exaoutput.py 9.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

import os
from pathlib import Path
from collections import OrderedDict
from pylatexenc.latexencode import utf8tolatex, utf82latex


def remove_ensuremaths():
    thisdict = utf82latex
    for key, value in utf82latex.items():
        if value.startswith('\\ensuremath{'):
            utf82latex[key] = value.replace('\\ensuremath{', '', 1)[:-1]

    # from here on we are concerned with the creation of output


class ExaOutput:
    def __init__(self):
        remove_ensuremaths()

    def create_output(self, simdata):
        self.filespathpre = "Configs"  # just to build paths, remove
        self.probname = "Poisson_1D"  # just to build paths, remove
        #output parameters which should also be made adaptable at some point
#        self.knowledge = OrderedDict([
#                           ("dimensionality" , simdata["num_dimensions"]),
#                           ("minLevel" , 1),
#                           ("maxLevel" , 7),
#                           ("discr_type" , simdata["sim_type"]),
#                           ("l3tmp_generateL4" , False),
#                           ("experimental_layerExtension" , True)
#                           ])
        self.platform = OrderedDict([
                            ("targetOS" , "Linux"),
                           ("targetCompiler" , "GCC"),
                           ("targetCompilerVersion" , 5),
                           ("targetCompilerVersionMinor" , 4),
                           ("simd_instructionSet" , "AVX")
                           ])
        self.settings = OrderedDict([
            ("user", "Guest"),
            ("configName", "1D_FD_Poisson_fromL1"),
            ("basePathPrefix", "./Poisson"),
            ("l1file", "\"$configName$.exa1\""),
            ("debugL1File", "\"../Debug/$configName$_debug.exa1\""),
            ("debugL2File", "\"../Debug/$configName$_debug.exa2\""),
            ("debugL3File", "\"../Debug/$configName$_debug.exa3\""),
            ("debugL4File", "\"../Debug/$configName$_debug.exa4\""),
            ("htmlLogFile", "../Debug/$configName$_log.html"),
            ("outputPath", "../generated/$configName$/"),
            ("produceHtmlLog", "true"),
            ("timeStrategies", "true"),
            ("buildfileGenerators", "{ \"MakefileGenerator\" }")
        ])
        filespath = Path(self.filespathpre).joinpath(self.settings["user"]).joinpath(self.probname)
        self.l1file = filespath.with_suffix('.exa1')
        self.l2file = filespath.with_suffix('.exa2')
        self.l3file = filespath.with_suffix('.exa3')
        self.l4file = filespath.with_suffix('.exa4')
        ff = str(Path(self.settings["basePathPrefix"]).joinpath(self.filespathpre).joinpath(self.settings["user"]))
        if not os.path.exists(ff):
            try:
                os.makedirs(ff)
            except OSError as exc:# Guard against race condition
                if exc.errno != errno.EEXIST:
                    raise

        self.create_settings()
#        self.create_platform()
        self.create_knowledge()
        self.create_l1(simdata)
#        self.create_l2(simdata)
#        self.create_l3()
#        self.create_l4()

    def create_l1(self, simdata):
        l1path = str(Path(self.settings["basePathPrefix"]).joinpath(self.l1file))
        domain_name = utf8tolatex(simdata["domain"]["name"], non_ascii_only=True, brackets=False)
        op = utf8tolatex(simdata["pdes"]["pdes"][-1]["op"], non_ascii_only=True, brackets=False)
        bcrhs = self.replace_boundary_x(simdata["bcs"]["bcs"][-1]["rhsstring_expanded"]) #TODO expand
        pderhs = simdata["pdes"]["pdes"][-1]["rhsstring_expanded"]
        with open(l1path, 'w') as l1:
            l1.write(
                "/// inline knowledge \n"
                "Knowledge { \n"
                "  dimensionality = " + str(simdata["num_dimensions"]) + " \n" 
                " \n"
                "  minLevel       = 5 \n"
                "  maxLevel       = 15 \n"
                "} \n"
                " \n"
                "/// problem specification \n"
                " \n"
                "Domain \Omega = ( " + str(simdata["domain"]["from"]) + ", " + str(simdata["domain"]["to"]) + " ) \n" 
                " \n"
                "Field f@finest \in \Omega = " + pderhs + " \n" 
                "Field u \in \Omega = 0.0 \n" 
                " \n"
                "Field u@finest \in \partial \Omega = " + bcrhs + " \n" #"sin ( 0.5 * PI * vf_boundaryCoord_x ) \n" #TODO expand
                "Field u@(all but finest) \in \partial \Omega = 0.0 \n"
                " \n"
                "Operator op = " + op + " // alt: - \partial_{xx} \n" 
                " \n"
                "Equation uEq@finest           op * u == f \n" #insert pde
                "Equation uEq@(all but finest) op * u == 0.0 \n"
                " \n"
                "/// configuration of inter-layer transformations \n"
                " \n"
                "DiscretizationHints { // alt: Discretize, L2Hint(s) \n"
                "  f on Node \n"
                "  u on Node \n"
                " \n"
                "  op on \Omega \n"
                " \n"
                "  uEq \n"
                " \n"
                "  // paramters \n"
                "  discr_type = \"" + simdata["sim"]["type"] + "\" \n"
                "} \n"
                " \n"
                "SolverHints { // alt: Solve, L3Hint(s) \n"
                "  generate solver for u in uEq \n"
                " \n"
                "  // parameters \n"
                "  solver_targetResReduction = 1e-6 \n"
                "} \n"
                " \n"
                "ApplicationHints { // alt L4Hint(s) \n"
                "  // parameters \n"
                "  l4_genDefaultApplication = true \n"
                "} \n"
           )

