
Research Proposal for a M.Sc. Thesis

Smart Management of Change on

OMDoc Documents

Sönke Holsten

Jacobs University Bremen
D-28759, Bremen, Germany

s.holsten@jacobs-university.de

Advisor: Prof. Dr. Michael Kohlhase
Co-Advisor: Normen Müller

February 5, 2010

Abstract

Change management subsumes and relates to several cutting-edge re-
search topics such as change impact analysis, traceability and round-trip
engineering. This research project touches research questions from all
of these areas. It aims for incorporating the smart change management
features for semi-structured documents such as change detection, change
classification and change impact analysis provided by the locutor library
into the widely-established integrated development environment Eclipse
and the version control system Subclipse. The created plug-in will be ap-
plied to - and thus evaluated by - use cases in mathematics using OMDoc
as the underlying format.

1

Contents

1 Introduction 3
1.1 Related Fields . 3
1.2 Change Management . 3
1.3 Application in Software Development 6

2 Research goals 7
2.1 locutor Eclipse plug-in . 8
2.2 OMDoc document model . 10

3 Progress report and work plan 10

4 Future work 11

2

1 Introduction

The need for sophisticated change management tools in areas such as software
engineering and business process modeling has been identified for a long time,
but is still subject to many recent research activites in particular in the fields
of impact analysis and traceability.

To put this research proposal into context I will start off by providing an
overview of related research topics in section 1.1 and then introduce the key
interest of this project while highlighting the overlap with existing research
in section 1.2. A general use case is presented in section 1.3. The research
goals with a more detailed description of all deliverables is given in section 2.
Finally section 3 presents the current state of the research and section 4 gives
an overview of further research questions that are of relevance to this research
topic, but are outside the current scope.

1.1 Related Fields

Traceability is the common term for mechanisms to record and navigate rela-
tionships between artifacts produced by development processes.[14] It is often
used interchangeably with the term requirements traceability, which refers
to the study of requirements throughout the whole software development life-
cycle. The latter links requirements in the requirements analysis to design
and code documents that implement the requirements. It also links related
requirements in the requirements analysis. An overview of recent traceability
techniques in the field of requirements traceability can be found in [4, 9, 8]. One
major challenge in this area is overcoming the heterogeneity of the document
formats. Different formats are used at each stage of the development process,
but the relationships between the different documents are nonetheless manifold.
A more general approach to traceability between any heteroegenous artifacts
not limited to requirements engineering can be found in [1].

An important distinction made in the field of traceability is the one between
tracable and traced documents. A traced document is a document for which
relationships have been identified and are stored visibly, in other words, are
made explicit. If the relationships in a document can be deduced from the
structure, the document is called tracable [25]. Usually a richer structure makes
a document more traceable.

Traceability of a document is often considered a prerequisite for sophisticated
impact analysis. The term impact analysis (IA) is used in many different
contexts and it is not always clear what it comprises. In this proposal IA
is taken to generally refer to the identification of potential consequences of a
change. One important concept in this area is the ripple effect, which occurs
when a comparativly small change to a document affects many other parts
of the document and/or many parts of external documents. A more detailed
explanation of the terminology and differences between IA approaches can be
found in [2].

1.2 Change Management

To understand change management it is necessary to first understand and ade-
quately model the nature of change and, more specifically, the process of change.

3

<book isbn="123456789">

<title>

On Semi-Structured Documents

</title>

<author>

John Doe

</author>

</book>

Figure 1: A sample XML document
Figure 2: Tree representation of XML
document

For this many different concepts have been developed in the area of IA. On a
more abstract level, this problem has also been investigated from a business
process perspective [10, 21].

In context of this research change is always considered with respect to a
specific document. In its most basic interpretation this means that change
is the physical modification, insertion or deletion of a string in a document.
Depending on the type of the document and the exact location of the change
its semantics vary greatly.

For instance in the area of software development, modifying the intenda-
tion of source code has different implications depending on the programming
language used. While in a C program the intendation might be changed to
improve readability of the source code, in a Python program a change in in-
tendation might affect the operational semantics of the program itself. Thus in
order to reason about the semantics of a change, it needs to be analyzed with
respect to the type of document.

