Newer
Older
---
layout: page
title: GI Meeting Deduction and Logic
---
The 2020-2022 annual meetings of the GI groups [Deduction Systems](https://fg-dedsys.gi.de/) and [Logic in Computer Science](https://fg-loginf.gi.de/)
(Gemeinsames Jahrestreffen der GI-Fachgruppen Deduktionssysteme und Logik in der Informatik) take place jointly in Erlangen.
They are organized by [Sergey Goncharov](https://www8.cs.fau.de/sergey) and [Florian Rabe](https://kwarc.info/people/frabe/).
In fact, due to COVID-19 pandemic, online meetings took place.
An in-person meeting of Deduction Systems is planned for 2022 as a part of the KI conference.
The 2021 meeting is [here](2021/index.html).
### Program of the Online Meeting in Spring 2022
The meeting will take place online on April 8.
The call for contributions is [here](2022/cfp.txt).
The program will consist of multiple sessions of zoom talks.
The tentative program is as follows:
* Session 1: 9:00 - 10:00 (chair: Olaf Beyersdorff)
* 10:00: Marijn Heule, **Invited talk** [slides (if any)](2022/heule.pdf)
* Break 1: 10:00 - 10:30: free discussion in zoom
* Session 2: 10:30 - 12:00 (chair: Florian Rabe)
* 10:30: Florian Wörz, Number of Variables for Graph Differentiation and the Resolution of GI Formulas [slides (if any)](2022/woerz.pdf)
* 11:00: Martin Lange, Formal Modelling of Biological School Experiments [slides (if any)](2022/lange.pdf)
* 11:30: Florian Bruse, A Decidable Expressive Modal Logic, [slides (if any)](2022/bruse.pdf)
* Lunch break: 12:00 - 13:00
* Session 3: 13:00 - 14:00 (chair: Claudia Schon)
* 13:00: Martin Suda, **Invited talk** [slides (if any)](2022/suda.pdf)
* Break 2: 14:00 - 14:30: free discussion in zoom
* Session 4: 14:30 - 16:00 (chair: Sergey Goncharov)
* 14:30: Colin Rothgang, Theorem Proving in Dependently Typed Higher-Order Logic [slides (if any)](2022/rothgang.pdf)
* 15:00: Jean Christoph Jung and Frank Wolter, Living without Beth and Craig: Definitions and Interpolants in the Guarded and Two-Variable Fragments [slides (if any)](2022/jung.pdf)
* 15:30: Hendrik Leidinger, SCL for First-Order Logic with Equality, [slides (if any)](2022/lange.pdf)