Newer
Older
using System;
Marco Zimmer
committed
using System.Collections.Generic;
using UnityEngine;
Marco Zimmer
committed
public class Math3d
{
public const double vectorPrecission = 1e-5d; //For Vector comparisons
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
private static Transform tempChild = null;
private static Transform tempParent = null;
private static Vector3[] positionRegister;
private static float[] posTimeRegister;
private static int positionSamplesTaken = 0;
private static Quaternion[] rotationRegister;
private static float[] rotTimeRegister;
private static int rotationSamplesTaken = 0;
public static void Init()
{
tempChild = (new GameObject("Math3d_TempChild")).transform;
tempParent = (new GameObject("Math3d_TempParent")).transform;
tempChild.gameObject.hideFlags = HideFlags.HideAndDontSave;
MonoBehaviour.DontDestroyOnLoad(tempChild.gameObject);
tempParent.gameObject.hideFlags = HideFlags.HideAndDontSave;
MonoBehaviour.DontDestroyOnLoad(tempParent.gameObject);
//set the parent
tempChild.parent = tempParent;
}
//Get a point on a Catmull-Rom spline.
//The percentage is in range 0 to 1, which starts at the second control point and ends at the second last control point.
//The array cPoints should contain all control points. The minimum amount of control points should be 4.
//Source: https://forum.unity.com/threads/waypoints-and-constant-variable-speed-problems.32954/#post-213942
public static Vector2 GetPointOnSpline(float percentage, Vector2[] cPoints)
{
//Minimum size is 4
if (cPoints.Length >= 4)
{
//Convert the input range (0 to 1) to range (0 to numSections)
int numSections = cPoints.Length - 3;
int curPoint = Mathf.Min(Mathf.FloorToInt(percentage * (float)numSections), numSections - 1);
float t = percentage * (float)numSections - (float)curPoint;
//Get the 4 control points around the location to be sampled.
Vector2 p0 = cPoints[curPoint];
Vector2 p1 = cPoints[curPoint + 1];
Vector2 p2 = cPoints[curPoint + 2];
Vector2 p3 = cPoints[curPoint + 3];
//The Catmull-Rom spline can be written as:
// 0.5 * (2*P1 + (-P0 + P2) * t + (2*P0 - 5*P1 + 4*P2 - P3) * t^2 + (-P0 + 3*P1 - 3*P2 + P3) * t^3)
//Variables P0 to P3 are the control points.
//Variable t is the position on the spline, with a range of 0 to numSections.
//C# way of writing the function. Note that f means float (to force precision).
Vector2 result = .5f * (2f * p1 + (-p0 + p2) * t + (2f * p0 - 5f * p1 + 4f * p2 - p3) * (t * t) + (-p0 + 3f * p1 - 3f * p2 + p3) * (t * t * t));
return new Vector2(result.x, result.y);
}
else
{
return new Vector2(0, 0);
}
}
//Finds the intersection points between a straight line and a spline. Solves a Cubic polynomial equation
//The output is in the form of a percentage along the length of the spline (range 0 to 1).
//The linePoints array should contain two points which form a straight line.
//The cPoints array should contain all the control points of the spline.
//Use case: create a gauge with a non-linear scale by defining an array with needle angles vs the number it should point at. The array creates a spline.
//Driving the needle with a float in range 0 to 1 gives an unpredictable result. Instead, use the GetLineSplineIntersections() function to find the angle the
//gauge needle should have for a given number it should point at. In this case, cPoints should contain x for angle and y for scale number.
//Make a horizontal line at the given scale number (y) you want to find the needle angle for. The returned float is a percentage location on the spline (range 0 to 1).
//Plug this value into the GetPointOnSpline() function to get the x coordinate which represents the needle angle.
//Source: https://medium.com/@csaba.apagyi/finding-catmull-rom-spline-and-line-intersection-part-2-mathematical-approach-dfb969019746
public static float[] GetLineSplineIntersections(Vector2[] linePoints, Vector2[] cPoints)
{
List<float> list = new List<float>();
float[] crossings;
int numSections = cPoints.Length - 3;
//The line spline intersection can only be calculated for one segment of a spline, meaning 4 control points,
//with a spline segment between the middle two control points. So check all spline segments.
for (int i = 0; i < numSections; i++)
{
//Get the 4 control points around the location to be sampled.