Change can be classified according to a plethora of characteristics. In the
context of software development, Buckley et al.[5] have identified four dimen-
sions of software change: Temporal properties (when is it performed?), System
properties (what is changed?), Object of Change (where is the change located?)
and Change Support (how is the change performed?). Although their further
characterization of these dimensions is quite extensive, Buckley et al. acknowl-
edge that there are even more characterizing factors of change. For example the
motivation for a change, that is the question of why a change is performed, is
not considered in their taxonomy.

Apparently the question whether a change taxonomy is reasonable or not
depends on its application domain and the interests of all stakeholders involved.
To accomodate this observation I will make use of a formal framework that
allows for user-defined change classifications. This framework makes use of the
fact that the documents under consideration are semi-structured and allows
for change classification sensible to the exact location of the change taking the
structural information about the type of document into account.

A semi-structured document is a document that can be represented in a
hierarchical, tree-like structure. XML is one apparent standard for developing
such documents as the XML standard already describes a tree representation
for XML documents.

Fig. 1 shows an XML snippet describing a book with an ISBN number

4

modeled as an attribute and a title and an author modeled as child elements of
the book element. Fig. 2 shows the corresponding tree representation. Intuitivly
we consider all types of documents that can be represented as a tree similar to
the one depicted in Fig. 2 semi-structured. For a detailed discussion on a formal
model for semi-structured documents see [17].

From a document point of view the process of change can be described as
follows:

1. maintenance of relationships between and within structured documents,

2. detection of changes between current and base version of the semi-structured
document,

3. semantic classification of the detected changes,

4. impact analysis of classified changes and

5. if possible propagation of changes according to previously performed anal-
ysis.

In the following I will detail this change process, which is also depicted in Fig.
3.

As mentioned above a major prerequisite for change impact analysis is trace-
ability. In this process model this is reflected in the step of relationship main-
tenance (1). While this step is negligible for documents, which are fully tra-
cable due to their structure, it is expected that in many real life scenarios the
structure of the document is not sufficiently rich and manual tracing, that is the
explicit determination of relationships between and within documents, needs to
be performed.

Figure 3: Process of change

The second step towards effective manage-
ment of change is granular change detection.
The occurence of a change needs to be detected
automatically and localized within a document
with as high precision as possible. Typical ver-
sion control systems like SVN [23] and CVS [6]
localize changes by line to line comparison and in-
dicate the location of strings modified, deleted or
added by providing its exact starting and ending
line and column numbers. Since in the scope of
this research it is assumed that the changed doc-
ument is semi-structured, the localization of the
change is performed by indicating its position in
the tree representation.

After a change has been detected it needs to
be classified (3). At this step the second im-
portant characteristic of the change process con-
sidered in this proposal comes into play: the
automated change detection mechanism is pro-
vided with knowledge about equivalencies, thus
making it possible to filter out purely syntactic
changes automatically. Running the change de-
tection mechanism on a C program, it would for instance recognize that a change

5

in indentation does not affect operational semantics. As an optional step the
user performing the change might provide further data about the change. This
might be necessary to enable an enhanced impact analysis that can reason more
accurately about the precise effect of a change.

Building on the granular change detection and sophisticated change classi-
fication, a smart impact analysis can be performed (4). The location of the
change with respect to the tree representation provides contextual information
like the labels of incoming and outgoing arcs of the node in question, which can
be taken to represent dependencies. Knowledge about what types of changes
influence dependent parts can then be used to calculate the impacts.

Finally during the step of change propagation the impacts are resolved
manually and/or automatically (5). Change propagation using graphs as an
underlying data model has for instance been investigated in [20]. The change
might affect the existing dependencies which is why the loop in Fig 1.2 closes
with the dependency maintenance.

1.3 Application in Software Development

The initial motivation for this project arises from the area of software develop-
ment, where change has been identified as a key characteristic of the software
development process and heteroegenity of document types is a major issue. It is
estimated that often more than 50% of a system’s requirements undergo some
change before deployment [12]. This has given rise to software development
methods that anticipate change during the development process.

Software development can be seen as a document-centric process as each step
in the software development process involves the preparation, manipulation or
verification of some - in most cases semi-structured - document [24]. Typical
examples of documents produced during the development process are: require-
ments specification, design document, source code and documentation, all of
which may use different underlying document formats.

