Skip to content
Snippets Groups Projects
Math3d.cs 44.5 KiB
Newer Older
using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using System;

public class Math3d
{
	public const float vectorPrecission = 1e-5f; //For Vector comparisons

	private static Transform tempChild = null;
	private static Transform tempParent = null;

	private static Vector3[] positionRegister;
	private static float[] posTimeRegister;
	private static int positionSamplesTaken = 0;

	private static Quaternion[] rotationRegister;
	private static float[] rotTimeRegister;
	private static int rotationSamplesTaken = 0;

	public static void Init()
	{

		tempChild = (new GameObject("Math3d_TempChild")).transform;
		tempParent = (new GameObject("Math3d_TempParent")).transform;

		tempChild.gameObject.hideFlags = HideFlags.HideAndDontSave;
		MonoBehaviour.DontDestroyOnLoad(tempChild.gameObject);

		tempParent.gameObject.hideFlags = HideFlags.HideAndDontSave;
		MonoBehaviour.DontDestroyOnLoad(tempParent.gameObject);

		//set the parent
		tempChild.parent = tempParent;
	}

	//Get a point on a Catmull-Rom spline.
	//The percentage is in range 0 to 1, which starts at the second control point and ends at the second last control point. 
	//The array cPoints should contain all control points. The minimum amount of control points should be 4. 
	//Source: https://forum.unity.com/threads/waypoints-and-constant-variable-speed-problems.32954/#post-213942
	public static Vector2 GetPointOnSpline(float percentage, Vector2[] cPoints)
	{

		//Minimum size is 4
		if (cPoints.Length >= 4)
		{

			//Convert the input range (0 to 1) to range (0 to numSections)
			int numSections = cPoints.Length - 3;
			int curPoint = Mathf.Min(Mathf.FloorToInt(percentage * (float)numSections), numSections - 1);
			float t = percentage * (float)numSections - (float)curPoint;

			//Get the 4 control points around the location to be sampled.
			Vector2 p0 = cPoints[curPoint];
			Vector2 p1 = cPoints[curPoint + 1];
			Vector2 p2 = cPoints[curPoint + 2];
			Vector2 p3 = cPoints[curPoint + 3];

			//The Catmull-Rom spline can be written as:
			// 0.5 * (2*P1 + (-P0 + P2) * t + (2*P0 - 5*P1 + 4*P2 - P3) * t^2 + (-P0 + 3*P1 - 3*P2 + P3) * t^3)
			//Variables P0 to P3 are the control points.
			//Variable t is the position on the spline, with a range of 0 to numSections.
			//C# way of writing the function. Note that f means float (to force precision).
			Vector2 result = .5f * (2f * p1 + (-p0 + p2) * t + (2f * p0 - 5f * p1 + 4f * p2 - p3) * (t * t) + (-p0 + 3f * p1 - 3f * p2 + p3) * (t * t * t));

			return new Vector2(result.x, result.y);
		}

		else
		{

			return new Vector2(0, 0);
		}
	}

	//Finds the intersection points between a straight line and a spline. Solves a Cubic polynomial equation
	//The output is in the form of a percentage along the length of the spline (range 0 to 1).
	//The linePoints array should contain two points which form a straight line.
	//The cPoints array should contain all the control points of the spline.
	//Use case: create a gauge with a non-linear scale by defining an array with needle angles vs the number it should point at. The array creates a spline.
	//Driving the needle with a float in range 0 to 1 gives an unpredictable result. Instead, use the GetLineSplineIntersections() function to find the angle the
	//gauge needle should have for a given number it should point at. In this case, cPoints should contain x for angle and y for scale number.
	//Make a horizontal line at the given scale number (y) you want to find the needle angle for. The returned float is a percentage location on the spline (range 0 to 1). 
	//Plug this value into the GetPointOnSpline() function to get the x coordinate which represents the needle angle.
	//Source: https://medium.com/@csaba.apagyi/finding-catmull-rom-spline-and-line-intersection-part-2-mathematical-approach-dfb969019746
	public static float[] GetLineSplineIntersections(Vector2[] linePoints, Vector2[] cPoints)
	{

		List<float> list = new List<float>();
		float[] crossings;

		int numSections = cPoints.Length - 3;

		//The line spline intersection can only be calculated for one segment of a spline, meaning 4 control points,
		//with a spline segment between the middle two control points. So check all spline segments.
		for (int i = 0; i < numSections; i++)
		{

			//Get the 4 control points around the location to be sampled.
			Vector2 p0 = cPoints[i];
			Vector2 p1 = cPoints[i + 1];
			Vector2 p2 = cPoints[i + 2];
			Vector2 p3 = cPoints[i + 3];

			//The Catmull-Rom spline can be written as:
			// 0.5 * (2P1 + (-P0 + P2) * t + (2P0 - 5P1 + 4P2 - P3) * t^2 + (-P0 + 3P1 - 3P2 + P3) * t^3)
			//Variables P0 to P3 are the control points.
			//Notation: 2P1 means 2*controlPoint1
			//Variable t is the position on the spline, converted from a range of 0 to 1.
			//C# way of writing the function is below. Note that f means float (to force precision).
			//Vector2 result = .5f * (2f * p1 + (-p0 + p2) * t + (2f * p0 - 5f * p1 + 4f * p2 - p3) * (t * t) + (-p0 + 3f * p1 - 3f * p2 + p3) * (t * t * t));

			//The variable t is the only unknown, so the rest can be substituted:
			//a = 0.5 * (-p0 + 3*p1 - 3*p2 + p3)
			//b = 0.5 * (2*p0 - 5*p1 + 4*p2 - p3) 
			//c = 0.5 * (-p0 + p2)
			//d = 0.5 * (2*p1)

			//This gives rise to the following Cubic equation:
			//a * t^3 + b * t^2 + c * t + d = 0

			//The spline control points (p0-3) consist of two variables: the x and y coordinates. They are independent so we can handle them separately.
			//Below, a1 is substitution a where the x coordinate of each point is used, like so:  a1 = 0.5 * (-p0.x + 3*p1.x - 3*p2.x + p3.x)
			//Below, a2 is substitution a where the y coordinate of each point is used, like so:  a2 = 0.5 * (-p0.y + 3*p1.y - 3*p2.y + p3.y)
			//The same logic applies for substitutions b, c, and d.

