Skip to content
Snippets Groups Projects
Commit fdf229c5 authored by Deyan Ginev's avatar Deyan Ginev
Browse files

adding embeddings, slight reorganization

parent 87593b42
No related branches found
No related tags found
1 merge request!1Document 08.2017 arxlmiv dataset release
--- ---
layout: page layout: page
title: SIGMathLing - An HTML5 dataset for arXiv.org title: arXMLiv 08.2017 - An HTML5 dataset for arXiv.org
--- ---
Part of the [arXMLiv](https://kwarc.info/systems/arXMLiv/) project at the [KWARC](https://kwarc.info/) research group Part of the [arXMLiv](https://kwarc.info/systems/arXMLiv/) project at the [KWARC](https://kwarc.info/) research group
...@@ -17,19 +17,22 @@ Access is restricted to [SIGMathLing members](/member/) under the ...@@ -17,19 +17,22 @@ Access is restricted to [SIGMathLing members](/member/) under the
[SIGMathLing Non-Disclosure-Agreement](/nda/) as for most [arXiv](http://arxiv.org) [SIGMathLing Non-Disclosure-Agreement](/nda/) as for most [arXiv](http://arxiv.org)
articles, the right of distribution was only given (or assumed) to arXiv itself. articles, the right of distribution was only given (or assumed) to arXiv itself.
### Generated via
- [LaTeXML 0.8.2](https://github.com/brucemiller/LaTeXML/releases/tag/v0.8.2),
- [CorTeX 0.2](https://github.com/dginev/CorTeX/releases/tag/0.2.0)
### Contents ### Contents
- 1,088,370 HTML5 documents - 1,088,370 HTML5 documents
- Three separate archive bundles separated by LaTeXML conversion severity - Three separate archive bundles separated by LaTeXML conversion severity
- derivative **word embeddings** and a **token model** are available separately [here](/resources/arxmliv-embeddings-082017/)
| subset ID | file name | MD5 | number of documents | size archived | size unpacked | | subset ID | number of documents | size archived | size unpacked |
| --- | --- | --- | --- | --- | | :--- | ---: | ---: | ---: |
| no_problems| arXMLiv_08_2017_no_problem.zip | `036945755c7cc75ea1577cf04ca4fead` | 112,088 | 5 GB | 37 GB | | no\_problem| 112,088 | 5 GB | 37 GB |
| warning| arXMLiv_08_2017_warning.zip | `c0d5c1baf626225b48264510ac4c6bd5` | 574,638 | 71 GB | 595 GB | | warning | 574,638 | 71 GB | 595 GB |
| error| arXMLiv_08_2017_error.zip | `2f4e60b993d85d30523b064c19e45733` | 401,644 | 50 GB | 421 GB | | error | 401,644 | 50 GB | 421 GB |
| subset file name | MD5 |
| :--- | :--- |
| `arXMLiv_08_2017_no_problem.zip` | `036945755c7cc75ea1577cf04ca4fead` |
| `arXMLiv_08_2017_warning.zip` | `c0d5c1baf626225b48264510ac4c6bd5` |
| `arXMLiv_08_2017_error.zip` | `2f4e60b993d85d30523b064c19e45733` |
### Description ### Description
...@@ -92,3 +95,6 @@ concrete identifier. ...@@ -92,3 +95,6 @@ concrete identifier.
[Download link](https://gl.kwarc.info/SIGMathLing/dataset-arXMLiv-08-2017) [Download link](https://gl.kwarc.info/SIGMathLing/dataset-arXMLiv-08-2017)
([SIGMathLing members](/member/) only) ([SIGMathLing members](/member/) only)
### Generated via
- [LaTeXML 0.8.2](https://github.com/brucemiller/LaTeXML/releases/tag/v0.8.2),
- [CorTeX 0.2](https://github.com/dginev/CorTeX/releases/tag/0.2.0)
---
layout: page
title: arXMLiv 08.2017 - Word Embeddings; Token Model
---
Part of the [arXMLiv](https://kwarc.info/systems/arXMLiv/) project at the [KWARC](https://kwarc.info/) research group
### Author
Deyan Ginev,
### Current release
- 08.2017
### Accessibility and License
The content of this Dataset is licensed to [SIGMathLing members](/member/) for research
and tool development purposes.