Figure 4: Iterative Development Process

Employing an iterative development method, the process of creation and
modification of the different software artifacts can be modeled as depicted in
Fig. 4. Starting from an initial requirements specification negotiated with the
customer, during each iteration a subset of the requirements is chosen for im-
plementation. The artifacts, design document, program code and test code, are

6

extended and modified in each iteration. As interim versions of the software
are shown to the customer his expectations might change and the requirements
specification will change as well.

Clearly, managing changes is a task that needs to be performed very fre-
quently. As the artifacts involved grow in complexity it becomes a more and
more complex task. Having well-defined processes and good tool support to
accomodate this problem is essential to such a development method.

2 Research goals

The aim of this research project is to provide tool support for managing the
change process whereby the focus of this work lies on steps 2, 3 and 4 of the
change process as introduced in section 1.2.

To achieve this I build upon existing work, more specifically locutor [15,
18, 13]. The locutor library is being developed by Normen Müller at Jacobs
University. It is a full reimplementation of the Unix Subversion client focusing
on smart management of change. It is able to perform change detection and
change classification as outlined in section 1.2. However locutor does not come
equipped with a graphical user interface.

As hetereogenity is a key issue, integrating locutor into an IDE that supports
the editing of many different types of documents is desirable. Eclipse [7] has
been chosen as an embedding IDE for locutor for several reasons. Eclipse is Open
Source and has a very well developed plug-in architecture allowing it to be fully
customized to ensure a seamless interweaving with locutor . Furthermore it can
be extended with plug-ins that support the whole software development process
from requirements engineering to source code generation, thus it is envisoned
that integrating locutor in Eclipse will enable users to use change management
features provided by locutor throughout the whole software development process
as outlined in section 1.3. Nonetheless the use of Eclipse does not per se limit
its applicability to software engineering.

Also there exists an implementation of the Subversion client for Eclipse,
namely Subclipse [22], that is the standard version control features are already
supported and need only be extended by the change management features spe-
cific to locutor . Integrating the locutor library in Eclipse also puts the inter-
operability of locutor to a test. The experience gained from implementing the
plug-in can be used to improve the integratability of the locutor library. A de-
tailed description of the functionality of the envisoned locutor plug-in will follow
in section 2.1.

To evaluate the usefulness of the implemented mechanisms and the feasibility
of the approach as a whole, the plug-in will be tested on mathematical docu-
ments represented in OMDoc. Although the real strength of locutor ’s change
management mechanisms exhibits in its ability to combine different document
formats, I consider it unrealistic to perform an extensive case study involving
several document formats, for instance in the area of software engineering, given
the time constraints. Since as of yet there is no native support for OMDoc in
locutor , an implementation of a document model[16] for OMDoc will also be
part of this thesis. A more detailed description of this deliverable will follow in
section 2.2.

7

Figure 5: Before performing change impact analysis.

2.1 locutor Eclipse plug-in

There is a number of prerequisites that need to be fulfilled in order for the
change impact analysis to function properly. Firstly a technical description of
the underlying document format, which I refer to as a document model, needs
to be provided. In case there are several types of documents in the project folder,
one document model for each type needs to be provided. If one is missing, a
default document model needs to be specified.

The exact representation of such a document model is subject to on-going
research and dependent on the locutor library. Essential to the concept of a
document model is the contained classification of changes and equivalencies for
the document format in question.

Secondly a dependency graph[3] for the document to be analyzed needs to be
provided. Again the exact representation of such a dependency graph is subject
to on-going research. It is however envisoned that a textual representation of a
directed, labeled graph will be suitable for this purpose. It might be possible to
generate basic dependency graphs automatically by exploiting the structural in-
formation of the document, but the user needs to add further semantic relations
manually.

Thirdly a base version to which the current version of the document should
be compared needs to be provided. As the locutor plug-in should be used in
conjunction with Subclipse, the base version in the local repository seems to be
a reasonable candidate for the comparison. However if the user does not commit
his changes after impact analysis and change propagation, the question of how
to maintain a comparative version of the document requires further attention.

8

Figure 6: Result of change impact analysis.

Given these prerequisites the basic workflow from the user perspective with
the core version of the locutor plug-in is as follows:

1. Perform a change to the document

2. Start change impact analysis from the context submenu for SVN (”Team”)

3. Manually lookup change impacts displayed in view and resolve them

4. Commit consistent version to SVN repository

This workflow is illustrated in figures 5 and 6. Fig. 5 shows a Java class
account representing a bank account, which has been modified by the pro-
grammer. More specifically, the programmer has modified the constraint in the
method withdraw to not only take the balance of the account into considera-
tion, but also a possible creditLimit. Having performed this change he would
like to know about the impacts his change has on other documents in the current
project and clicks on the action Change Impact Analysis.

The result of this action is shown in Fig. 6. A new view has opened in which
all impacts of the change are shown. The first column of the view shows the
result of the change detection, that is the change location. The second column
displays the result of the change classification, which has identified the change as
having an impact on the operational semantics. In the third and fourth column
information about the impacts is shown. The third column tells the user exactly
what document was affected and the fourth column gives context information
about the dependency due to which the change has an effect on the mentioned
artifact.

9

The change has an impact on the artifacts located at src/Interesting
BearingAccount.java, doc/specification.xml and test/AccountTest.java.
Note that the second impact does not stop at indicating a document, but fur-
ther specifies a part contained inside the document. This is possible due to
the similarity of the internal representation of semi-structured documents used
and file systems as was discussed in more detail in [17]. The situation described
would be typical for the software development process as outlined in section 1.3.

The locutor plug-in will be made available on a locutor update site. Being
distributed as an Eclipse feature it can be installed on any OS that is supported
by Eclipse.

2.2 OMDoc document model

OMDoc [11] is a strong semantic markup for mathematical theories. It allows to
represent mathematics on three different levels, the object level (e.g. variables),
the statement level (e.g. proofs) and the theory level (e.g. the theory of a
monoid).

OMDoc has a rich structure and it will be an interesting challenge to in-
vestigate how it can be represented in a document model. Gaining hands-on
experience on implementing a document model for locutor will allow me to
evaluate the usability and usefulness of the locutor plug-in.

Since OMDoc is based on XML no problems are expected when defining
the tree representation. However there does not exist any extensive change
classification for OMDoc theories. Defining useful change types will require
me to understand the major use cases for OMDoc.

3 Progress report and work plan

Up to now I have created a mock-up of the Eclipse plug-in for locutor from which
I have taken the screenshots (Fig. 5 and Fig. 6). The results displayed in the
Change Impact Analysis-view have been hardcoded into the plug-in. In fact the
locutor library is as of yet neither used nor linked in the locutor plug-in. Cur-
rently it can be installed from http://kwarc.info/projects/locutor-plugin

/v1.x/.
The first milestone for the implementation which at the same time will make

up for the core of the locutor plug-in is rudimentary support for steps 2 to 4
of the change process specifically for OMDoc documents using a minimalistic
document model. One major challenge that can be foreseen for this milestone
is maintenance of the state of the base version to which the current version of
the document should be compared and keeping track of resolved impacts. I am
estimating that this initial version can be completed by March 2010.

After finishing the core version of the plug-in I will start developing the
OMDoc document model and designing sample documents for testing purposes.
At the same time I will gradually refine the plug-in eliminating bugs and making
it more customizable, so it can be used for other document formats as well.

10

4 Future work

In section 2 I presented first steps to support smart change management in
Eclipse whose implementation seems reasonable given the timetable for my re-
search. As it has become apparent from this proposal, the plug-in would not
support the whole change process. Thus, a natural continuation of this research
would be to extend it to cover steps 1 and 5 of the change process.

Step 1 would comprise means to view and navigate dependencies, changes
and impacts using the locutor plug-in as well as maintaining them. While the
former can be solved by improving the implementation of the existing views,
the latter would require the implementation of an editor from scratch.

Step 5 depends on the means provided by the locutor library. Given that
the employed change calculus allows to detect and classify changes that can be
propagated automatically, mechanisms to guide through this process could be
implemented in the plug-in. These would be similar to the refactoring mecha-
nisms for Java already supported in Eclipse.

From a conceptual viewpoint it is interesting to note that there already exists
an OMDoc ontology [19]. As there is a semantic overlap between ontologies
and document models, it can be interesting to study this overlap by means of
comparing the OMDoc document model with the OMDoc ontology.

Acknowledgements

I would like to thank my supervisors Michael Kohlhase and Normen Müller for
their support and incredible patience.

