\subsection{The General Algorithm} The aim is to find typing-preserving morphisms between theories, i.e. given a constant $C:t$ in a theory $T_1$, we want to find a view $V:T_1\to T_2$ such that if $V(C)=C'$ and $C':T'\in T_2$, we have $V(t)=t'$. Correspondingly, we need to consider the types of the constants in our two theories, which we assume to be flat.

\subsection{The General Algorithm} The aim is to find typing-preserving morphisms between theories, i.e. given a constant $C:t$ in a theory $T_1$, we want to find a view $V:T_1\to T_2$ such that if $V(C)=C'$ and $C':t'\in T_2$, we have $V(t)=t'$. Correspondingly, we need to consider the types of the constants in our two theories, which we assume to be flat.

To run a proper unficiation algorithm is in our situation infeasible, since the flat version of a theory can become prohibitively large (and obviously finding two unifiable types in two theories is a search problem quadratic in the number of constants). To solve that problem, we first preprocess our theories such that pre-selecting plausibly ``unifiable'' constants becomes as fast as possible.