			float a1 = 0.5f * (-p0.x + 3f * p1.x - 3f * p2.x + p3.x);
			float a2 = 0.5f * (-p0.y + 3f * p1.y - 3f * p2.y + p3.y);
			float b1 = 0.5f * (2f * p0.x - 5f * p1.x + 4f * p2.x - p3.x);
			float b2 = 0.5f * (2f * p0.y - 5f * p1.y + 4f * p2.y - p3.y);
			float c1 = 0.5f * (-p0.x + p2.x);
			float c2 = 0.5f * (-p0.y + p2.y);
			float d1 = 0.5f * (2f * p1.x);
			float d2 = 0.5f * (2f * p1.y);

			//We now have two Cubic functions. One for x and one for y.
			//Note that a, b, c, and d are not vector variables itself but substituted functions.
			//x = a1 * t^3 + b1 * t^2 + c1 * t + d1
			//y = a2 * t^3 + b2 * t^2 + c2 * t + d2

			//Line formula, standard form:
			//Ax + By + C = 0
			float A = linePoints[0].y - linePoints[1].y;
			float B = linePoints[1].x - linePoints[0].x;
			float C = (linePoints[0].x - linePoints[1].x) * linePoints[0].y + (linePoints[1].y - linePoints[0].y) * linePoints[0].x;

			//Substituting the values of x and y from the separated Spline formula into the Line formula, we get:
			//A * (a1 * t^3 + b1 * t^2 + c1 * t + d1) + B * (a2 * t^3 + b2 * t^2 + c2 * t + d2) + C = 0

			//Rearranged version:		
			//(A * a1 + B * a2) * t^3 + (A * b1 + B * b2) * t^2 + (A * c1 + B * c2) * t + (A * d1 + B * d2 + C) = 0

			//Substituting gives rise to a Cubic function:
			//a * t^3 + b * t^2 + c * t + d = 0
			float a = A * a1 + B * a2;
			float b = A * b1 + B * b2;
			float c = A * c1 + B * c2;
			float d = A * d1 + B * d2 + C;


			//This is again a Cubic equation, combined from the Line and the Spline equation. If you solve this you can get up to 3 line-spline cross points.
			//How to solve a Cubic equation is described here: 
			//https://www.cs.rit.edu/~ark/pj/lib/edu/rit/numeric/Cubic.shtml
			//https://www.codeproject.com/Articles/798474/To-Solve-a-Cubic-Equation

			int crossAmount;
			float cross1;
			float cross2;
			float cross3;
			float crossCorrected;

			//Two different implementations of solving a Cubic equation.
			//	SolveCubic2(out crossAmount, out cross1, out cross2, out cross3, a, b, c, d);
			SolveCubic(out crossAmount, out cross1, out cross2, out cross3, a, b, c, d);

			//Get the highest and lowest value (in range 0 to 1) of the current section and calculate the difference.
			float currentSectionLowest = (float)i / (float)numSections;
			float currentSectionHighest = ((float)i + 1f) / (float)numSections;
			float diff = currentSectionHighest - currentSectionLowest;

			//Only use the result if it is within range 0 to 1.
			//The range 0 to 1 is within the current segment. It has to be converted to the range of the entire spline,
			//which still uses a range of 0 to 1.
			if (cross1 >= 0 && cross1 <= 1)
			{

				//Map an intermediate range (0 to 1) to the lowest and highest section values.
				crossCorrected = (cross1 * diff) + currentSectionLowest;

				//Add the result to the list.
				list.Add(crossCorrected);
			}

			if (cross2 >= 0 && cross2 <= 1)
			{

				//Map an intermediate range (0 to 1) to the lowest and highest section values.
				crossCorrected = (cross2 * diff) + currentSectionLowest;

				//Add the result to the list.
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
				list.Add(crossCorrected);
			}

			if (cross3 >= 0 && cross3 <= 1)
			{

				//Map an intermediate range (0 to 1) to the lowest and highest section values.
				crossCorrected = (cross3 * diff) + currentSectionLowest;

				//Add the result to the list.
				list.Add(crossCorrected);
			}
		}

		//Convert the list to an array.
		crossings = list.ToArray();

		return crossings;
	}

	//Solve cubic equation according to Cardano. 
	//Source: https://www.cs.rit.edu/~ark/pj/lib/edu/rit/numeric/Cubic.shtml
	private static void SolveCubic(out int nRoots, out float x1, out float x2, out float x3, float a, float b, float c, float d)
	{

		float TWO_PI = 2f * Mathf.PI;
		float FOUR_PI = 4f * Mathf.PI;

		// Normalize coefficients.
		float denom = a;
		a = b / denom;
		b = c / denom;
		c = d / denom;

		// Commence solution.
		float a_over_3 = a / 3f;
		float Q = (3f * b - a * a) / 9f;
		float Q_CUBE = Q * Q * Q;
		float R = (9f * a * b - 27f * c - 2f * a * a * a) / 54f;
		float R_SQR = R * R;
		float D = Q_CUBE + R_SQR;

		if (D < 0.0f)
		{

			// Three unequal real roots.
			nRoots = 3;
			float theta = Mathf.Acos(R / Mathf.Sqrt(-Q_CUBE));
			float SQRT_Q = Mathf.Sqrt(-Q);
			x1 = 2f * SQRT_Q * Mathf.Cos(theta / 3f) - a_over_3;
			x2 = 2f * SQRT_Q * Mathf.Cos((theta + TWO_PI) / 3f) - a_over_3;
			x3 = 2f * SQRT_Q * Mathf.Cos((theta + FOUR_PI) / 3f) - a_over_3;
		}

		else if (D > 0.0f)
		{

			// One real root.
			nRoots = 1;
			float SQRT_D = Mathf.Sqrt(D);
			float S = CubeRoot(R + SQRT_D);
			float T = CubeRoot(R - SQRT_D);
			x1 = (S + T) - a_over_3;
			x2 = float.NaN;
			x3 = float.NaN;
		}

		else
		{

			// Three real roots, at least two equal.
			nRoots = 3;
			float CBRT_R = CubeRoot(R);
			x1 = 2 * CBRT_R - a_over_3;
			x2 = CBRT_R - a_over_3;
			x3 = x2;
		}
	}