Access is restricted to [SIGMathLing members](/member/) under the
[SIGMathLing Non-Disclosure-Agreement](/nda/) as for most [arXiv](http://arxiv.org)
articles, the right of distribution was only given (or assumed) to arXiv itself.
### Contents
- A 5 billion token model for the arXMLiv 08.2017 dataset
- `glove.arxmliv.5B.300d.zip` and `vocab.arxmliv.zip`
- 300 dimensional GloVe word embeddings for the arXMLiv 08.2017 dataset
- `token_model.zip`
- subset word embeddings
- `glove.subset.zip`
- the main arXMLiv dataset is available separately [here](/resources/arxmliv-dataset-082017/)
#### Token Model Statistics
subset | documents | paragraphs | sentences |
-----------|----------:|-----------:|------------:|
no_problem | 112,088 | 3,760,015 | 17,684,762 |
warning | 574,638 | 35,215,866 | 144,166,524 |
error | 401,644 | 28,555,173 | 111,798,273 |
complete | 1,088,370 | 67,531,054 | 273,649,559 |
subset | words |formulas | inline cite | numeric literals |
-----------|--------------:|-----------:|------------:|-----------------:|
no_problem | 355,253,671 |17,020,161 | 2,991,053 | 9,913,009 |
warning | 2,514,340,590 |219,167,820 | 20,163,304 | 65,294,846 |
error | 1,946,207,151 |169,247,016 | 14,458,082 | 51,730,645 |
complete | 4,815,801,412 |405,434,997 | 37,612,439 | 126,938,500 |
#### GloVe Model Statistics
subset | tokens | unique words | unique words (freq 5+ )
-----------|--------------:|-------------:|-----------------------:
no_problem | 384,951,086 | 490,134 | 170,615
warning | 2,817,734,902 | 1,200,887 | 422,524
error | 2,180,119,361 | 1,889,392 | 518,609
complete | 5,382,805,349 | 2,573,974 | 746,673
### Citing this Resource
Please cite the main dataset when using the word embeddings, as they are generated and distributed jointly. [Instructions here](/resources/arxmliv-dataset-082017/#citing-this-resource)
### Download
[Download link](https://gl.kwarc.info/SIGMathLing/embeddings-arXMLiv-08-2017)
([SIGMathLing members](/member/) only)
### Generated via
- [llamapun 0.1](https://github.com/KWARC/llamapun/releases/tag/0.1),
- [GloVe 1.2](https://github.com/stanfordnlp/GloVe/tree/765074642a6544e47849bb85d8dc2e11e44c2922)
### Generation Parameters
* token model distributed as 3 subsets - no_problem, warning and error. complete model is derived via:
```
cat token_model_no_problem.txt \
token_model_warning.txt \
token_model_error.txt > token_model_complete.txt
```
* [llamapun v0.1](https://github.com/KWARC/llamapun/releases/tag/0.1), `corpus_token_model` example used for token model extraction
* used llamapun math-aware sentence and word tokenization
* processed logical paragraphs only (excluded non-textual modalities, e.g. tables, figures and their captions, bibliographies)
* marked up formulas replaced with `mathformula` token
* marked up inline citations replaced with `citationelement` token
* numeric literals replaced with `NUM` token
* ignored sentences with unnaturally long words (>30 characters) - almost always due to latexml conversion errors
* [GloVe repository at sha 76507](https://github.com/stanfordnlp/GloVe/tree/765074642a6544e47849bb85d8dc2e11e44c2922)
* build/vocab_count -min-count 5
* build/cooccur -memory 32.0 -window-size 15
* build/shuffle -memory 32.0
* build/glove -threads 16 -x-max 100 -iter 25 -vector-size 300 -binary 2
### Examples and baselines
#### GloVe in-built evaluation (non-expert tasks e.g. language, relationships, geography)
1. no_problem
* Total accuracy: 26.49% (3665/13833)
* Highest score: "gram3-comparative.txt", 75.83% (1010/1332)
2. warning
* Total accuracy: 31.16% (4989/16013)
* Highest score: "gram3-comparative.txt", 75.45% (1005/1332)
3. error
* Total accuracy: 29.63% (4997/16867)
* Highest score: "gram3-comparative.txt", 76.58% (1020/1332)
4. complete
* Total accuracy: 32.86% (5770/17562)
* Highest score: "gram3-comparative.txt", 78.53% (1046/1332)
5. demo baseline: text8 demo (first 100M characters of Wikipedia)
* Total accuracy: 23.91% (4262/17827)
* Highest score: "capital-common-countries.txt", 62.65% (317/506)
**Evaluation note:** These in-built evlauation runs are provided as a sanity check that the generated GloVe models pass a basic baseline against the non-expert tasks in the default GloVe suite.