Vector2 p0 = cPoints[i];
Vector2 p1 = cPoints[i + 1];
Vector2 p2 = cPoints[i + 2];
Vector2 p3 = cPoints[i + 3];
//The Catmull-Rom spline can be written as:
// 0.5 * (2P1 + (-P0 + P2) * t + (2P0 - 5P1 + 4P2 - P3) * t^2 + (-P0 + 3P1 - 3P2 + P3) * t^3)
//Variables P0 to P3 are the control points.
//Notation: 2P1 means 2*controlPoint1
//Variable t is the position on the spline, converted from a range of 0 to 1.
//C# way of writing the function is below. Note that f means float (to force precision).
//Vector2 result = .5f * (2f * p1 + (-p0 + p2) * t + (2f * p0 - 5f * p1 + 4f * p2 - p3) * (t * t) + (-p0 + 3f * p1 - 3f * p2 + p3) * (t * t * t));
//The variable t is the only unknown, so the rest can be substituted:
//a = 0.5 * (-p0 + 3*p1 - 3*p2 + p3)
//b = 0.5 * (2*p0 - 5*p1 + 4*p2 - p3)
//c = 0.5 * (-p0 + p2)
//d = 0.5 * (2*p1)
//This gives rise to the following Cubic equation:
//a * t^3 + b * t^2 + c * t + d = 0
//The spline control points (p0-3) consist of two variables: the x and y coordinates. They are independent so we can handle them separately.
//Below, a1 is substitution a where the x coordinate of each point is used, like so: a1 = 0.5 * (-p0.x + 3*p1.x - 3*p2.x + p3.x)
//Below, a2 is substitution a where the y coordinate of each point is used, like so: a2 = 0.5 * (-p0.y + 3*p1.y - 3*p2.y + p3.y)
//The same logic applies for substitutions b, c, and d.
float a1 = 0.5f * (-p0.x + 3f * p1.x - 3f * p2.x + p3.x);
float a2 = 0.5f * (-p0.y + 3f * p1.y - 3f * p2.y + p3.y);
float b1 = 0.5f * (2f * p0.x - 5f * p1.x + 4f * p2.x - p3.x);
float b2 = 0.5f * (2f * p0.y - 5f * p1.y + 4f * p2.y - p3.y);
float c1 = 0.5f * (-p0.x + p2.x);
float c2 = 0.5f * (-p0.y + p2.y);
float d1 = 0.5f * (2f * p1.x);
float d2 = 0.5f * (2f * p1.y);
//We now have two Cubic functions. One for x and one for y.
//Note that a, b, c, and d are not vector variables itself but substituted functions.
//x = a1 * t^3 + b1 * t^2 + c1 * t + d1
//y = a2 * t^3 + b2 * t^2 + c2 * t + d2
//Line formula, standard form:
//Ax + By + C = 0
float A = linePoints[0].y - linePoints[1].y;
float B = linePoints[1].x - linePoints[0].x;
float C = (linePoints[0].x - linePoints[1].x) * linePoints[0].y + (linePoints[1].y - linePoints[0].y) * linePoints[0].x;
//Substituting the values of x and y from the separated Spline formula into the Line formula, we get:
//A * (a1 * t^3 + b1 * t^2 + c1 * t + d1) + B * (a2 * t^3 + b2 * t^2 + c2 * t + d2) + C = 0
//Rearranged version:
//(A * a1 + B * a2) * t^3 + (A * b1 + B * b2) * t^2 + (A * c1 + B * c2) * t + (A * d1 + B * d2 + C) = 0
//Substituting gives rise to a Cubic function:
//a * t^3 + b * t^2 + c * t + d = 0
float a = A * a1 + B * a2;
float b = A * b1 + B * b2;
float c = A * c1 + B * c2;
float d = A * d1 + B * d2 + C;
//This is again a Cubic equation, combined from the Line and the Spline equation. If you solve this you can get up to 3 line-spline cross points.