	//Mathf.Pow is used as an alternative for cube root (Math.cbrt) here.
	private static float CubeRoot(float d)
	{

		if (d < 0.0f)
		{

			return -Mathf.Pow(-d, 1f / 3f);
		}

		else
		{

			return Mathf.Pow(d, 1f / 3f);
		}
	}


	//increase or decrease the length of vector by size
	public static Vector3 AddVectorLength(Vector3 vector, float size)
	{

		//get the vector length
		float magnitude = Vector3.Magnitude(vector);

		//calculate new vector length
		float newMagnitude = magnitude + size;

		//calculate the ratio of the new length to the old length
		float scale = newMagnitude / magnitude;

		//scale the vector
		return vector * scale;
	}

	//create a vector of direction "vector" with length "size"
	public static Vector3 SetVectorLength(Vector3 vector, float size)
	{

		//normalize the vector
		Vector3 vectorNormalized = Vector3.Normalize(vector);

		//scale the vector
		return vectorNormalized *= size;
	}


	//caclulate the rotational difference from A to B
	public static Quaternion SubtractRotation(Quaternion B, Quaternion A)
	{

		Quaternion C = Quaternion.Inverse(A) * B;
		return C;
	}

	//Add rotation B to rotation A.
	public static Quaternion AddRotation(Quaternion A, Quaternion B)
	{

		Quaternion C = A * B;
		return C;
	}

	//Same as the build in TransformDirection(), but using a rotation instead of a transform.
	public static Vector3 TransformDirectionMath(Quaternion rotation, Vector3 vector)
	{

		Vector3 output = rotation * vector;
		return output;
	}

	//Same as the build in InverseTransformDirection(), but using a rotation instead of a transform.
	public static Vector3 InverseTransformDirectionMath(Quaternion rotation, Vector3 vector)
	{

		Vector3 output = Quaternion.Inverse(rotation) * vector;
		return output;
	}

	//Rotate a vector as if it is attached to an object with rotation "from", which is then rotated to rotation "to".
	//Similar to TransformWithParent(), but rotating a vector instead of a transform.
	public static Vector3 RotateVectorFromTo(Quaternion from, Quaternion to, Vector3 vector)
	{
		//Note: comments are in case all inputs are in World Space.
		Quaternion Q = SubtractRotation(to, from);              //Output is in object space.
		Vector3 A = InverseTransformDirectionMath(from, vector);//Output is in object space.
		Vector3 B = Q * A;                                      //Output is in local space.
		Vector3 C = TransformDirectionMath(from, B);            //Output is in world space.
		return C;
	}

	//Find the line of intersection between two planes.	The planes are defined by a normal and a point on that plane.
	//The outputs are a point on the line and a vector which indicates it's direction. If the planes are not parallel, 
	//the function outputs true, otherwise false.
	public static bool PlanePlaneIntersection(out Vector3 linePoint, out Vector3 lineVec, Vector3 plane1Normal, Vector3 plane1Position, Vector3 plane2Normal, Vector3 plane2Position)
	{

		linePoint = Vector3.zero;
		lineVec = Vector3.zero;

		//We can get the direction of the line of intersection of the two planes by calculating the 
		//cross product of the normals of the two planes. Note that this is just a direction and the line
		//is not fixed in space yet. We need a point for that to go with the line vector.
		lineVec = Vector3.Cross(plane1Normal, plane2Normal);

		//Next is to calculate a point on the line to fix it's position in space. This is done by finding a vector from
		//the plane2 location, moving parallel to it's plane, and intersecting plane1. To prevent rounding
		//errors, this vector also has to be perpendicular to lineDirection. To get this vector, calculate
		//the cross product of the normal of plane2 and the lineDirection.		
		Vector3 ldir = Vector3.Cross(plane2Normal, lineVec);

		float denominator = Vector3.Dot(plane1Normal, ldir);

		//Prevent divide by zero and rounding errors by requiring about 5 degrees angle between the planes.
		if (Mathf.Abs(denominator) > 0.006f)
		{

			Vector3 plane1ToPlane2 = plane1Position - plane2Position;
			float t = Vector3.Dot(plane1Normal, plane1ToPlane2) / denominator;
			linePoint = plane2Position + t * ldir;

			return true;
		}

		//output not valid
		else
		{
			return false;
		}
	}

	//Get the intersection between a line and a plane. 
	//If the line and plane are not parallel, the function outputs true, otherwise false.
	public static bool LinePlaneIntersection(out Vector3 intersection, Vector3 linePoint, Vector3 lineVec, Vector3 planeNormal, Vector3 planePoint)
	{

		float length;
		float dotNumerator;
		float dotDenominator;
		Vector3 vector;
		intersection = Vector3.zero;

		//calculate the distance between the linePoint and the line-plane intersection point
		dotNumerator = Vector3.Dot((planePoint - linePoint), planeNormal);
		dotDenominator = Vector3.Dot(lineVec, planeNormal);

		//line and plane are not parallel
		if (dotDenominator != 0.0f)
		{
			length = dotNumerator / dotDenominator;

			//create a vector from the linePoint to the intersection point
			vector = SetVectorLength(lineVec, length);

			//get the coordinates of the line-plane intersection point
			intersection = linePoint + vector;

			return true;
		}

		//output not valid
		else
		{
			return false;
		}
	}

	//Calculate the intersection point of two lines. Returns true if lines intersect, otherwise false.
	//Note that in 3d, two lines do not intersect most of the time. So if the two lines are not in the 
	//same plane, use ClosestPointsOnTwoLines() instead.
	public static bool LineLineIntersection(out Vector3 intersection, Vector3 linePoint1, Vector3 lineVec1, Vector3 linePoint2, Vector3 lineVec2)
	{

		Vector3 lineVec3 = linePoint2 - linePoint1;
		Vector3 crossVec1and2 = Vector3.Cross(lineVec1, lineVec2);
		Vector3 crossVec3and2 = Vector3.Cross(lineVec3, lineVec2);

		float planarFactor = Vector3.Dot(lineVec3, crossVec1and2);