One would need a scienctific discourse tailored set of test cases to evaluate the arXiv-based models competitively.
#### Measuring word analogy
In a cloned GloVe repository, start via:
```
python eval/python/word_analogy.py --vocab_file vocab.arxmliv.txt --vectors_file glove.arxmliv.5B.300d.txt
```
1. `abelian` is to `group` as `disjoint` is to `?`
* Top hit: `union`, cosine distance `0.644784`
2. `convex` is to `concave` as `positive` is to `?`
* Top hit: `negative`, cosine distance `0.802866`
3. `finite` is to `infinte` as `abelian` is to `?`
* Top hit: `nonabelian`, cosine distance `0.664235`
4. `quantum` is to `classical` as `bottom` is to `?`
* Top hit: `top`, cosine distance `0.719843`
5. `eq` is to `proves` as `figure` is to `?`
* Top hit: `shows`, cosine distance `0.674743`
#### Nearest word vectors
In a cloned GloVe repository, start via:
```
python eval/python/distance.py --vocab_file vocab.arxmliv.txt --vectors_file glove.arxmliv.5B.300d.txt
```
1. **lattice**
```
Word: lattice Position in vocabulary: 311
Word Cosine distance
-----------------------------------------------------
lattices 0.811057
honeycomb 0.657262
finite 0.625146
triangular 0.608218
spacing 0.605435
```
2. **entanglement**
```
Word: entanglement Position in vocabulary: 1293
Word Cosine distance
-----------------------------------------------------
entangled 0.763964
multipartite 0.730231
fidelity 0.653443
concurrence 0.652454
environemtnal 0.646705
negativity 0.646165
quantum 0.639032
discord 0.624222
nonlocality 0.610661
tripartite 0.609896
```
3. **forgetful**
```
Word: forgetful Position in vocabulary: 10697
Word Cosine distance
-----------------------------------------------------
functor 0.723019
functors 0.653969
morphism 0.626222
```
4. **eigenvalue**
```
Word: eigenvalue Position in vocabulary: 1212
Word Cosine distance
-----------------------------------------------------
eigenvalues 0.878527
eigenvector 0.766371
eigenfunction 0.761923
eigenvectors 0.747451
eigenfunctions 0.707346
eigenspace 0.661539
corresponding 0.629746
laplacian 0.627187
operator 0.627130
eigen 0.620933
```
5. **riemannian**
```
Word: riemannian Position in vocabulary: 2026
Word Cosine distance
-----------------------------------------------------
manifold 0.766196
manifolds 0.745785
metric 0.714120
curvature 0.672975
metrics 0.670006
finsler 0.665079
ricci 0.657058
euclidean 0.650198
endowed 0.626307
riemmanian 0.621626
riemanian 0.618022
```
\ No newline at end of file
...@@ -3,6 +3,8 @@ layout: page ...@@ -3,6 +3,8 @@ layout: page
title: SIGMathLing - Datasets and Resources title: SIGMathLing - Datasets and Resources
--- ---
1. [arXMLiv corpus, 08.2017 release](/resources/arxmliv/) 1. [arXMLiv corpus, 08.2017 release](/resources/arxmliv-dataset-082017/)
2. [arXMLiv word embeddings, 08.2017 release](/resources/arxmliv-embeddings-082017)
Additional resources are en route, see the [plan](/technical/) for details. Additional resources are en route, see the [plan](/technical/) for details.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment