” the MoSIS
architecture: the theory graph is now managed by Mmt, and the active docu-
ment becomes a technical interview, see figure 15. We will call this the MoSIS
prototype.
The user, for example our engineer from section 1.3, “talks” to the interview

program, which in turn sends information to and gets replies from the Mmt system.
Mmt “knows” about the theory behind PDEs – depicted by the cloud – and can
send back insights to the interview application. During the process, the description
of the concrete problem (e. g. the heat equation and the related parameters) is
built up and added to the knowledge base. This allows for keeping the ephemeral
model description separate and saving it to file independently.

Q: What is the domain?
A: . . .
...
Q: What are the PDEs?
...

The solution
– according to ExaStencils–
looks like this:
...

interview application

MMT system
Flexiformal and

formal background
knowledge

Model
description

user

configuration
files

Layer 2 : Discretization

Layer 3: Solution algorithm

Layer 4: Application specification

Layer 1 : Continuous model

application simulation
results

query

OK
omdoc

gen
erates

helps design

produces

Figure 15: A schematic of the MoSIS prototype
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At the end of this process, some configuration files are generated that contain
the information relevant for the simulation – as seen in the right part of figure 15.
These files make up the ExaSlang layer 2 and layer 3 information. As the interview
asks about the continuous properties of the model, it is effectively taking the
responsibility of ExaSlang layer 1.
After the simulation has been executed, the results can be sent back to the user;

in the best case, the user has access to different modes of visualization for it. The
engineer would maybe see a colorful temperature distribution along the cross-cut
of the wall.
Note that all of this is still very general and therefore independent from the

actual implementation of the interview program. TheInterview that will be
presented in section 4.3 is intended to be a proof of concept and there are of
course more rich and immersive variants to be found.
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4. Formal and Flexiformal PDE Knowledge

In section 3.4 we introduced a conceptual theory graph for PDE theory. Naturally,
the next step is to formalize the PDE knowledge as illustrated in the graph. The
results can be found in the MathHub repositories MitM/smglom [MitM], and the
flexiformalizations in the SMGloM [gitGlo], respectively. And, of course, you may
have a look at the static copy in appendix B.

4.1. Formalizations

We will now have a look at some parts of the formalizations, and also discuss the
limitations that the Mmt system still has to build up the full theory graph.

Structural Particularities

When looking at the full theory graph in figure 23, we see that all the back-
ground knowledge is self-contained, as the arrows connecting the background
and application theories are only going from bottom to top. This indepen-
dence of persistent theories from ephemeral theories allowed us to put an example
for a concretely applied ephemeral PDE description into a separate file called
interview_ephemerals.mmt, with no other theories depending on it.
Furthermore, most of the arrows crossing from the persistent to the ephemeral

area are denoting views. If we recall the theory and view syntax from section 2.5.4,
we realize that it should be possible to have most ephemeral theories consisting of
includes only. All the counterparts to the theories that the “parent” background
theory includes are also included, and sometimes more, e. g. the Differential Op-
erators into Static heat equation. Then, every view consists of two parts: It starts
with includes mapping the respective modules by way of views that were intro-
duced before. After that, we can think of the “new” definitions and assign them to
their background counterparts right away. This works nicely for ephParameter1,
as we can see in figure 16.
So much for the theory – there are some cases where this was not possible in

the actual implementation, and we are going to look closely at the factors that are
making it hard to keep the structure as simple as described. We will even get to
the point where some formalizations were not possible to be carried out without
either violating the independence of the background from the application theory
or implementing major changes in Mmt itself. This part of the implementation
has been delayed for now.

Copying in Structures
The observant reader may have noticed that the theory graph shows the morphism
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Figure 16: Viewing −4 as a parameter to the PDE

between Interval and Wall cross-section to be a structure (cf. section 2.4), while
the example in section 2.5.4 clearly defines Intervals as record types – making the
concrete interval just an instance of it.
The reason for this “workaround” is the strictness with which Mmt structures

used to copy all the constants defined in them – e. g., this applies to the definition of
real numbers as well. The contents cannot be identified as being the same between
theories any more, and this leads us into trouble. This matter has recently been
solved in the new Mmt release, but its benefits could not be part of this thesis
any more, cf. [issue237].
Also, using record types makes the construction of an Interval nicer in syntax:

as we see in figure 17, we can just use the square brackets to create one.

Figure 17: Viewing the interval [0; 1] as a Domain

On the downside, it also requires to explicitly state the domain and boundary
predicates in the view – which in turn are needed for predicate subtyping.

Predicate Subtyping for Derivatives, and Expansions
Predicate subtyping is of high interest for PDE formalization, as it allows to define
functions partially, for example only on the Domain. It restricts a type to only

48



these representatives that fulfill a certain condition (the predicate), and is casually
used in mathematical documents:

X := {x ∈ R : x ≥ 2.2 ∧ x ≤ 5}.

This statement reads as “X consists of all those x in the set R, that are larger
than 2.2 and smaller than 5”. The predicate here is “greater than or equal to 2.2
and smaller than or equal to 5”, and the type that is sub-typed are the reals.

The Mmt syntax for this would be

〈R|[x : R] ` x ≥ 2.2 ∧ x ≤ 5〉

We could also use the constant pred which is an abbreviation for the subtyping
on reals, which would shorten the expression above to pred [x] x ≥ 2.2 ∧ x
≤ 5. The subtyping operator pred is also used for defining the derivative, and is
actually making the definition of ephUnknown a bit cluttered.

Figure 18: Defining the type of the unknown

As the figure 18 shows, we would rather be defining the type of the unknown as
myDomain→ R. This is currently not possible, as the definition of differentiability
anyuwillbediffable (and later on also the Laplace operator) is expecting the
unknown to be some function defined on a predicate subtype (constructed with
pred) denoting the domain. The definition of myUnkType however, is not being
expanded enough at this point for the type check to succeed. 3

3One might ask as to whether it is really sensible to just state that every function of this type is
two times differentiable – and the answer is clearly no. However, differentiation in differential
equations is always applied to unknowns, and as the definition says, the unknown will just
be defined in a way as to be differentiable. Still, there might be better ways of dealing with
this situation.
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To cut a long story short: In order to resolve this problem, Mmt would need to
expand nested type definitions to the right degree at the right time when parsing
the differentiability, which it is currently not capable of doing – it is not a trivial
task. If Mmt had this feature though, we could save some keying in the theory
ephDomain, cf. figure 17, as we would not need to store all the predicates explicitly.
This is why first experiments were done with an additional type checker cue,

role abbreviation, which may be added to these constants that should always
be expanded whenever used. Further investigations will be necessary to tweak
the desired behavior of this tool, and even more will be needed to make the type
checking work for all relevant yet intertwined cases. The progress on this issue
may be followed up on in the Mmt issue tracker [i32617].
The ideas presented in the next paragraph may even help to make the other def-

initions in ephDomain redundant, and as we know, that means that the formalized
structure is as tidy as we want it to be.

The Need for More Intricate View Referencing to Fully Use Pushouts
So far, we have discussed those formalization issues that create the need to key
in some more lines, or for light restructuring of the theory relations in the Mmt
surface language. Now, however, we will talk about the point where the formal-
ization could not be continued any more, because the syntax did not allow for the
use of pushouts. The reader may remember that we found pushouts to be one
of the core concepts for knowledge generation in section 2.4, and not using them
in this particular situation would mean to not employ any inference functionality
and instead explicitly state everything we know again.
But let us have a closer look at what is going on. The view ephBCsasBCs requires

us to map the individual boundary conditions

Figure 19: Troubles formulating the boundary conditions

to concrete values. But of course the definition of a DirichletBC happened in
the persistent part of theory already, as it should be reusable to any situation,
such as different dimensionalities. So DirichletBC is defined in terms of the
persistent properties Boundary, ucodomain and Domain, cf. figure 20, but needs
to be included in the ephemeral theory in order to be mapped to the persistent
theory. At the same time, what the persistent terms actually “mean” in this
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Figure 20: Definition of a Dirichlet boundary condition for a single point

situation, has only been defined in views so far. Consequently, the expressions
cannot be replaced with their ephemeral assignments from those views, which is
what we would need – for example, to actually find out that 0 indeed is on the
Boundary for this particular problem. Currently, these are just two unconnected
symbols.
This is why a mode and syntax to referencing the information contained in views

is needed. We can think for example of something like ephUnknownAsUnknown/
ucodomain that would replace every occurrence of ucodomain with its definiens
from the given view. This may become trickier for these cases where the term it-
self is defined in the persistent theory, and the symbols occurring in the definition
are the ones to be mapped by way of views. For instance, Boundary = vec_pred
BoundaryPred would need to be re-evaluated to know what it means for our con-
crete situation. But in principle it should be possible to have such a mechanism
present in Mmt.
The alternative using the currently available features would be to re-formulate

the boundary conditions on the ephemeral side of the theory graph (for example
called myDirichletBC), manually inserting all the types used for the current prob-
lem. This can clearly not be what we want, as we would not be using the pushout
functionality that makes the small theory approach in Mmt so appealing.

4.2. Flexiformalizations

In addition to the formal knowledge, advances have been made in the flexiformal
representation of PDE knowledge: Some STEX modules are now there, defining
different terms connected to the field – we have learned the definition of a PDE
from one of them in section 2.1.
The area of connecting or aligning terms that describe the same content in differ-

ent systems of representation is under active research [Mül+17]. Simple alignments
can be used for reformulating mathematical concepts into other logical systems.
For the alignments from the formal Mmt knowledge to the flexiformal STEX knowl-
edge this means that explanations can be given: For instance, the formalization
of a general Domain looks quite opaque by itself, as we have seen in figure 9, but
knowing the STEX URI, one can look up the definition of a domain.
However, by now it has not been agreed on what exactly should happen when an

Mmt user wants to look up the URI: should it be opened on the user’s local ma-
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chine? This would require them to have all the corresponding modules installed.
Maybe it would be sensible to have the respective term in the MathHub mathe-
matical glossary [SMG] opened in the browser? In this case, newly created STEX
definitions that are not part of the glossary could not be used. This is why so far
only written indications of the alignments have been added to the .mmt files with
the link command. An example of this is given in figure 20. The information
is currently not processed any further inside the jEdit editor – apart from being
added as a tag to the OMDoc module.

4.3. A First Implementation: TheInterview

To show the actual feasibility of the MoSIS architecture introduced in section 3.1,
a line-based Python program was implemented, which we will call TheInterview.
Not surprisingly, it also is a first approach to realizing the MoSIS protoype as
discussed in section 3.5. TheInterview is taking all the responsibilities of the
interview in figure 15 but, naturally, is bound to the limitations described in
section 4.1.

TheInterview is basically “walking through” the upper, ephemeral part of
the theory graph, figure 23, from left to right. It does so by creating something
resembling the content of our example file interview_ephemerals.mmt, but with
the user-defined variables filled in at the spots of interest.
In order to not “reinvent the wheel” here, Python packages were used to make

the program a read-eval-print loop [cmd216] – for the line-wise in- and output –
as well as a state machine [trans14], for keeping track of which part of the theory
graph it is currently looking at.
Formal content is created by the Mmt server using the interface described in

section 3.3: Ephemeral theories and views can be created, and filled with declara-
tions and assignments. What TheInterview gets back are status codes to know
whether the parsing and type checking were successful. Additionally, Mmt can be
queried for OMDoc descriptions of the modules and constants currently present
in the scope via the Mmt query language. This is handy for using simplified re-
sults, letting most of the parsing be done in Mmt. However, to fully exploit that
feature, more development into reusable OMDoc parsing in Python is needed,
and this is a subject of ongoing research.
One example where the query functionality will be extremely useful is the ex-

planation of context or expressions to the user. As pointed out in section 4.2, it
is possible to open aligned STEX references in the browser, once the corresponding
terms are referenced in the MathHub mathematical glossary [SMG]. It is therefore
one of the next straightforward steps to implement this explanation functionality
in one way or another.
From the information entered by the user, configuration files are generated: the
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layer 2 and 3 information are placed in a subdirectory, along with the (for our
purposes) static layer 4 file. Also, the knowledge and settings files required by
ExaStencils are partly generated, while platform needs to be manually adjusted
to contain information about the current platform.

