Newer
Older
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Scroll View</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
[data-allowed-types="PointFact"] * {
color: #0000ff
}
[data-allowed-types="LineFact"] * {
color: #008000
}
[dropzone] {
/* background-color: grey; */
margin: 1px;
border-width: 1px;
border-style: dashed;
}
[data-fact-id] {
background-color: lightgray;
}
[data-hint-available] {
background-color: yellow
}
math {
display: inline-flex;
align-items: center;
flex-wrap: wrap;
}
.legacySlot {
width: 100px;
height: 100px;
margin: 50px;
border-width: 1px;
}
#rectangle {
width: 10px;
height: 10px;
position: absolute;
background-color: red;
}
</style>
<script src="jquery-3.7.1.slim.min.js"></script>
</head>
<body>
<!-- The canvas is initially hidden, it will be unhidden once the renderer is set up.
So, if that setup fails there is no empty space -->
<canvas id="math-mind-canvas" width="400" height="300" hidden></canvas>
<div id="scrollContainer">
<scroll-description title='DefaultScroll' alt='No scroll loaded yet'>
<div>No scroll selected yet.</div>
<div>
Given a triangle
<math>
<mrow>
<mi>△<!-- △ --></mi>
<slot data-slot-id="http://mathhub.info/FrameIT/frameworld?TriangleProblem?A" />
<slot data-slot-id="http://mathhub.info/FrameIT/frameworld?TriangleProblem?B" />
<slot data-slot-id="http://mathhub.info/FrameIT/frameworld?TriangleProblem?C" />
</mrow>
</math>
right-angled at
<math>
<!--<mi>⦝</mi>--><!-- ⦝ -->
<mrow>
<slot
data-slot-id="http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC" />
</mrow>
</math>,<br />
the opposite side has length
<math>
<mi data-solution-id="http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA">
</mi>
<mo>=</mo>
<mrow>
<mi>tan</mi>
<!--<mo>⁡</mo>-->
<mo>(</mo>
<slot data-slot-id="http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB" />
<mo>×</mo>
<slot data-slot-id="http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC" />
</mrow>
</math>.
</div>
<div>
<svg width='8cm' height='8cmm' viewBox='-25 -25 300 300' version='1.1' id='triangle'
xmlns='http://www.w3.org/2000/svg' xmlns:svg='http://www.w3.org/2000/svg'>
<g id='shape'
style='fill:none;stroke:#000000;stroke-linecap:butt;stroke-width:1;stroke-linejoin:miter;stroke-opacity:1'>
<path d='M 0,250 H 200 V 0 Z' id='triangle' />
<path id='angleABC' d='M 0,250 l 15.6,-19.5 a 25 25 0 0 1 9.4,19.5 z' />
<!-- M [corner] l [25*cos()],[-25*sin()] a 25 25 0 0 1 [25-25*cos()],[25*sin()]-->
<g id='angleBCA'>
<path id='rightAngle' d='M 200,250 v -25 a 25,25 0 0 0 -25,25 z' />
<circle style='fill:#000000;fill-opacity:1;stroke:none' id='rightAngleDot' cx='190' cy='240'
r='1.5' />
<!-- Corner - (40,40); 40 = 15/sqrt(2) + epsilon -->
</g>
</g>
<g id='labels' style='line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;'>
<foreignObject id='pointB' x='200' y='-25' width="25" height="25">
<math xmlns="http://www.w3.org/1998/Math/MathML"
data-slot-id="http://mathhub.info/FrameIT/frameworld?TriangleProblem?A" />
</foreignObject>
<foreignObject id='pointB' x='-25' y='250' width="25" height="25">
<math xmlns="http://www.w3.org/1998/Math/MathML"
data-slot-id="http://mathhub.info/FrameIT/frameworld?TriangleProblem?B" />
</foreignObject>
<foreignObject id='pointB' x='200' y='250' width="25" height="25">
<math xmlns="http://www.w3.org/1998/Math/MathML"
data-slot-id="http://mathhub.info/FrameIT/frameworld?TriangleProblem?C" />
</foreignObject>
<foreignObject id='pointB' x='30' y='225' width="50" height="25">
<math xmlns="http://www.w3.org/1998/Math/MathML"
data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB' />
</foreignObject>
<foreignObject id='pointB' x='145' y='225' width="50" height="25">
<math xmlns="http://www.w3.org/1998/Math/MathML"
data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC' />
</foreignObject>
<foreignObject id='pointB' x='100' y='250' width="50" height="25">
<math xmlns="http://www.w3.org/1998/Math/MathML"
data-slot-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC' />
</foreignObject>
<foreignObject id='pointB' x='205' y='120' width="50" height="25">