//How to solve a Cubic equation is described here:
//https://www.cs.rit.edu/~ark/pj/lib/edu/rit/numeric/Cubic.shtml
//https://www.codeproject.com/Articles/798474/To-Solve-a-Cubic-Equation
int crossAmount;
float cross1;
float cross2;
float cross3;
float crossCorrected;
//Two different implementations of solving a Cubic equation.
// SolveCubic2(out crossAmount, out cross1, out cross2, out cross3, a, b, c, d);
SolveCubic(out crossAmount, out cross1, out cross2, out cross3, a, b, c, d);
//Get the highest and lowest value (in range 0 to 1) of the current section and calculate the difference.
float currentSectionLowest = (float)i / (float)numSections;
float currentSectionHighest = ((float)i + 1f) / (float)numSections;
float diff = currentSectionHighest - currentSectionLowest;
//Only use the result if it is within range 0 to 1.
//The range 0 to 1 is within the current segment. It has to be converted to the range of the entire spline,
//which still uses a range of 0 to 1.
if (cross1 >= 0 && cross1 <= 1)
{
//Map an intermediate range (0 to 1) to the lowest and highest section values.
crossCorrected = (cross1 * diff) + currentSectionLowest;
//Add the result to the list.
list.Add(crossCorrected);
}
if (cross2 >= 0 && cross2 <= 1)
{
//Map an intermediate range (0 to 1) to the lowest and highest section values.
crossCorrected = (cross2 * diff) + currentSectionLowest;
//Add the result to the list.
list.Add(crossCorrected);
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
}
if (cross3 >= 0 && cross3 <= 1)
{
//Map an intermediate range (0 to 1) to the lowest and highest section values.
crossCorrected = (cross3 * diff) + currentSectionLowest;
//Add the result to the list.
list.Add(crossCorrected);
}
}
//Convert the list to an array.
crossings = list.ToArray();
return crossings;
}
//Solve cubic equation according to Cardano.
//Source: https://www.cs.rit.edu/~ark/pj/lib/edu/rit/numeric/Cubic.shtml
private static void SolveCubic(out int nRoots, out float x1, out float x2, out float x3, float a, float b, float c, float d)
{
float TWO_PI = 2f * Mathf.PI;
float FOUR_PI = 4f * Mathf.PI;
// Normalize coefficients.
float denom = a;
a = b / denom;
b = c / denom;
c = d / denom;
// Commence solution.
float a_over_3 = a / 3f;
float Q = (3f * b - a * a) / 9f;
float Q_CUBE = Q * Q * Q;
float R = (9f * a * b - 27f * c - 2f * a * a * a) / 54f;
float R_SQR = R * R;
float D = Q_CUBE + R_SQR;
if (D < 0.0f)
{
// Three unequal real roots.
nRoots = 3;
float theta = Mathf.Acos(R / Mathf.Sqrt(-Q_CUBE));
float SQRT_Q = Mathf.Sqrt(-Q);
x1 = 2f * SQRT_Q * Mathf.Cos(theta / 3f) - a_over_3;
x2 = 2f * SQRT_Q * Mathf.Cos((theta + TWO_PI) / 3f) - a_over_3;
x3 = 2f * SQRT_Q * Mathf.Cos((theta + FOUR_PI) / 3f) - a_over_3;
}
else if (D > 0.0f)
{
// One real root.
nRoots = 1;
float SQRT_D = Mathf.Sqrt(D);
float S = CubeRoot(R + SQRT_D);
float T = CubeRoot(R - SQRT_D);
x1 = (S + T) - a_over_3;
x2 = float.NaN;
x3 = float.NaN;
}
else
{
// Three real roots, at least two equal.
nRoots = 3;
float CBRT_R = CubeRoot(R);
x1 = 2 * CBRT_R - a_over_3;
x2 = CBRT_R - a_over_3;
x3 = x2;
}
}
//Mathf.Pow is used as an alternative for cube root (Math.cbrt) here.