		//is coplanar, and not parrallel
		if (Mathf.Abs(planarFactor) < 0.0001f && crossVec1and2.sqrMagnitude > 0.0001f)
		{
			float s = Vector3.Dot(crossVec3and2, crossVec1and2) / crossVec1and2.sqrMagnitude;
			intersection = linePoint1 + (lineVec1 * s);
			return true;
		}
		else
		{
			intersection = Vector3.zero;
			return false;
		}
	}

	//Two non-parallel lines which may or may not touch each other have a point on each line which are closest
	//to each other. This function finds those two points. If the lines are not parallel, the function 
	//outputs true, otherwise false.
	public static bool ClosestPointsOnTwoLines(out Vector3 closestPointLine1, out Vector3 closestPointLine2, Vector3 linePoint1, Vector3 lineVec1, Vector3 linePoint2, Vector3 lineVec2)
	{

		closestPointLine1 = Vector3.zero;
		closestPointLine2 = Vector3.zero;

		float a = Vector3.Dot(lineVec1, lineVec1);
		float b = Vector3.Dot(lineVec1, lineVec2);
		float e = Vector3.Dot(lineVec2, lineVec2);

		float d = a * e - b * b;

		//lines are not parallel
		if (d != 0.0f)
		{

			Vector3 r = linePoint1 - linePoint2;
			float c = Vector3.Dot(lineVec1, r);
			float f = Vector3.Dot(lineVec2, r);

			float s = (b * f - c * e) / d;
			float t = (a * f - c * b) / d;

			closestPointLine1 = linePoint1 + lineVec1 * s;
			closestPointLine2 = linePoint2 + lineVec2 * t;

			return true;
		}

		else
		{
			return false;
		}
	}

	//This function returns a point which is a projection from a point to a line.
	//The line is regarded infinite. If the line is finite, use ProjectPointOnLineSegment() instead.
	public static Vector3 ProjectPointOnLine(Vector3 linePoint, Vector3 lineVec, Vector3 point)
	{

		//get vector from point on line to point in space
		Vector3 linePointToPoint = point - linePoint;

		float t = Vector3.Dot(linePointToPoint, lineVec);

		return linePoint + lineVec * t;
	}

	//This function returns true if a point is on a line.
	//The line is regarded infinite.
	public static bool IsPointOnLine(Vector3 linePoint, Vector3 lineVec, Vector3 point)
	{

		//get vector from point on line to point in space
		Vector3 linePointToPoint = point - linePoint;

		float t = Vector3.Dot(linePointToPoint, lineVec);

		return t == 0;
	}

	//This function returns true if a point is approximately on a line.
	//The line is regarded infinite.
	public static bool IsPointApproximatelyOnLine(Vector3 linePoint, Vector3 lineVec, Vector3 point, float precission = Math3d.vectorPrecission)
	{

		//get vector from point on line to point in space
		Vector3 linePointToPoint = point - linePoint;

		float t = Vector3.Dot(linePointToPoint, lineVec);

		return t < precission;
	}

	//This function returns a point which is a projection from a point to a line segment.
	//If the projected point lies outside of the line segment, the projected point will 
	//be clamped to the appropriate line edge.
	//If the line is infinite instead of a segment, use ProjectPointOnLine() instead.
	public static Vector3 ProjectPointOnLineSegment(Vector3 linePoint1, Vector3 linePoint2, Vector3 point)
	{

		Vector3 vector = linePoint2 - linePoint1;

		Vector3 projectedPoint = ProjectPointOnLine(linePoint1, vector.normalized, point);

		int side = PointOnWhichSideOfLineSegment(linePoint1, linePoint2, projectedPoint);

		//The projected point is on the line segment
		if (side == 0)
		{

			return projectedPoint;
		}

		if (side == 1)
		{

			return linePoint1;
		}

		if (side == 2)
		{

			return linePoint2;
		}

		//output is invalid
		return Vector3.zero;
	}

	//This function returns a point which is a projection from a point to a plane.
	public static Vector3 ProjectPointOnPlane(Vector3 planeNormal, Vector3 planePoint, Vector3 point)
	{

		float distance;
		Vector3 translationVector;

		//First calculate the distance from the point to the plane:
		distance = SignedDistancePlanePoint(planeNormal, planePoint, point);

		//Reverse the sign of the distance
		distance *= -1;

		//Get a translation vector
		translationVector = SetVectorLength(planeNormal, distance);

		//Translate the point to form a projection
		return point + translationVector;
	}

	//Projects a vector onto a plane. The output is not normalized.
	public static Vector3 ProjectVectorOnPlane(Vector3 planeNormal, Vector3 vector)
	{

		return vector - (Vector3.Dot(vector, planeNormal) * planeNormal);
	}

	//Get the shortest distance between a point and a plane. The output is signed so it holds information
	//as to which side of the plane normal the point is.
	public static float SignedDistancePlanePoint(Vector3 planeNormal, Vector3 planePoint, Vector3 point)
	{

		return Vector3.Dot(planeNormal, (point - planePoint));
	}

	//This function calculates a signed (+ or - sign instead of being ambiguous) dot product. It is basically used
	//to figure out whether a vector is positioned to the left or right of another vector. The way this is done is
	//by calculating a vector perpendicular to one of the vectors and using that as a reference. This is because
	//the result of a dot product only has signed information when an angle is transitioning between more or less
	//than 90 degrees.
	public static float SignedDotProduct(Vector3 vectorA, Vector3 vectorB, Vector3 normal)
	{

		Vector3 perpVector;
		float dot;

		//Use the geometry object normal and one of the input vectors to calculate the perpendicular vector
		perpVector = Vector3.Cross(normal, vectorA);

		//Now calculate the dot product between the perpendicular vector (perpVector) and the other input vector
		dot = Vector3.Dot(perpVector, vectorB);

		return dot;
	}

	public static float SignedVectorAngle(Vector3 referenceVector, Vector3 otherVector, Vector3 normal)
	{
		Vector3 perpVector;
		float angle;

		//Use the geometry object normal and one of the input vectors to calculate the perpendicular vector
		perpVector = Vector3.Cross(normal, referenceVector);

		//Now calculate the dot product between the perpendicular vector (perpVector) and the other input vector
		angle = Vector3.Angle(referenceVector, otherVector);
		angle *= Mathf.Sign(Vector3.Dot(perpVector, otherVector));

		return angle;
	}

	//Calculate the angle between a vector and a plane. The plane is made by a normal vector.
	//Output is in radians.
	public static float AngleVectorPlane(Vector3 vector, Vector3 normal)
	{

		float dot;
		float angle;

		//calculate the the dot product between the two input vectors. This gives the cosine between the two vectors
		dot = Vector3.Dot(vector, normal);

		//this is in radians
		angle = (float)Math.Acos(dot);

		return 1.570796326794897f - angle; //90 degrees - angle
	}

	//Calculate the dot product as an angle
	public static float DotProductAngle(Vector3 vec1, Vector3 vec2)
	{

		double dot;
		double angle;

		//get the dot product
		dot = Vector3.Dot(vec1, vec2);

		//Clamp to prevent NaN error. Shouldn't need this in the first place, but there could be a rounding error issue.
		if (dot < -1.0f)
		{
			dot = -1.0f;
		}
		if (dot > 1.0f)
		{
			dot = 1.0f;
		}

		//Calculate the angle. The output is in radians
		//This step can be skipped for optimization...
		angle = Math.Acos(dot);

		return (float)angle;
	}

	//Convert a plane defined by 3 points to a plane defined by a vector and a point. 
	//The plane point is the middle of the triangle defined by the 3 points.
	public static void PlaneFrom3Points(out Vector3 planeNormal, out Vector3 planePoint, Vector3 pointA, Vector3 pointB, Vector3 pointC)
	{

		planeNormal = Vector3.zero;
		planePoint = Vector3.zero;

		//Make two vectors from the 3 input points, originating from point A
		Vector3 AB = pointB - pointA;
		Vector3 AC = pointC - pointA;

		//Calculate the normal
		planeNormal = Vector3.Normalize(Vector3.Cross(AB, AC));

		//Get the points in the middle AB and AC
		Vector3 middleAB = pointA + (AB / 2.0f);
		Vector3 middleAC = pointA + (AC / 2.0f);

		//Get vectors from the middle of AB and AC to the point which is not on that line.
		Vector3 middleABtoC = pointC - middleAB;
		Vector3 middleACtoB = pointB - middleAC;

		//Calculate the intersection between the two lines. This will be the center 
		//of the triangle defined by the 3 points.
		//We could use LineLineIntersection instead of ClosestPointsOnTwoLines but due to rounding errors 
		//this sometimes doesn't work.
		Vector3 temp;
		ClosestPointsOnTwoLines(out planePoint, out temp, middleAB, middleABtoC, middleAC, middleACtoB);
	}

	//Returns the forward vector of a quaternion
	public static Vector3 GetForwardVector(Quaternion q)
	{

		return q * Vector3.forward;
	}

	//Returns the up vector of a quaternion
	public static Vector3 GetUpVector(Quaternion q)
	{

		return q * Vector3.up;
	}

	//Returns the right vector of a quaternion
	public static Vector3 GetRightVector(Quaternion q)
	{

		return q * Vector3.right;
	}

	//Gets a quaternion from a matrix
	public static Quaternion QuaternionFromMatrix(Matrix4x4 m)
	{

		return Quaternion.LookRotation(m.GetColumn(2), m.GetColumn(1));
	}

	//Gets a position from a matrix
	public static Vector3 PositionFromMatrix(Matrix4x4 m)
	{

		Vector4 vector4Position = m.GetColumn(3);
		return new Vector3(vector4Position.x, vector4Position.y, vector4Position.z);
	}

	//This is an alternative for Quaternion.LookRotation. Instead of aligning the forward and up vector of the game 
	//object with the input vectors, a custom direction can be used instead of the fixed forward and up vectors.
	//alignWithVector and alignWithNormal are in world space.
	//customForward and customUp are in object space.
	//Usage: use alignWithVector and alignWithNormal as if you are using the default LookRotation function.
	//Set customForward and customUp to the vectors you wish to use instead of the default forward and up vectors.
	public static void LookRotationExtended(ref GameObject gameObjectInOut, Vector3 alignWithVector, Vector3 alignWithNormal, Vector3 customForward, Vector3 customUp)
	{

		//Set the rotation of the destination
		Quaternion rotationA = Quaternion.LookRotation(alignWithVector, alignWithNormal);

		//Set the rotation of the custom normal and up vectors. 
		//When using the default LookRotation function, this would be hard coded to the forward and up vector.
		Quaternion rotationB = Quaternion.LookRotation(customForward, customUp);

		//Calculate the rotation
		gameObjectInOut.transform.rotation = rotationA * Quaternion.Inverse(rotationB);
	}

	//This function transforms one object as if it was parented to the other.
	//Before using this function, the Init() function must be called
	//Input: parentRotation and parentPosition: the current parent transform.
	//Input: startParentRotation and startParentPosition: the transform of the parent object at the time the objects are parented.
	//Input: startChildRotation and startChildPosition: the transform of the child object at the time the objects are parented.
	//Output: childRotation and childPosition.
	//All transforms are in world space.
	public static void TransformWithParent(out Quaternion childRotation, out Vector3 childPosition, Quaternion parentRotation, Vector3 parentPosition, Quaternion startParentRotation, Vector3 startParentPosition, Quaternion startChildRotation, Vector3 startChildPosition)
	{

		childRotation = Quaternion.identity;
		childPosition = Vector3.zero;

		//set the parent start transform
		tempParent.rotation = startParentRotation;
		tempParent.position = startParentPosition;
		tempParent.localScale = Vector3.one; //to prevent scale wandering

		//set the child start transform
		tempChild.rotation = startChildRotation;
		tempChild.position = startChildPosition;
		tempChild.localScale = Vector3.one; //to prevent scale wandering

		//translate and rotate the child by moving the parent
		tempParent.rotation = parentRotation;
		tempParent.position = parentPosition;

		//get the child transform
		childRotation = tempChild.rotation;
		childPosition = tempChild.position;
	}

	//With this function you can align a triangle of an object with any transform.
	//Usage: gameObjectInOut is the game object you want to transform.
	//alignWithVector, alignWithNormal, and alignWithPosition is the transform with which the triangle of the object should be aligned with.
	//triangleForward, triangleNormal, and trianglePosition is the transform of the triangle from the object.
	//alignWithVector, alignWithNormal, and alignWithPosition are in world space.
	//triangleForward, triangleNormal, and trianglePosition are in object space.
	//trianglePosition is the mesh position of the triangle. The effect of the scale of the object is handled automatically.
	//trianglePosition can be set at any position, it does not have to be at a vertex or in the middle of the triangle.
	public static void PreciseAlign(ref GameObject gameObjectInOut, Vector3 alignWithVector, Vector3 alignWithNormal, Vector3 alignWithPosition, Vector3 triangleForward, Vector3 triangleNormal, Vector3 trianglePosition)
	{

		//Set the rotation.
		LookRotationExtended(ref gameObjectInOut, alignWithVector, alignWithNormal, triangleForward, triangleNormal);

		//Get the world space position of trianglePosition
		Vector3 trianglePositionWorld = gameObjectInOut.transform.TransformPoint(trianglePosition);

		//Get a vector from trianglePosition to alignWithPosition
		Vector3 translateVector = alignWithPosition - trianglePositionWorld;

		//Now transform the object so the triangle lines up correctly.
		gameObjectInOut.transform.Translate(translateVector, Space.World);
	}


	//Convert a position, direction, and normal vector to a transform
	public static void VectorsToTransform(ref GameObject gameObjectInOut, Vector3 positionVector, Vector3 directionVector, Vector3 normalVector)
	{

		gameObjectInOut.transform.position = positionVector;
		gameObjectInOut.transform.rotation = Quaternion.LookRotation(directionVector, normalVector);
	}

	//This function finds out on which side of a line segment the point is located.
	//The point is assumed to be on a line created by linePoint1 and linePoint2. If the point is not on
	//the line segment, project it on the line using ProjectPointOnLine() first.
	//Returns 0 if point is on the line segment.
	//Returns 1 if point is outside of the line segment and located on the side of linePoint1.
	//Returns 2 if point is outside of the line segment and located on the side of linePoint2.
	public static int PointOnWhichSideOfLineSegment(Vector3 linePoint1, Vector3 linePoint2, Vector3 point)
	{

		Vector3 lineVec = linePoint2 - linePoint1;
		Vector3 pointVec = point - linePoint1;

		float dot = Vector3.Dot(pointVec, lineVec);

		//point is on side of linePoint2, compared to linePoint1
		if (dot > 0)
		{

			//point is on the line segment
			if (pointVec.magnitude <= lineVec.magnitude)
			{

				return 0;
			}

			//point is not on the line segment and it is on the side of linePoint2
			else
			{

				return 2;
			}
		}

		//Point is not on side of linePoint2, compared to linePoint1.
		//Point is not on the line segment and it is on the side of linePoint1.
		else
		{

			return 1;
		}
	}


	//Returns the pixel distance from the mouse pointer to a line.
	//Alternative for HandleUtility.DistanceToLine(). Works both in Editor mode and Play mode.
	//Do not call this function from OnGUI() as the mouse position will be wrong.
	public static float MouseDistanceToLine(Vector3 linePoint1, Vector3 linePoint2)
	{

		Camera currentCamera;
		Vector3 mousePosition;

#if UNITY_EDITOR
		if(Camera.current != null){
 
			currentCamera = Camera.current;
		}
 
		else{
 
			currentCamera = Camera.main;
		}
 
		//convert format because y is flipped
		mousePosition = new Vector3(Event.current.mousePosition.x, currentCamera.pixelHeight - Event.current.mousePosition.y, 0f);
 
#else
		currentCamera = Camera.main;
		mousePosition = Input.mousePosition;
#endif

		Vector3 screenPos1 = currentCamera.WorldToScreenPoint(linePoint1);
		Vector3 screenPos2 = currentCamera.WorldToScreenPoint(linePoint2);
		Vector3 projectedPoint = ProjectPointOnLineSegment(screenPos1, screenPos2, mousePosition);

		//set z to zero
		projectedPoint = new Vector3(projectedPoint.x, projectedPoint.y, 0f);

		Vector3 vector = projectedPoint - mousePosition;
		return vector.magnitude;
	}


	//Returns the pixel distance from the mouse pointer to a camera facing circle.
	//Alternative for HandleUtility.DistanceToCircle(). Works both in Editor mode and Play mode.
	//Do not call this function from OnGUI() as the mouse position will be wrong.
	//If you want the distance to a point instead of a circle, set the radius to 0.
	public static float MouseDistanceToCircle(Vector3 point, float radius)
	{

		Camera currentCamera;
		Vector3 mousePosition;

#if UNITY_EDITOR
		if(Camera.current != null){
 
			currentCamera = Camera.current;
		}
 
		else{
 
			currentCamera = Camera.main;
		}
 
		//convert format because y is flipped
		mousePosition = new Vector3(Event.current.mousePosition.x, currentCamera.pixelHeight - Event.current.mousePosition.y, 0f);
#else
		currentCamera = Camera.main;
		mousePosition = Input.mousePosition;
#endif

		Vector3 screenPos = currentCamera.WorldToScreenPoint(point);

		//set z to zero
		screenPos = new Vector3(screenPos.x, screenPos.y, 0f);

		Vector3 vector = screenPos - mousePosition;
		float fullDistance = vector.magnitude;
		float circleDistance = fullDistance - radius;

		return circleDistance;
	}

	//Returns true if a line segment (made up of linePoint1 and linePoint2) is fully or partially in a rectangle
	//made up of RectA to RectD. The line segment is assumed to be on the same plane as the rectangle. If the line is 
	//not on the plane, use ProjectPointOnPlane() on linePoint1 and linePoint2 first.
	public static bool IsLineInRectangle(Vector3 linePoint1, Vector3 linePoint2, Vector3 rectA, Vector3 rectB, Vector3 rectC, Vector3 rectD)
	{

		bool pointAInside = false;
		bool pointBInside = false;

		pointAInside = IsPointInRectangle(linePoint1, rectA, rectC, rectB, rectD);

		if (!pointAInside)
		{

			pointBInside = IsPointInRectangle(linePoint2, rectA, rectC, rectB, rectD);
		}

		//none of the points are inside, so check if a line is crossing
		if (!pointAInside && !pointBInside)
		{

			bool lineACrossing = AreLineSegmentsCrossing(linePoint1, linePoint2, rectA, rectB);
			bool lineBCrossing = AreLineSegmentsCrossing(linePoint1, linePoint2, rectB, rectC);
			bool lineCCrossing = AreLineSegmentsCrossing(linePoint1, linePoint2, rectC, rectD);
			bool lineDCrossing = AreLineSegmentsCrossing(linePoint1, linePoint2, rectD, rectA);

			if (lineACrossing || lineBCrossing || lineCCrossing || lineDCrossing)
			{

				return true;
			}

			else
			{

				return false;
			}
		}

		else
		{

			return true;
		}
	}

	//Returns true if "point" is in a rectangle mad up of RectA to RectD. The line point is assumed to be on the same 
	//plane as the rectangle. If the point is not on the plane, use ProjectPointOnPlane() first.
	public static bool IsPointInRectangle(Vector3 point, Vector3 rectA, Vector3 rectC, Vector3 rectB, Vector3 rectD)
	{

		Vector3 vector;
		Vector3 linePoint;

		//get the center of the rectangle
		vector = rectC - rectA;
		float size = -(vector.magnitude / 2f);
		vector = AddVectorLength(vector, size);
		Vector3 middle = rectA + vector;

		Vector3 xVector = rectB - rectA;
		float width = xVector.magnitude / 2f;

		Vector3 yVector = rectD - rectA;
		float height = yVector.magnitude / 2f;

		linePoint = ProjectPointOnLine(middle, xVector.normalized, point);
		vector = linePoint - point;
		float yDistance = vector.magnitude;

		linePoint = ProjectPointOnLine(middle, yVector.normalized, point);
		vector = linePoint - point;
		float xDistance = vector.magnitude;

		if ((xDistance <= width) && (yDistance <= height))
		{

			return true;
		}

		else
		{

			return false;
		}
	}

	//Returns true if line segment made up of pointA1 and pointA2 is crossing line segment made up of
	//pointB1 and pointB2. The two lines are assumed to be in the same plane.
	public static bool AreLineSegmentsCrossing(Vector3 pointA1, Vector3 pointA2, Vector3 pointB1, Vector3 pointB2)
	{

		Vector3 closestPointA;
		Vector3 closestPointB;
		int sideA;
		int sideB;

		Vector3 lineVecA = pointA2 - pointA1;
		Vector3 lineVecB = pointB2 - pointB1;

		bool valid = ClosestPointsOnTwoLines(out closestPointA, out closestPointB, pointA1, lineVecA.normalized, pointB1, lineVecB.normalized);

		//lines are not parallel
		if (valid)
		{

			sideA = PointOnWhichSideOfLineSegment(pointA1, pointA2, closestPointA);
			sideB = PointOnWhichSideOfLineSegment(pointB1, pointB2, closestPointB);

			if ((sideA == 0) && (sideB == 0))
			{

				return true;
			}

			else
			{

				return false;
			}
		}

		//lines are parallel
		else
		{

			return false;
		}
	}

	//This function calculates the acceleration vector in meter/second^2.
	//Input: position. If the output is used for motion simulation, the input transform
	//has to be located at the seat base, not at the vehicle CG. Attach an empty GameObject
	//at the correct location and use that as the input for this function.
	//Gravity is not taken into account but this can be added to the output if needed.
	//A low number of samples can give a jittery result due to rounding errors.
	//If more samples are used, the output is more smooth but has a higher latency.
	public static bool LinearAcceleration(out Vector3 vector, Vector3 position, int samples)
	{

		Vector3 averageSpeedChange = Vector3.zero;
		vector = Vector3.zero;
		Vector3 deltaDistance;
		float deltaTime;
		Vector3 speedA;
		Vector3 speedB;

		//Clamp sample amount. In order to calculate acceleration we need at least 2 changes
		//in speed, so we need at least 3 position samples.
		if (samples < 3)
		{

			samples = 3;
		}

		//Initialize
		if (positionRegister == null)
		{

			positionRegister = new Vector3[samples];
			posTimeRegister = new float[samples];
		}

		//Fill the position and time sample array and shift the location in the array to the left
		//each time a new sample is taken. This way index 0 will always hold the oldest sample and the
		//highest index will always hold the newest sample. 
		for (int i = 0; i < positionRegister.Length - 1; i++)
		{

			positionRegister[i] = positionRegister[i + 1];
			posTimeRegister[i] = posTimeRegister[i + 1];
		}
		positionRegister[positionRegister.Length - 1] = position;
		posTimeRegister[posTimeRegister.Length - 1] = Time.time;

		positionSamplesTaken++;

		//The output acceleration can only be calculated if enough samples are taken.
		if (positionSamplesTaken >= samples)
		{

			//Calculate average speed change.
			for (int i = 0; i < positionRegister.Length - 2; i++)
			{

				deltaDistance = positionRegister[i + 1] - positionRegister[i];
				deltaTime = posTimeRegister[i + 1] - posTimeRegister[i];

				//If deltaTime is 0, the output is invalid.
				if (deltaTime == 0)
				{

					return false;
				}

				speedA = deltaDistance / deltaTime;
				deltaDistance = positionRegister[i + 2] - positionRegister[i + 1];
				deltaTime = posTimeRegister[i + 2] - posTimeRegister[i + 1];

				if (deltaTime == 0)
				{

					return false;
				}

				speedB = deltaDistance / deltaTime;

				//This is the accumulated speed change at this stage, not the average yet.
				averageSpeedChange += speedB - speedA;
			}

			//Now this is the average speed change.
			averageSpeedChange /= positionRegister.Length - 2;

			//Get the total time difference.
			float deltaTimeTotal = posTimeRegister[posTimeRegister.Length - 1] - posTimeRegister[0];

			//Now calculate the acceleration, which is an average over the amount of samples taken.
			vector = averageSpeedChange / deltaTimeTotal;

			return true;
		}

		else
		{

			return false;
		}
	}


	/*
	//This function calculates angular acceleration in object space as deg/second^2, encoded as a vector. 
	//For example, if the output vector is 0,0,-5, the angular acceleration is 5 deg/second^2 around the object Z axis, to the left. 
	//Input: rotation (quaternion). If the output is used for motion simulation, the input transform
	//has to be located at the seat base, not at the vehicle CG. Attach an empty GameObject
	//at the correct location and use that as the input for this function.
	//A low number of samples can give a jittery result due to rounding errors.
	//If more samples are used, the output is more smooth but has a higher latency.
	//Note: the result is only accurate if the rotational difference between two samples is less than 180 degrees.
	//Note: a suitable way to visualize the result is:
	Vector3 dir;
	float scale = 2f;	
	dir = new Vector3(vector.x, 0, 0);
	dir = Math3d.SetVectorLength(dir, dir.magnitude * scale);
	dir = gameObject.transform.TransformDirection(dir);
	Debug.DrawRay(gameObject.transform.position, dir, Color.red);	
	dir = new Vector3(0, vector.y, 0);
	dir = Math3d.SetVectorLength(dir, dir.magnitude * scale);
	dir = gameObject.transform.TransformDirection(dir);
	Debug.DrawRay(gameObject.transform.position, dir, Color.green);	
	dir = new Vector3(0, 0, vector.z);
	dir = Math3d.SetVectorLength(dir, dir.magnitude * scale);
	dir = gameObject.transform.TransformDirection(dir);
	Debug.DrawRay(gameObject.transform.position, dir, Color.blue);	*/
	public static bool AngularAcceleration(out Vector3 vector, Quaternion rotation, int samples)
	{

		Vector3 averageSpeedChange = Vector3.zero;
		vector = Vector3.zero;
		Quaternion deltaRotation;
		float deltaTime;
		Vector3 speedA;
		Vector3 speedB;

		//Clamp sample amount. In order to calculate acceleration we need at least 2 changes
		//in speed, so we need at least 3 rotation samples.
		if (samples < 3)
		{

			samples = 3;
		}

		//Initialize
		if (rotationRegister == null)
		{

			rotationRegister = new Quaternion[samples];
			rotTimeRegister = new float[samples];
		}

		//Fill the rotation and time sample array and shift the location in the array to the left
		//each time a new sample is taken. This way index 0 will always hold the oldest sample and the
		//highest index will always hold the newest sample. 
		for (int i = 0; i < rotationRegister.Length - 1; i++)
		{

			rotationRegister[i] = rotationRegister[i + 1];
			rotTimeRegister[i] = rotTimeRegister[i + 1];
		}
		rotationRegister[rotationRegister.Length - 1] = rotation;
		rotTimeRegister[rotTimeRegister.Length - 1] = Time.time;

		rotationSamplesTaken++;

		//The output acceleration can only be calculated if enough samples are taken.
		if (rotationSamplesTaken >= samples)
		{

			//Calculate average speed change.
			for (int i = 0; i < rotationRegister.Length - 2; i++)
			{

				deltaRotation = SubtractRotation(rotationRegister[i + 1], rotationRegister[i]);
				deltaTime = rotTimeRegister[i + 1] - rotTimeRegister[i];

				//If deltaTime is 0, the output is invalid.
				if (deltaTime == 0)
				{

					return false;
				}

				speedA = RotDiffToSpeedVec(deltaRotation, deltaTime);
				deltaRotation = SubtractRotation(rotationRegister[i + 2], rotationRegister[i + 1]);
				deltaTime = rotTimeRegister[i + 2] - rotTimeRegister[i + 1];

				if (deltaTime == 0)
				{

					return false;
				}

				speedB = RotDiffToSpeedVec(deltaRotation, deltaTime);

				//This is the accumulated speed change at this stage, not the average yet.
				averageSpeedChange += speedB - speedA;
			}

			//Now this is the average speed change.
			averageSpeedChange /= rotationRegister.Length - 2;

			//Get the total time difference.
			float deltaTimeTotal = rotTimeRegister[rotTimeRegister.Length - 1] - rotTimeRegister[0];

			//Now calculate the acceleration, which is an average over the amount of samples taken.
			vector = averageSpeedChange / deltaTimeTotal;

			return true;
		}

		else
		{

			return false;
		}
	}

	//Get y from a linear function, with x as an input. The linear function goes through points
	//0,0 on the left ,and Qxy on the right.
	public static float LinearFunction2DBasic(float x, float Qx, float Qy)
	{

		float y = x * (Qy / Qx);

		return y;
	}

	//Get y from a linear function, with x as an input. The linear function goes through points
	//Pxy on the left ,and Qxy on the right.
	public static float LinearFunction2DFull(float x, float Px, float Py, float Qx, float Qy)
	{

		float y = 0f;

		float A = Qy - Py;
		float B = Qx - Px;
		float C = A / B;

		y = Py + (C * (x - Px));

		return y;
	}

	//Convert a rotation difference to a speed vector.
	//For internal use only.
	private static Vector3 RotDiffToSpeedVec(Quaternion rotation, float deltaTime)
	{

		float x;
		float y;
		float z;

		if (rotation.eulerAngles.x <= 180.0f)
		{

			x = rotation.eulerAngles.x;
		}

		else
		{

			x = rotation.eulerAngles.x - 360.0f;
		}

		if (rotation.eulerAngles.y <= 180.0f)
		{

			y = rotation.eulerAngles.y;
		}

		else
		{

			y = rotation.eulerAngles.y - 360.0f;
		}

		if (rotation.eulerAngles.z <= 180.0f)
		{

			z = rotation.eulerAngles.z;
		}

		else
		{

			z = rotation.eulerAngles.z - 360.0f;
		}

		return new Vector3(x / deltaTime, y / deltaTime, z / deltaTime);
	}
}