% !TeX root = slides.tex \section{Conclusion} \begin{frame}{Overall Summary} \structure{Logical Relations:} \begin{itemize} \item many type theories admit this proof technique:\begin{enumerate} \item map every type $\tpName$ to an $n$-ary relation $C_{\tpName}(-)$ \item prove that every constructor $f\colon\tpName_1\to\ldots\to\tpName_n\to\tpName$ preserves the relation $C_{\tpName}(-)$ \end{enumerate} \item ``the basic lemma'': if $t\colon\tpName$, then $C_{\tpName}(t)$ \end{itemize} \medskip \structure{Concretely in \mmt/LF:} for morphisms $\mu_1,\ldots,\mu_n\colon S \to T$ \[ \logrel{r}{\mu_1 \times \cdots \times \mu_n}{S}{T} \] \vspace{-1.5em} \begin{itemize} \item special case for morphisms being identities: \begin{itemize} \item $\nakedLogRel{\TND}{\id{PL}}{\PL}{\PL}$: unary congruence proving $p\colon\prop \Longrightarrow\;\vtnd{p}$ \item $\nakedLogRel{\LRA}{\id{PL}\times\id{\PL}}{\PL}{\PL}$: (binary) congruence whose well-typedness shows $\Leftrightarrow$ being a congruence \end{itemize} % \item special case \vspace{-0.5em} \[ \logrel{\TypePres}{\TypeEras}{\ChurchProd}{\CurryProd} \] \vspace*{-1em} \begin{itemize} \item complements lossy translation $\TypeEras$ \item $\vdash_{\ChurchProd} t \colon \ttm{A} \;\;\Longrightarrow\;\;\vdash_{\CurryProd} \wit\colon\ofType{\TypeEras(t)}{\TypeEras(A)}$ \end{itemize} \end{itemize} \end{frame} \begin{frame}{Future Work} \ldots \end{frame}