private static float CubeRoot(float d)
{
if (d < 0.0f)
{
return -Mathf.Pow(-d, 1f / 3f);
}
else
{
return Mathf.Pow(d, 1f / 3f);
}
}
//increase or decrease the length of vector by size
public static Vector3 AddVectorLength(Vector3 vector, float size)
{
//get the vector length
float magnitude = Vector3.Magnitude(vector);
//calculate new vector length
float newMagnitude = magnitude + size;
//calculate the ratio of the new length to the old length
float scale = newMagnitude / magnitude;
//scale the vector
return vector * scale;
}
//create a vector of direction "vector" with length "size"
public static Vector3 SetVectorLength(Vector3 vector, float size)
{
//normalize the vector
Vector3 vectorNormalized = Vector3.Normalize(vector);
//scale the vector
return vectorNormalized *= size;
}
//caclulate the rotational difference from A to B
public static Quaternion SubtractRotation(Quaternion B, Quaternion A)
{
Quaternion C = Quaternion.Inverse(A) * B;
return C;
}
//Add rotation B to rotation A.
public static Quaternion AddRotation(Quaternion A, Quaternion B)
{
Quaternion C = A * B;
return C;
}
//Same as the build in TransformDirection(), but using a rotation instead of a transform.
public static Vector3 TransformDirectionMath(Quaternion rotation, Vector3 vector)
{
Vector3 output = rotation * vector;
return output;
}
//Same as the build in InverseTransformDirection(), but using a rotation instead of a transform.
public static Vector3 InverseTransformDirectionMath(Quaternion rotation, Vector3 vector)
{
Vector3 output = Quaternion.Inverse(rotation) * vector;
return output;
}
//Rotate a vector as if it is attached to an object with rotation "from", which is then rotated to rotation "to".
//Similar to TransformWithParent(), but rotating a vector instead of a transform.
public static Vector3 RotateVectorFromTo(Quaternion from, Quaternion to, Vector3 vector)
{
//Note: comments are in case all inputs are in World Space.
Quaternion Q = SubtractRotation(to, from); //Output is in object space.
Vector3 A = InverseTransformDirectionMath(from, vector);//Output is in object space.
Vector3 B = Q * A; //Output is in local space.
Vector3 C = TransformDirectionMath(from, B); //Output is in world space.
return C;
}
//Find the line of intersection between two planes. The planes are defined by a normal and a point on that plane.
//The outputs are a point on the line and a vector which indicates it's direction. If the planes are not parallel,
//the function outputs true, otherwise false.
public static bool PlanePlaneIntersection(out Vector3 linePoint, out Vector3 lineVec, Vector3 plane1Normal, Vector3 plane1Position, Vector3 plane2Normal, Vector3 plane2Position)
{
linePoint = Vector3.zero;
lineVec = Vector3.zero;
//We can get the direction of the line of intersection of the two planes by calculating the
//cross product of the normals of the two planes. Note that this is just a direction and the line
//is not fixed in space yet. We need a point for that to go with the line vector.
lineVec = Vector3.Cross(plane1Normal, plane2Normal);
//Next is to calculate a point on the line to fix it's position in space. This is done by finding a vector from
//the plane2 location, moving parallel to it's plane, and intersecting plane1. To prevent rounding
//errors, this vector also has to be perpendicular to lineDirection. To get this vector, calculate
//the cross product of the normal of plane2 and the lineDirection.
Vector3 ldir = Vector3.Cross(plane2Normal, lineVec);
float denominator = Vector3.Dot(plane1Normal, ldir);
//Prevent divide by zero and rounding errors by requiring about 5 degrees angle between the planes.
if (Mathf.Abs(denominator) > 0.006f)
{
Vector3 plane1ToPlane2 = plane1Position - plane2Position;
float t = Vector3.Dot(plane1Normal, plane1ToPlane2) / denominator;
linePoint = plane2Position + t * ldir;
return true;
}
//output not valid
else
{
return false;
}
}
//Get the intersection between a line and a plane.
