peter. %?- peter. likes(peter, mary). likes(peter, sophie). cool(X) :- likes(peter,X). %?- trace, cool(sophie). %?- trace, cool(X). has_wheels(mybike, 2). has_wheels(mytricycle, 3). has_wheels(mytoycar, 4). has_wheels(mycar, 4). has_motor(mybike). has_motor(mycar). car(X) :- has_wheels(X, 4), has_motor(X). %?- trace, car(Y). % Cool cool cool, but how can we code with this? % The answers is for the most part...RECURSION! nat(zero). nat(s(X)) :- nat(X). % add(X, Y, Z) -> X + Y = Z add(X, zero, X). add(X, s(Y), s(Z)) :- add(X, Y, Z). % We see, there is no "return" in Prolog, only predicates. % For every predicate please state in a comment which parameters % are input and which are output. %% List comprehension: % list e.g. [1,2,3] or [jamie,cersei], empty list = [] % pattern matching with lists: % [Head|Tail], where Head is an element and Tail is a List! % Also works with first 2 elements [X1, X2 | T] append([],L2,L2). append([H|T],L2,[H|Res]):- append(T,L2,Res). % A practical example % Signature for our problem: % countN(N : int, L : List[int]) -> int % counts the occurrences of N in L and returns the result. % With Prolog-like lists: countN(N, [H | T]) -> int % L = [2, 3, 5, 2, 7, 1, 2, 2, 5, 9] % countN(3, L) -> 1 % countN(2, L) -> 4 % countN(8, L) -> 0 % countN(5, L) -> 2 % Delcarative Approach % countN(N, L) -> res % res = 0 % for e in L: % if e == N: % res += 1 % return res % Functional / Recursive Approach % Base Cases: % countN(N, []) -> return 0 % Recursive Case: % countN(N, [H | T]) -> % if N == H % return countN(N, [T]) + 1 % else % return countN(N, [T]) % ... in prolog we can't "return", so we need another variable in the predicate % countN(N, L, RES) the number of occurrences of N in list L % will be "returned/safed" in RES (Will be in relation with RES) % Base Cases: countN(_, [], 0). %?- trace, countN(2, [], X). % Recursive Case: countN(N, [N | T], RES) :- countN(N, T, OLDRES), RES is OLDRES + 1. countN(N, [M | T], RES) :- not(N=M), countN(N, T, RES). % Point out: "N" in first line list compr. "is" can be very useful %?- trace, countN(2, [2], X).