\begin{figure} \centering \begin{subfigure}[]{0.9\textwidth} \begin{lstlisting} PREFIX ulo: <https://mathhub.info/ulo#> SELECT ?theorem ?proof ?size WHERE { ?theorem ulo:theorem ?i . ?proof ulo:justifies ?theorem . ?proof ulo:proof ?j . ?proof ulo:external-size ?size . } ORDER BY DESC(?size) \end{lstlisting} \caption{SPARQL query that returns each pair of \texttt{theorem} and one given \texttt{proof}, ordered by the size of \texttt{proof}.}\label{fig:q1short} \end{subfigure} \vspace{0.5cm} \begin{subfigure}[]{0.9\textwidth} \begin{lstlisting} PREFIX ulo: <https://mathhub.info/ulo#> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> SELECT ?theorem ?proof ?size ( xsd:float(?size) + xsd:float(?checktime) as ?rating ) WHERE { ?theorem ulo:theorem ?i . ?proof ulo:justifies ?theorem . ?proof ulo:proof ?j . ?proof ulo:external-size ?size . ?proof ulo:check-time ?checktime . } ORDER BY DESC(?rating) \end{lstlisting} \caption{SPARQL query that returns each pair of \texttt{theorem} and one given \texttt{proof} ordered by the sum of size and check time of the given proof. A naive rating such as this one will hardly yield helpful results, but it shows that given some kind of complexity scale, we can rate theorems and their proofs by such a scale.}\label{fig:q1long} \end{subfigure} \caption{SPARQL queries for serving the organizational aspect of~$\mathcal{Q}_1$.}\label{fig:q1full} \end{figure}