-
Andreas Schärtl authoredAndreas Schärtl authored
endpoints.tex 3.64 KiB
\section{Endpoints}\label{sec:endpoints}
With ULO triplets imported into the GraphDB triplet store by Collecter
and Importer, we now have all data available necessary for querying.
As discussed before, querying from applications happens through an
Endpoint that exposes some kind of {API}. The interesting question
here is probably not so much the implementation of the endpoint itself,
rather it is the choice of API than can make or break such a project.
There are multiple approaches to querying the GraphDB triplet store,
one based around the standardized SPARQL query language and the other
on the RDF4J Java library implemented by various vendors. Both
approaches have unique advantages.
\begin{description}
\item[SPARQL] is a standardized query language for RDF triplet
data~\cite{sparql}. The specification includes not just syntax
and semantics of the language itself, but also a standardized
REST interface for querying databases.
\textbf{Syntax} SPARQL is inspired by SQL and as such the
\texttt{SELECT} \texttt{WHERE} syntax should be familiar to many
software developers. A simple query that returns all triplets
in the store looks like
\begin{lstlisting}
SELECT * WHERE { ?s ?p ?o }
\end{lstlisting}
where \texttt{?s}, \texttt{?p} and \texttt{?o} are query
variables. The result of any query are valid substitutions for
the query variables. In this particular case, the database would
return a table of all triplets in the store sorted by
subject~\texttt{?o}, predicate~\texttt{?p} and
object~\texttt{?o}.
\textbf{Advantage} Probably the biggest advantage is that
SPARQL is ubiquitous. As it is the de facto standard for
querying triplet stores, lots of literature and documentation is
available~\cite{sparqlbook, sparqlimpls, gosparql}.
\item[RDF4J] is a Java API for interacting with triplet stores,
implemented based on a superset of the {SPARQL} REST interface~\cite{rdf4j}.
GraphDB supports RDF4J, in fact it is the recommended way of
interacting with GraphDB repositories~\cite{graphdbapi}.
\textbf{Syntax} Instead of formulating textual queries, RDF4J
allows developers to query a repository by calling Java API
methods. Previous query that requests all triplets in the store
looks like
\begin{lstlisting}
connection.getStatements(null, null, null);
\end{lstlisting}
in RDF4J. \texttt{getStatements(s, p, o)} returns all triplets
that have matching subject~\texttt{s}, predicate~\texttt{p} and
object~\texttt{o}. Any argument that is \texttt{null} can be
replace with any value, i.e.\ it is a query variable to be
filled by the call to \texttt{getStatements}.
\textbf{Advantage} Using RDF4J does introduce a dependency on
the JVM and its languages. But in practice, we found RDF4J to be
quite convenient, especially for simple queries, as it allows us
to formulate everything in a single programming language rather
than mixing languages and awkward string literals.
We also found it quite helpful to generate Java classes from
OWL ontologies that contain all definitions of the ontology and
make it readable by any IDE~\cite{rdf4jgen}.
\end{description}
We see that both SPARQL and RDF4J have unique advantages. While SPARQL
is an official W3C standard and implemented by more database systems,
RDF4J can be more convenient when dealing with JVM-based code bases.
For \emph{ulo-storage}, we played around with both interfaces and
chose whatever seemed more convenient at the moment. We recommend any
implementors to do the same.