<math xmlns="http://www.w3.org/1998/Math/MathML" style='color:#008000'
data-solution-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA' />
</foreignObject>
</g>
</svg>
</div>
</scroll-description>
</div>
<button type="button" title="Apply the scroll" onclick="applyScroll('')">Apply</button><br>
<p>You can right-click on yellow slots to get a hint.</p>
<script id="load-other-scripts">
/**
* Load all .js files for interactive scrolls. (So we can use e.g. Typescript)
*
* This is no more dangerous than having this file in the streaming assets.
* Any malicious code could just be written in here as well ¯\_(ツ)_/¯.
*/
function loadScript(url) {
const head = document.getElementsByTagName('head')[0];
const script = document.createElement('script');
script.type = 'text/javascript';
script.src = url;
head.appendChild(script);
}
loadScript("./build/Drop_facts.js")
loadScript("./build/SetScrollContent.js")
//loadScript("./scroll_interaction/webgl-demo.js")
</script>
<!-- <script src="./build/Math_Mind.js" type="module"></script> -->
<data id="Unity-Data-Interface" hidden
data-assignments='{"http://mathhub.info/FrameIT/frameworld?TriangleProblem?A":{"Item1":"(C)","Item2":"http://mathhub.info/FrameIT/frameworld?DefaultSituationSpace/SituationTheory1?fact310"},"http://mathhub.info/FrameIT/frameworld?TriangleProblem?B":{"Item1":"(B)","Item2":"http://mathhub.info/FrameIT/frameworld?DefaultSituationSpace/SituationTheory1?fact309"},"http://mathhub.info/FrameIT/frameworld?TriangleProblem?C":{"Item1":"C","Item2":""},"http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC":{"Item1":"⊾C","Item2":""},"http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC":{"Item1":"BC","Item2":""},"http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB":{"Item1":"∠ABC","Item2":""},"http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA":{"Item1":"CA","Item2":""}}'
"uri": {
"parseAs": "string",
"content": "http://mathhub.info/FrameIT/frameworld?OppositeLen"
},
"label": {
"parseAs": "MathMLElement",
"content": "<ms>OppositeLen</ms>"
},
"type": {
"parseAs": "string",
"content": "Scroll"
},
"label": {
"parseAs": "MathMLElement",
"content": "<mi>A</mi>"
"uri": {
"parseAs": "string",
"content": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"
"type": {
"parseAs": "string",
"content": "Point_Fact"
}
"label": {
"parseAs": "MathMLElement",
"content": "<mi>B</mi>"
"uri": {
"parseAs": "string",
"content": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?B"
"type": {
"parseAs": "string",
"content": "Point_Fact"
}
"label": {
"parseAs": "MathMLElement",
"content": "<mi>C</mi>"
"uri": {
"parseAs": "string",
"content": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"
"type": {
"parseAs": "string",
"content": "Point_Fact"
}
"label": {
"parseAs": "MathMLElement",
"content": "<mi><mrow><mo>⦝</mo><mi>C</mi></mrow></mi>"
"uri": {
"parseAs": "string",
"content": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC"
"type": {
"parseAs": "string",
"content": "Angle_Fact"
}
"label": {
"parseAs": "MathMLElement",
"content": "<mi><mrow><mi>B</mi><mi>C</mi></mrow></mi>"
"uri": {
"parseAs": "string",
"content": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC"
"type": {
"parseAs": "string",
"content": "LineSegment_Fact"
}
"label": {
"parseAs": "MathMLElement",
"content": "<mi><mrow><mo>∠</mo><mi>A</mi><mi>B</mi><mi>C</mi></mrow></mi>"
"uri": {
"parseAs": "string",
"content": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB"
"type": {
"parseAs": "string",
"content": "Angle_Fact"
}
}
],
"acquiredFacts": [
{
"label": {
"parseAs": "MathMLElement",
"content": "<mi><mrow><mi>C</mi><mi>A</mi></mrow></mi>"
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"uri": {
"parseAs": "string",
"content": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA"
},
"type": {
"parseAs": "string",
"content": "LineSegment_Fact"
}
}
],
"description": {
"parseAs": "HTMLElement",
"content": "<scroll-description title='OppositeLenScroll' alt='Given a triangle △ABC right-angled at ⊾C, the opposite side has length CA = tan(∠ABC) ⋅ BC.'> <span>Given a triangle</span> <math> <mi>△<!-- △ --></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?A'></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?B'></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?C'></mi> </math> <span>right-angled at</span> <math> <!--<mi>⦝</mi>--><!-- ⦝ --> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC'></mi> </math>,<br /> <span>the opposite side has length</span> <math> <mi data-solution-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA'></mi> <mo>=</mo> <mrow> <mi>tan</mi> <!--<mo>⁡</mo>--> <mo>(</mo> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB'></mi> <mo>)</mo> </mrow> <mo>⁢</mo> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC'></mi> </math> <span>.</span> </scroll-description>"
},
"depiction": {
"parseAs": "HTMLElement",
"content": "<svg width='8cm'height='8cmm'viewBox='-25-25300300'version='1.1'id='triangle'xmlns='http://www.w3.org/2000/svg'xmlns:svg='http://www.w3.org/2000/svg'><g id='shape'style='fill:none;stroke:#000000;stroke-linecap:butt;stroke-width:1;stroke-linejoin:miter;stroke-opacity:1'><path d='M0,250H200V0Z'id='triangle'/><path id='angleABC'd='M0,250l15.6,-19.5a25250019.4,19.5z'/><!--M[corner]l[25*cos()],[-25*sin()]a2525001[25-25*cos()],[25*sin()]--><g id='angleBCA'><path id='rightAngle'd='M200,250v-25a25,25000-25,25z'/><circle style='fill:#000000;fill-opacity:1;stroke:none'id='rightAngleDot'cx='190'cy='240'r='1.5'/><!--Corner-(40,40);40=15/sqrt(2)+epsilon--></g></g><g id='labels'style='line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;'><foreignObject id='pointB'x='200'y='-25'width='25'height='25'><div><math xmlns='http://www.w3.org/1998/Math/MathML'data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?A'/></div></foreignObject><foreignObject id='pointB'x='-25'y='250'width='25'height='25'><div><math xmlns='http://www.w3.org/1998/Math/MathML'data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?B'/></div></foreignObject><foreignObject id='pointB'x='200'y='250'width='25'height='25'><div><math xmlns='http://www.w3.org/1998/Math/MathML'data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?C'/></div></foreignObject><foreignObject id='pointB'x='30'y='225'width='50'height='25'><div><math xmlns='http://www.w3.org/1998/Math/MathML'data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB'/></div></foreignObject><foreignObject id='pointB'x='145'y='225'width='50'height='25'><div><math xmlns='http://www.w3.org/1998/Math/MathML'data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC'/></div></foreignObject><foreignObject id='pointB'x='100'y='250'width='50'height='25'><div><math xmlns='http://www.w3.org/1998/Math/MathML'data-slot-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC'/></div></foreignObject><foreignObject id='pointB'x='205'y='120'width='50'height='25'><div><math xmlns='http://www.w3.org/1998/Math/MathML'style='color:#008000'data-solution-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA'/></div></foreignObject></g></svg>"
}
}'>
</data>
<data id="Scroll-Dynamic-Old" hidden data-scroll-dynamic='{
"ref": "http://mathhub.info/FrameIT/frameworld?OppositeLen",
"label": "OppositeLen",
"description": "<scroll-description title='OppositeLenScroll' alt='Given a triangle △ABC right-angled at ⊾C, the opposite side has length CA = tan(∠ABC) ⋅ BC.'> <span>Given a triangle</span> <math> <mi>△<!-- △ --></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?A'></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?B'></mi> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?C'></mi> </math> <span>right-angled at</span> <math> <!--<mi>⦝</mi>--><!-- ⦝ --> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC'></mi> </math>,<br /> <span>the opposite side has length</span> <math> <mi data-solution-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA'></mi> <mo>=</mo> <mrow> <mi>tan</mi> <!--<mo>⁡</mo>--> <mo>(</mo> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB'></mi> <mo>)</mo> </mrow> <mo>⁢</mo> <mi data-slot-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC'></mi> </math> <span>.</span> <div> <svg width='50mm' height='45mm' viewBox='35 0 90 70' version='1.1' id='triangle' xmlns='http://www.w3.org/2000/svg' xmlns:svg='http://www.w3.org/2000/svg'> <g id='shape'> <path style='fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1' d='M 42.871972,64.67128 H 84.290656 V 7.6297578 Z' id='triangle' /> <path id='angleABC' style='fill:none;stroke:#000000;stroke-width:0.265;stroke-dasharray:none;stroke-opacity:1' d='m 46.024276,60.304806 a 5.3589964,5.3589964 0 0 1 2.252109,4.366474 h -5.358996 z' /> <g id='angleBCA'> <path style='fill:none;stroke:#000000;stroke-width:0.264999;stroke-dasharray:none;stroke-opacity:1' id='rightAngle' d='m 78.972396,64.665062 a 5.3308268,5.3308268 0 0 1 5.330827,-5.330827 v 5.330827 z' /> <circle style='fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.264999;stroke-dasharray:none;stroke-opacity:1' id='rightAngleDot' cx='82.081886' cy='62.813831' r='0.32113415' /> </g> </g> <g id='labels' style='font-size:4.23333px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;stroke-width:0.264583' > <text xml:space='preserve' x='39.242592' y='67.117035' id='pointB' style='fill:#0000ff' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?B'>B</text> <text xml:space='preserve' x='85.100548' y='68.080437' id='pointC' style='fill:#0000ff' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?C'>C</text> <text xml:space='preserve' x='84.650963' y='6.551136' id='pointA' style='fill:#0000ff' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem?A'>A</text> <text xml:space='preserve' x='48.234348' y='62.492699' id='angleAtB' style='fill:#ffcc00' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB'>∠ABC</text> <text xml:space='preserve' x='71.548683' y='60.951256' id='rightAngleAtC' style='fill:#ffcc00' data-slot-id='http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC'>⊾C</text> <text xml:space='preserve' x='59.409813' y='68.273117' id='distanceBC' style='fill:#008000' data-slot-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC'>BC</text> <text xml:space='preserve' x='84.972092' y='35.260529' id='solutionCA' style='fill:#008000' data-solution-id='http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA'>CA</text> </g> </svg> </div> </scroll-description>",
"requiredFacts": [
{
"tp": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/core/geometry?3DGeometry?point"
},
"df": null,
"ref": {
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"
},
"kind": "general",
"label": "A"
},
{
"tp": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/core/geometry?3DGeometry?point"
},
"df": null,
"ref": {
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?B"
},
"kind": "general",
"label": "B"
},
{
"tp": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/core/geometry?3DGeometry?point"
},
"df": null,
"ref": {
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"
},
"kind": "general",
"label": "C"
},
{
"tp": {
"kind": "OMA",
"applicant": {
"uri": "http://mathhub.info/MitM/Foundation?Logic?ded"
"arguments": [
{
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/Foundation?Logic?eq"
},
"arguments": [
{
"uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"
{
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?angle_between"
},
"arguments": [
{
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?B"
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"
},
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"
}
]
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
{
"kind": "OMLIT<Double>",
"type": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit",
"value": 90.0
}
]
}
]
},
"df": null,
"ref": {
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_RightAngleAtC?rightAngleC"
},
"kind": "general",
"label": "⊾C"
},
{
"lhs": {
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?metric"
},
"arguments": [
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?B"
},
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"
}
]
},
"valueTp": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"
},
"value": null,
"proof": null,
"ref": {
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC"
},
"kind": "veq",
"label": "BC"
},
{
"lhs": {
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?angle_between"
},
"arguments": [
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"
},
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?B"
},
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"
}
]
},
"valueTp": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"
},
"value": null,
"proof": null,
"ref": {
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB"
},
"kind": "veq",
"label": "∠ABC"
}
],
"acquiredFacts": [
{
"lhs": {
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?metric"
"arguments": [
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"
},
{
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"
}
]
},
"valueTp": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"
},
"value": {
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/core/arithmetics?RealArithmetics?multiplication"
},
"arguments": [
{
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/Foundation?Trigonometry?tan"
},
"arguments": [
{
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl"
},
"arguments": [
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB"
}
]
}
]
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
{
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl"
},
"arguments": [
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC"
}
]
}
]
},
"proof": {
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/Foundation?InformalProofs?proofsketch"
},
"arguments": [
{
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/Foundation?Logic?eq"
},
"arguments": [
{
"uri": "http://mathhub.info/MitM/Foundation?RealLiterals?real_lit"
"uri": "http://mathhub.info/MitM/core/geometry?Geometry/Common?metric"
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?C"
{
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem?A"
}
]
},
{
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://mathhub.info/MitM/core/arithmetics?RealArithmetics?multiplication"
},
"arguments": [
{
"kind": "OMA",
"applicant": {
"uri": "http://mathhub.info/MitM/Foundation?Trigonometry?tan"
"arguments": [
{
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl"
},
"arguments": [
{
"uri": "http://mathhub.info/FrameIT/frameworld?TriangleProblem_AngleAtB?angleB"
}
]
}
]
},
{
"kind": "OMA",
"applicant": {
"kind": "OMS",
"uri": "http://gl.mathhub.info/MMT/LFX/Sigma?Symbols?Projl"
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
"uri": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Problem?distanceBC"
}
]
}
]
}
]
},
{
"kind": "OMLIT<String>",
"type": "http://cds.omdoc.org/urtheories?Strings?string",
"value": "OppositeLen Scroll"
}
]
},
"ref": {
"kind": "OMS",
"uri": "http://mathhub.info/FrameIT/frameworld?OppositeLen/Solution?deducedLineCA"
},
"kind": "veq",
"label": "CA"
}
],
"name": "http://mathhub.info/FrameIT/frameworld?OppositeLen",
"path": null
}'> </data>
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
<!--<script src="visualiseCursor.mjs" defer type="module"></script>-->
<!--<script>
/* mouse and pointer event handling */
const rectangle = document.createElement("div");
rectangle.id = "rectangle";
console.log("appendChild to", document.body)
document.body.appendChild(rectangle);
function followCursor(event) {
const cursorX = event.clientX;
const cursorY = event.clientY +5;
//console.log(`MouseEvent X: ${cursorX}, Y: ${cursorY}, Event type: ${event.type}`, event);
rectangle.style.left = `${cursorX}px`;
rectangle.style.top = `${cursorY}px`;
}
document.addEventListener("mousemove", followCursor);
document.addEventListener("pointermove", followCursor);
document.addEventListener("mouseover", followCursor);
document.addEventListener("pointerover", followCursor);
document.addEventListener("mouseout", followCursor);
document.addEventListener("pointerout", followCursor);
</script>-->
</body>
</html>