diff --git a/doc/slides/slides.tex b/doc/slides/slides.tex
index aa1b84a98cbdbb2146e2473097544e3342c29955..ebf9f798692715e333b561de74b79314b1db2669 100644
--- a/doc/slides/slides.tex
+++ b/doc/slides/slides.tex
@@ -181,17 +181,38 @@
             \mathcal{L} \rightarrow \mathcal{E} \rightarrow \mathcal{D}
         \end{align*}
         from \emph{third party library~$\mathcal{L}$} to an \emph{XML
-        representation~$\mathcal{E}$} to \emph{database storage~$\mathcal{D}$}.
-    \item When $\mathcal{E}$ changes, so does~$\mathcal{E}$ when a new
+        export~$\mathcal{E}$} to \emph{database storage~$\mathcal{D}$}.
+    \item When $\mathcal{L}$ changes, so does~$\mathcal{E}$ when a new
       export is run. This should result in~$\mathcal{D}$ changing as well.
   \end{itemize}
 
-  \begin{alertblock}{Huh!}
-    Not trivial! A work around is (1)~re-creating databases from
-    scratch and (2)~splitting up knowledge into smaller repositories.
+  \begin{alertblock}{Open Question}
+    Not trivial! A work around could be (1)~re-creating databases from
+    scratch and (2)~splitting up knowledge into smaller database
+    repositories.
   \end{alertblock}
 \end{frame}
 
+\begin{frame}{Implementation: Versioning}
+  \begin{alertblock}{Open Question}
+    Not trivial! A work around could be (1)~re-creating databases from
+    scratch and (2)~splitting up knowledge into smaller database
+    repositories.
+  \end{alertblock}
+
+  \begin{itemize}
+    \item Updating existing RDF data sets is unrealistic.  Adding
+      versioning information to~$n$ triplets can add up to
+      $\mathcal{O}(n)$ triplets.
+    \item Constantly re-creating the entire data sets introduces
+      lots of latency between updates.
+    \item Distributing every given query to a set of smaller
+      repositories and then joining the result seems like a long term
+      solution.
+  \end{itemize}
+
+\end{frame}
+
 % [Applications & Questions]
 
 \section{Exploration}
@@ -224,8 +245,8 @@
       ULO~predicates. Many predicates are used by neither exports.
   \end{itemize}
 
-  \begin{alertblock}{Huh!}
-    Queries formulated for a tetrapodal search system have to
+  \begin{alertblock}{Open Question}
+    Queries formulated for a tetrapodal search system might have to
     account for these ``holes'' in existing data sets.
   \end{alertblock}
 \end{frame}
@@ -247,7 +268,7 @@
               \texttt{unimportant} \texttt{universe} \texttt{uses}
           \end{flushleft}
       \end{scriptsize}
-      \caption{Used predicates in an Isabelle export.}
+      \caption{Used predicates in an Isabelle export~\cite{uloisabelle}.}
   \end{figure}
 
   \begin{figure}
@@ -279,10 +300,32 @@
                 \texttt{uses-implementation} \texttt{uses-interface}
           \end{flushleft}
       \end{scriptsize}
-      \caption{\emph{Unused} predicates in an Isabelle export.}
+      \caption{Unused predicates in an Isabelle export~\cite{uloisabelle}.}
   \end{figure}
 \end{frame}
 
+\subsection{Scoring Items}
+
+\begin{frame}{Exploration: Scoring}
+  \begin{itemize}
+    \item One query for a tetrapodal search system is the following:
+      ``Find theorems with non-elementary proofs.''~\cite{tetra}.
+      problems''~\cite{tetra}.
+      \begin{itemize}
+        \item Assuming ``elementary'' means easy~\cite{elempro}, we
+          need to find a way of rating the difficulty of proofs.
+        \item We can rate proofs by length, check time and so on.
+        \item Computing metrics can even be formulated in a SPARQL query.
+      \end{itemize}
+  \end{itemize}
+
+  \begin{alertblock}{Open Question}
+    Scanning the entire data set every time we get a tetrapodal query
+    for a given score is unrealistic. Such queries need to be cached,
+    either on the organizational or tetrapodal level.
+  \end{alertblock}
+\end{frame}
+
 \subsection{Algorithms and Problems}
 
 \begin{frame}{Exploration: Algorithms and Problems}
@@ -295,12 +338,15 @@
           Tempting but potentially very complicated.
         \item Algorithms aren't programs! Programs implement
           algorithms that solve problems.
+        \item Maybe it would be interesting to collect a database of
+          algorithms and proofs (OEIS~\cite{oeis} for algorithms).
       \end{itemize}
   \end{itemize}
 
-  \begin{alertblock}{Huh!}
+  \begin{alertblock}{Open Question}
     This illustrates the difficulty in designing an ontology
-    (schema) that is both expressive and concise.
+    (schema) that is both expressive and concise. Should an universal
+    ontology be as concise as possible?
   \end{alertblock}
 \end{frame}
 
@@ -320,10 +366,6 @@
       subsets of~{ULO}. On the other hand, representing algorithms and
       algorithmic problems might require us to extend~{ULO}? Maybe instead
       of tetrapodal search we need $n$-podal search.
-    \begin{itemize}
-      \item Maybe it would be interesting to collect a database of
-        algorithms and proofs (OEIS~\cite{oeis} for algorithms).
-    \end{itemize}
   \end{itemize}
 \end{frame}