    def replace_x(self, string):
        return string.replace("x", "vf_nodePosition_x")

    def replace_boundary_x(self, string):
        return string.replace("x", "vf_boundaryCoord_x")

    def create_l2(self, simdata):
        l2path = str(Path(self.settings["basePathPrefix"]).joinpath(self.l2file))
        with open(l2path,'w') as l2:
            l2.write(
                "Domain global< " + simdata["domain"]["from"] + " to " + simdata["domain"]["to"] + " > \n" # TODO domain goes here
                "\n"
                "Field Solution with Real on Node of global = 0.0 \n" #TODO codomain goes here
                "Field Solution@finest on boundary = vf_boundaryCoord_x ** 2 \n" # TODO BCs go here
                "Field Solution@(all but finest) on boundary = 0.0 \n"
                "\n"
                "Field RHS with Real on Node of global = 0.0 \n" #TODO RHS goes here
                #"Operator Laplace from kron ( Laplace_1D, Laplace_1D ) \n"
                "Operator Laplace_1D from Stencil { \n"
                "   [ 0] => 2.0 / ( vf_gridWidth_x ** 2 ) \n"
                "   [-1] => -1.0 / ( vf_gridWidth_x ** 2 ) \n"
                "   [ 1] => -1.0 / ( vf_gridWidth_x ** 2 ) \n"
                "\n"
                "Equation solEq@finest { \n"
                "    Laplace_1D * Solution == RHS \n"
                "} \n"
                "\n"
                "Equation solEq@(all but finest) { \n"
                "    Laplace_1D * Solution == 0.0 \n"
                "} \n"
            )

    def create_l3(self):
        l3path = str(Path(self.settings["basePathPrefix"]).joinpath(self.l3file))
        with open(l3path,'w') as l3:
            l3.write(
                "generate solver for Solution in solEq \n"
            )

    def create_l4(self):
        l4path = str(Path(self.settings["basePathPrefix"]).joinpath(self.l4file))
        with open(l4path,'w') as l4:
            l4.write(
                "Function Application ( ) : Unit { \n"
                "   startTimer ( 'setup' ) \n"
                "\n"
                "   initGlobals ( ) \n"
                "   initDomain ( ) \n"
                "   initFieldsWithZero ( ) \n"
                "   initGeometry ( ) \n"
                "   InitFields ( ) \n"
                "\n"
                "   stopTimer ( 'setup' ) \n"
                "\n"
                "   startTimer ( 'solve' ) \n"
                "\n"
                "   Solve@finest ( ) \n"
                "\n"
                "   stopTimer ( 'solve' ) \n"
                "\n"
                "   printAllTimers ( ) \n"
                "\n"
                "   destroyGlobals ( ) \n"
                "} \n"
            )

    def key_val(self, key, val):
        return key.ljust(30) + ' = ' + val + '\n'

    def format_key_val(self, key, val):
        return self.key_val(key, repr(val).replace('\'', '\"'))

    def format_key(self, key, dict):
        return self.format_key_val(key, dict[key])

    def create_settings(self):
        settingspath = str(Path(self.settings["basePathPrefix"]).joinpath('settings'))
        with open(settingspath,'w') as settingsfile:
            for key in self.settings:
                settingsfile.write(self.format_key(key, self.settings))

    def create_platform(self):
        platformpath = str(Path(self.settings["basePathPrefix"]).joinpath('platform'))
        with open(platformpath,'w') as platformfile:
            for key in self.platform:
                platformfile.write(self.format_key(key, self.platform))

    def create_knowledge(self):
        knowledgepath = str(Path(self.settings["basePathPrefix"]).joinpath('knowledge'))
        with open(knowledgepath,'w') as knowledgefile:
#            for key in self.knowledge:
#                knowledgefile.write(self.format_key(key, self.knowledge))
            knowledgefile.write(
                "// omp parallelization on exactly one fragment in one block \n"
                "import '../lib/domain_onePatch.knowledge' \n"
                "import '../lib/parallelization_pureOmp.knowledge'"
            )