As pointed out in section 3.1, storing and re-using the information about the
model is a desirable aspect. To this end, writing the OMDoc file to disc is another
task that is readily doable in TheInterview.
The discretization of the Laplace operator (eq. (9)) that we have seen in listing 1

is currently hard-coded. For details on how to automatically generate a stencil from
the operator entered please refer to the thesis by Flad [Fla17], who implemented
the automatic discretization – it is just not integrated yet.

Figure 21: A screenshot of TheInterview Python program
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5. Conclusion and Future Work

This thesis addresses the knowledge gap in modeling and simulations practice:
People with a PDE to be solved, but no background and interest in the numerical
solution are still required to feed the PDE model into the simulation (cf. section 1).
This often requires detailed system knowledge or intense discussion with simulation
experts, or else errors are bound to occur.
For the finite difference solver ExaStencils, this problem has so far been ap-

proached with the development of a dedicated domain-specific language, ExaSlang,
cf. section 2.3. The knowledge gap discussed above corresponds to a gap in the
ExaSlang design: Layer 1 was envisioned as a natural mathematical interface but
remained unspecified. This thesis fills the gap by providing an architecture and
components for it.
I have proposed the MoSIS architecture in section 3.1. It combines represented

knowledge with an active document that the user can interact with. A formal
representation of PDE knowledge is required to understand different notions and
formulations in the model input, while a flexiformal one helps to communicate
what is required of the user.
We established the feasibility of this approach in an envisioned expert interview:

All knowledge needed in TheInterview can be traced to representations in the
PE theory graph. And we could also use the idea of a technical interview as an
active document for the MoSIS prototype, as introduced in section 3.5. It uses
Mmt (cf. section 2.5.4) and STEX (cf. section 2.5.3) for the representation of
formal and flexiformal knowledge.
As a first approach, TheInterview was implemented as a proof-of-concept for

the MoSIS prototype, cf. section 4.3. The Python program has a Mmt backend
through which it can access the PDE knowledge formalized during the course of
this work.
It became apparent that a lot more formalization of PDE knowledge will be

needed to represent the situations regularly occurring in simulations practice. Es-
pecially in section 4.1, some important impulses towards the improvement of the
Mmt system were given. TheInterview can be extended to use the flexiformal
STEX knowledge to communicate definitions to the user.
So indeed some steps towards our initial vision have been taken: The MoSIS

prototype’s aim of automating a technical interview to set up a simulation has
proven possible; it works generally, because the design of the interview is backed
up by the formal representation of the PDE model. The reader may recall that
this covers the first two parts of this thesis’ mission
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O1 to explore the structure of reasoning about PDEs

O2 to provide a simple implementation of an interface that allows users to enter
their PDE problem in a natural way

O3 to use the output of that interface for numerical simulation. 2

For the third point, I have gone part of the way. Its completion remains open
and leaves an incentive to investigate further.
My thesis was largely exploratory. The MoSIS architecture, and its prototyp-

ical showcase in TheInterview, are tangible core contributions, along with the
formalized knowledge in the form of the PE theory graph and Mmt formalizations.
But they only break the ground on an exciting new project; the most immediate
next steps include the following.

Horizontal Scaling of (Flexi-)Formalizations Many more formalizations will be
needed to make our architecture work for real-life scenarios, most notably the gen-
eralization of domain and codomain spaces to Rn. The HOL Light multivariable
library [jrh15] will be of help here. This is a potentially lengthy but not-so-difficult
task, which will be rewarding for other formalization efforts as well.

Integration with Model Pathway Diagrams Model pathway diagrams or MPDs
are a recent idea by Kohlhase et al. [Koh+17] to visualize the flow of information
in simulation models. In an MPD, the physical quantities – or unknowns and
parameters – are put into circles, and the equations describing them are shown in
rectangles, with an edge connecting it to every variable occurring in the equation.
Accordingly, there are only edges connecting variables and equations. From the
number of paths, equations and leaf quantities, it can be inferred whether the
model is fully determined [Koh+17]. The current MPD viewer and examples can
be found at the MPDHub [MPDHub]; a screenshot is shown in figure 22.
Not surprisingly, the model pathway diagram is equivalent to a theory graph

describing the physical model: The unknowns and parameters all have their own
theory, type and in the case of parameters, values. The equations include all of the
physical quantities described in them. For our program, this means that the way
to generating MPDs from the interviews is not far-fetched at all: the ephemeral
“user-filled” theories already have the same structure, the data exchange just needs
to be granularly implemented, possibly even allowing for visualization right as the
user enters their problem. This may be part of the next bigger step:

Making the Active Document Stronger TheInterview implementation was only
a showcase; for the MoSIS architecture to reach its potential, there will be stronger
implementations needed.
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Figure 22: Web viewer interface for model pathway diagrams, source: [Koh+17]

One of the next steps here is the integration into an active document notebook
format (cf. section 2.6), such as Jupyter [Jup]. The research on Mmt integration
has already started and its progress can be followed in the mmt_jupyter_kernel
repository [MMTJup17].
Another important point to making MoSIS come true is that a mode of storing

the ephemeral OMDoc theories can be added to the program in a straightforward
manner. And future implementations should also use the explanation capabilities
manifested in the flexiformal knowledge, cf. section 4.2.

Finally, it can be said that this thesis presents one approach of making sim-
ulations easier to set up. Our vision is useful as well as possible, but currently
limited technically. To fully realize the MoSIS architecture, a lot more research
will be needed from different disciplines – our exploration showed a plethora of
open research questions that are connected, and some of them already ongoing.
We can now help out the engineer from the introductory example in section 1.3

for her first simple problem. There is still some work to do to help her simulate
the whole house, and we may likely see the first privately-owned spacecraft going
to Mars without the help of our envisioned MoSIS program. While it may not
be useful for your first Mars expedition, but maybe for the one after that. And
maybe other people who have a mathematical PDE problem would be grateful to
have help in solving their own “rocket scientist problem”?
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A. The Full Theory Graph for PDEs

Compact Subset
S : type, S ⊂ V
` S is finite dimensional
` compact = closed and bounded

Compact Subset Boundary
∂S ⊂ S
` neighborhood of ∂S contains
points of subset and not subset

Rn Domain
S ⊂ Rn

` singly connected

Rn

Lebesgue measure: S(⊆ Rn)→ R

Boundary in Rn

` ∂S = n− 1 dimensional subset of Rn

Cuboid in Rn

from, to : Rn

predicateS : Rn → bool =
[x]∀[i : 1 . . . n]xi ≥ fromi&&xi ≤ toi

Cuboid Boundary
predicate∂S = [x]∀[i : 1 . . . n]xi ≥ fromi and xi ≤ toi
and ∃[i : 1 . . . n]xi

.
= fromi or xi

.
= toi

Interval
from, to : R

n 7→ 1

Interval Boundary
predicate∂S = [x]x

.
= from or x

.
= to

Codomain
codomain : type (usually Rm)

Unknown
unknowntype = domain → codomain

Parameter
t : type (e.g. R, domain → Rm)
parameter : t

PDE
pde : unknowntype → prop

Differential Operators
div : . . .

...

Calculus

...

Boundary Conditions
Dirichlet : unknowntype → (subset of) ∂S →
codomain → prop # 1(2) = 3

Neumann : . . .

...

BCs required for PDE
order in unknown : PDE → unknowntype → N
measure of BCs required : PDE → ∂S →
unknowntype → Lebesgue measure

Linear PDE
isLinear : ` . . .

Elliptic PDE
isElliptic : ` . . .

Elliptic Linear Dirichlet Boundary Value Problem
hasBCsRequired : ` measure of BCs required

.
=

measure of Dirichlet BCs given

Functional Analysis

...

Uniquely Solvable PDE
uniquelySovable : ` ∃1u.pde(u)

.
= true

Lax Milgram Lemma

. . .

. . .

Wall cross-section
Ω : type = [0; 1]
x : Ω

from = 0, to = 1

Inner and outer surface
predicate∂S = x.(x

.
= 0 or x

.
= 1)

Temperature
u : Ω→ R

unknowntype 7→ Ω→ R

Thermal conductivity
α : R = −4

Volumetric heat flow
f : Ω→ R = [x]x2

Static heat equation
α ·∆u = f(x)

Inside and outside temperature
u(0) = 0
u(1) = 0

mySolvability
` myPDE is uniquelySolvable

background knowledge:
PDE theory

application:
ephemeral theories,

pushouts

Domain theory PDE theory Boundary conditions theory Solution theory

Figure 23: Theory graph for PDEs
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