References

[1] K. M. Anderson, S. A. Sherba, and W. V. Lepthien. Towards large-scale
information integration. In ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, pages 524–534, New York, NY, USA,
2002. ACM.

[2] R. S. Arnold and S. A. Bohner. Impact analysis - towards a framework
for comparison. In ICSM ’93: Proceedings of the Conference on Software
Maintenance, pages 292–301, Washington, DC, USA, 1993. IEEE Com-
puter Society.

[3] F. Balmas. Displaying dependence graphs: a hierarchical approach. J.
Softw. Maint. Evol., 16(3):151–185, 2004.

[4] M. Bashir and M. Qadir. Traceability techniques: A critical study. Multi-
topic Conference, 2006. INMIC ’06. IEEE, pages 265–268, Dec. 2006.

[5] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a
taxonomy of software change: Research articles. J. Softw. Maint. Evol.,
17(5):309–332, 2005.

[6] CVS - Open Source Version Control. http://www.nongnu.org/cvs/, seen
at January 2010.

11

[7] Eclipse. http://www.eclipse.org/, seen at January 2010.

[8] A. Espinoza, P. P. Alarcon, and J. Garbajosa. Analyzing and systematiz-
ing current traceability schemas. Software Engineering Workshop, Annual
IEEE/NASA Goddard, 0:21–32, 2006.

[9] O. C. Z. Gotel and A. C. W. Finkelstein. An analysis of the requirements
traceability problem. pages 94–101, 1994.

[10] E. Hu and Y. Liu. It project change management. Computer Science and
Computational Technology, International Symposium on, 1:417–420, 2008.

[11] M. Kohlhase. OMDoc – An open markup format for mathematical docu-
ments [Version 1.2]. Number 4180 in LNAI. Springer Verlag, 2006.

[12] G. Kotonya and I. Sommerville. Requirements Engineering - Processes and
Techniques. John Wiley & Sons, 1998.

[13] locutor - A library for management of change on semi-structured docu-
ments. http://code.google.com/p/locutor/, seen at January 2010.

[14] P. Mason, K. Cosh, and P. Vihakapirom. On structuring formal, semi-
formal and informal data to support traceability in systems engineering
environments. In CIKM ’04: Proceedings of the thirteenth ACM interna-
tional conference on Information and knowledge management, pages 642–
651, New York, NY, USA, 2004. ACM.

[15] N. Müller. An Ontology-Driven Management of Change. In Wissens-
und Erfahrungsmanagement LWA (Lernen, Wissensentdeckung und Adap-
tivität) conference proceedings, pages 186–193, 2006.

[16] N. Müller. Change Management on Semi-Structured Documents. 2009.

[17] N. Müller and M. Kohlhase. Fine-granular version control & redundancy
resolution. In J. Baumeister and M. Atzmüller, editors, LWA, volume 448 of
Technical Report, pages 1–8. Department of Computer Science, University
of Würzburg, Germany, 2008.

[18] N. Müller and M. Wagner. Towards Improving Interactive Mathematical
Authoring by Ontology-driven Management of Change. In A. Hinneburg,
editor, Wissens- und Erfahrungsmanagement LWA (Lernen, Wissensent-
deckung und Adaptivität) conference proceedings, pages 289–295, 2007.

[19] OMDoc Document Ontology. http://kwarc.info/projects/docOnto/

omdoc.html, seen at January 2010.

[20] V. Rajlich. A model for change propagation based on graph rewriting. In
ICSM ’97: Proceedings of the International Conference on Software Main-
tenance, pages 84–91, Washington, DC, USA, 1997. IEEE Computer Soci-
ety.

[21] S. Ramzan and N. Ikram. Making decision in requirement change manage-
ment. In ICICT 2005. First International Conference on IInformation and
Communication Technologies, 2005., pages 309–312, 2005.

12

[22] Subclipse. http://subclipse.tigris.org/, seen at January 2010.

[23] Subversion. http://subversion.tigris.org/, seen at January 2010.

[24] J. Welsh and J. Han. Software documents: Concepts and tools. Software -
Concepts and Tools, 15(1):12–25, 1994.

[25] R. J. Wieringa. Traceability and modularity in software design. In IWSSD
’98: Proceedings of the 9th international workshop on Software specification
and design, page 87, Washington, DC, USA, 1998. IEEE Computer Society.

13