//If the line and plane are not parallel, the function outputs true, otherwise false.
public static bool LinePlaneIntersection(out Vector3 intersection, Vector3 linePoint, Vector3 lineVec, Vector3 planeNormal, Vector3 planePoint)
{
float length;
float dotNumerator;
float dotDenominator;
Vector3 vector;
intersection = Vector3.zero;
//calculate the distance between the linePoint and the line-plane intersection point
dotNumerator = Vector3.Dot((planePoint - linePoint), planeNormal);
dotDenominator = Vector3.Dot(lineVec, planeNormal);
//line and plane are not parallel
if (dotDenominator != 0.0f)
{
length = dotNumerator / dotDenominator;
//create a vector from the linePoint to the intersection point
vector = SetVectorLength(lineVec, length);
//get the coordinates of the line-plane intersection point
intersection = linePoint + vector;
return true;
}
//output not valid
else
{
return false;
}
}
//Calculate the intersection point of two lines. Returns true if lines intersect, otherwise false.
//Note that in 3d, two lines do not intersect most of the time. So if the two lines are not in the
//same plane, use ClosestPointsOnTwoLines() instead.
public static bool LineLineIntersection(out Vector3 intersection, Vector3 linePoint1, Vector3 lineVec1, Vector3 linePoint2, Vector3 lineVec2)
{
Vector3 lineVec3 = linePoint2 - linePoint1;
Vector3 crossVec1and2 = Vector3.Cross(lineVec1, lineVec2);
Vector3 crossVec3and2 = Vector3.Cross(lineVec3, lineVec2);
float planarFactor = Vector3.Dot(lineVec3, crossVec1and2);
//is coplanar, and not parrallel
if (Mathf.Abs(planarFactor) < 0.0001f && crossVec1and2.sqrMagnitude > 0.0001f)
{
float s = Vector3.Dot(crossVec3and2, crossVec1and2) / crossVec1and2.sqrMagnitude;
intersection = linePoint1 + (lineVec1 * s);
return true;
}
else
{
intersection = Vector3.zero;
return false;
}
}
Marco Zimmer
committed
//Two non-parallel lines which may or may not touch each other have a point on each line which are closest
//to each other. This function finds those two points. If the lines are not parallel, the function
//outputs true, otherwise false.
public static bool ClosestPointsOnTwoLines(out Vector3 closestPointLine1, out Vector3 closestPointLine2, Vector3 linePoint1, Vector3 lineVec1, Vector3 linePoint2, Vector3 lineVec2)
{
Marco Zimmer
committed
closestPointLine1 = Vector3.zero;
closestPointLine2 = Vector3.zero;
Marco Zimmer
committed
float a = Vector3.Dot(lineVec1, lineVec1);
float b = Vector3.Dot(lineVec1, lineVec2);
float e = Vector3.Dot(lineVec2, lineVec2);
Marco Zimmer
committed
float d = a * e - b * b;
Marco Zimmer
committed
//lines are not parallel
if (d != 0.0f)
{
Marco Zimmer
committed
Vector3 r = linePoint1 - linePoint2;
float c = Vector3.Dot(lineVec1, r);
float f = Vector3.Dot(lineVec2, r);
Marco Zimmer
committed
float s = (b * f - c * e) / d;
float t = (a * f - c * b) / d;
Marco Zimmer
committed
closestPointLine1 = linePoint1 + lineVec1 * s;
closestPointLine2 = linePoint2 + lineVec2 * t;
Marco Zimmer
committed
return true;
}
Marco Zimmer
committed
else
{
return false;
}
}
Marco Zimmer
committed
//This function returns a point which is a projection from a point to a line.
//The line is regarded infinite. If the line is finite, use ProjectPointOnLineSegment() instead.
public static Vector3 ProjectPointOnLine(Vector3 linePoint, Vector3 lineVec, Vector3 point)
{
Marco Zimmer
committed
//get vector from point on line to point in space
Vector3 linePointToPoint = point - linePoint;
Marco Zimmer
committed
float t = Vector3.Dot(linePointToPoint, lineVec);
Marco Zimmer
committed
return linePoint + lineVec * t;
}
Marco Zimmer
committed
//This function returns true if a point is on a line.
//The line is regarded infinite.
public static bool IsPointOnLine(Vector3 linePoint, Vector3 lineVec, Vector3 point)
{
Marco Zimmer
committed
//get vector from point on line to point in space
Vector3 linePointToPoint = point - linePoint;
Marco Zimmer
committed
float t = Vector3.Dot(linePointToPoint, lineVec);
Marco Zimmer
committed
return t == 0;
}
Marco Zimmer
committed
//This function returns true if a point is approximately on a line.
//The line is regarded infinite.
public static bool IsPointApproximatelyOnLine(Vector3 linePoint, Vector3 lineVec, Vector3 point, double precission = Math3d.vectorPrecission)
{
Marco Zimmer
committed
//get vector from point on line to point in space
Vector3 linePointToPoint = point - linePoint;
Marco Zimmer
committed
double t = Vector3.Dot(linePointToPoint.normalized, lineVec);
Marco Zimmer
committed
return Math.Abs(t - 1d) < precission || Math.Abs(t) < precission;
}
Marco Zimmer
committed
//This function returns a point which is a projection from a point to a line segment.
//If the projected point lies outside of the line segment, the projected point will
//be clamped to the appropriate line edge.
//If the line is infinite instead of a segment, use ProjectPointOnLine() instead.
public static Vector3 ProjectPointOnLineSegment(Vector3 linePoint1, Vector3 linePoint2, Vector3 point)
{
Marco Zimmer
committed
Vector3 vector = linePoint2 - linePoint1;
Marco Zimmer
committed
Vector3 projectedPoint = ProjectPointOnLine(linePoint1, vector.normalized, point);
Marco Zimmer
committed
int side = PointOnWhichSideOfLineSegment(linePoint1, linePoint2, projectedPoint);
Marco Zimmer
committed
//The projected point is on the line segment
if (side == 0)
{
Marco Zimmer
committed
return projectedPoint;
}
Marco Zimmer
committed
if (side == 1)
{
Marco Zimmer
committed
return linePoint1;
}
Marco Zimmer
committed
if (side == 2)
{
Marco Zimmer
committed
return linePoint2;
}
Marco Zimmer
committed
//output is invalid
return Vector3.zero;
}
Marco Zimmer
committed
//This function returns a point which is a projection from a point to a plane.
public static Vector3 ProjectPointOnPlane(Vector3 planeNormal, Vector3 planePoint, Vector3 point)
{
Marco Zimmer
committed
float distance;
Vector3 translationVector;
Marco Zimmer
committed
//First calculate the distance from the point to the plane:
distance = SignedDistancePlanePoint(planeNormal, planePoint, point);
Marco Zimmer
committed
//Reverse the sign of the distance
distance *= -1;
Marco Zimmer
committed
//Get a translation vector
translationVector = SetVectorLength(planeNormal, distance);
Marco Zimmer
committed
//Translate the point to form a projection
return point + translationVector;
}
Marco Zimmer
committed
//Projects a vector onto a plane. The output is not normalized.
public static Vector3 ProjectVectorOnPlane(Vector3 planeNormal, Vector3 vector)
{
Marco Zimmer
committed
return vector - (Vector3.Dot(vector, planeNormal) * planeNormal);
}
Marco Zimmer
committed
//Get the shortest distance between a point and a plane. The output is signed so it holds information
//as to which side of the plane normal the point is.
public static float SignedDistancePlanePoint(Vector3 planeNormal, Vector3 planePoint, Vector3 point)
{
Marco Zimmer
committed
return Vector3.Dot(planeNormal, (point - planePoint));
}
Marco Zimmer
committed
//This function calculates a signed (+ or - sign instead of being ambiguous) dot product. It is basically used
//to figure out whether a vector is positioned to the left or right of another vector. The way this is done is
//by calculating a vector perpendicular to one of the vectors and using that as a reference. This is because
//the result of a dot product only has signed information when an angle is transitioning between more or less
//than 90 degrees.
public static float SignedDotProduct(Vector3 vectorA, Vector3 vectorB, Vector3 normal)
{
Marco Zimmer
committed
Loading
Loading full blame...