Skip to content
Snippets Groups Projects
Math3d.cs 44.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
    			if (lineACrossing || lineBCrossing || lineCCrossing || lineDCrossing)
    			{
    
    				return true;
    			}
    
    			else
    			{
    
    				return false;
    			}
    		}
    
    		else
    		{
    
    			return true;
    		}
    	}
    
    	//Returns true if "point" is in a rectangle mad up of RectA to RectD. The line point is assumed to be on the same 
    	//plane as the rectangle. If the point is not on the plane, use ProjectPointOnPlane() first.
    	public static bool IsPointInRectangle(Vector3 point, Vector3 rectA, Vector3 rectC, Vector3 rectB, Vector3 rectD)
    	{
    
    		Vector3 vector;
    		Vector3 linePoint;
    
    		//get the center of the rectangle
    		vector = rectC - rectA;
    		float size = -(vector.magnitude / 2f);
    		vector = AddVectorLength(vector, size);
    		Vector3 middle = rectA + vector;
    
    		Vector3 xVector = rectB - rectA;
    		float width = xVector.magnitude / 2f;
    
    		Vector3 yVector = rectD - rectA;
    		float height = yVector.magnitude / 2f;
    
    		linePoint = ProjectPointOnLine(middle, xVector.normalized, point);
    		vector = linePoint - point;
    		float yDistance = vector.magnitude;
    
    		linePoint = ProjectPointOnLine(middle, yVector.normalized, point);
    		vector = linePoint - point;
    		float xDistance = vector.magnitude;
    
    		if ((xDistance <= width) && (yDistance <= height))
    		{
    
    			return true;
    		}
    
    		else
    		{
    
    			return false;
    		}
    	}
    
    	//Returns true if line segment made up of pointA1 and pointA2 is crossing line segment made up of
    	//pointB1 and pointB2. The two lines are assumed to be in the same plane.
    	public static bool AreLineSegmentsCrossing(Vector3 pointA1, Vector3 pointA2, Vector3 pointB1, Vector3 pointB2)
    	{
    
    		Vector3 closestPointA;
    		Vector3 closestPointB;
    		int sideA;
    		int sideB;
    
    		Vector3 lineVecA = pointA2 - pointA1;
    		Vector3 lineVecB = pointB2 - pointB1;
    
    		bool valid = ClosestPointsOnTwoLines(out closestPointA, out closestPointB, pointA1, lineVecA.normalized, pointB1, lineVecB.normalized);
    
    		//lines are not parallel
    		if (valid)
    		{
    
    			sideA = PointOnWhichSideOfLineSegment(pointA1, pointA2, closestPointA);
    			sideB = PointOnWhichSideOfLineSegment(pointB1, pointB2, closestPointB);
    
    			if ((sideA == 0) && (sideB == 0))
    			{
    
    				return true;
    			}
    
    			else
    			{
    
    				return false;
    			}
    		}
    
    		//lines are parallel
    		else
    		{
    
    			return false;
    		}
    	}
    
    	//This function calculates the acceleration vector in meter/second^2.
    	//Input: position. If the output is used for motion simulation, the input transform
    	//has to be located at the seat base, not at the vehicle CG. Attach an empty GameObject
    	//at the correct location and use that as the input for this function.
    	//Gravity is not taken into account but this can be added to the output if needed.
    	//A low number of samples can give a jittery result due to rounding errors.
    	//If more samples are used, the output is more smooth but has a higher latency.
    	public static bool LinearAcceleration(out Vector3 vector, Vector3 position, int samples)
    	{
    
    		Vector3 averageSpeedChange = Vector3.zero;
    		vector = Vector3.zero;
    		Vector3 deltaDistance;
    		float deltaTime;
    		Vector3 speedA;
    		Vector3 speedB;
    
    		//Clamp sample amount. In order to calculate acceleration we need at least 2 changes
    		//in speed, so we need at least 3 position samples.
    		if (samples < 3)
    		{
    
    			samples = 3;
    		}
    
    		//Initialize
    		if (positionRegister == null)
    		{
    
    			positionRegister = new Vector3[samples];
    			posTimeRegister = new float[samples];
    		}
    
    		//Fill the position and time sample array and shift the location in the array to the left
    		//each time a new sample is taken. This way index 0 will always hold the oldest sample and the
    		//highest index will always hold the newest sample. 
    		for (int i = 0; i < positionRegister.Length - 1; i++)
    		{
    
    			positionRegister[i] = positionRegister[i + 1];
    			posTimeRegister[i] = posTimeRegister[i + 1];
    		}
    		positionRegister[positionRegister.Length - 1] = position;
    		posTimeRegister[posTimeRegister.Length - 1] = Time.time;
    
    		positionSamplesTaken++;
    
    		//The output acceleration can only be calculated if enough samples are taken.
    		if (positionSamplesTaken >= samples)
    		{
    
    			//Calculate average speed change.
    			for (int i = 0; i < positionRegister.Length - 2; i++)
    			{
    
    				deltaDistance = positionRegister[i + 1] - positionRegister[i];
    				deltaTime = posTimeRegister[i + 1] - posTimeRegister[i];
    
    				//If deltaTime is 0, the output is invalid.
    				if (deltaTime == 0)
    				{
    
    					return false;
    				}
    
    				speedA = deltaDistance / deltaTime;
    				deltaDistance = positionRegister[i + 2] - positionRegister[i + 1];
    				deltaTime = posTimeRegister[i + 2] - posTimeRegister[i + 1];
    
    				if (deltaTime == 0)
    				{
    
    					return false;
    				}
    
    				speedB = deltaDistance / deltaTime;
    
    				//This is the accumulated speed change at this stage, not the average yet.
    				averageSpeedChange += speedB - speedA;
    			}
    
    			//Now this is the average speed change.
    			averageSpeedChange /= positionRegister.Length - 2;
    
    			//Get the total time difference.
    			float deltaTimeTotal = posTimeRegister[posTimeRegister.Length - 1] - posTimeRegister[0];
    
    			//Now calculate the acceleration, which is an average over the amount of samples taken.
    			vector = averageSpeedChange / deltaTimeTotal;
    
    			return true;
    		}
    
    		else
    		{
    
    			return false;
    		}
    	}
    
    
    	/*
    	//This function calculates angular acceleration in object space as deg/second^2, encoded as a vector. 
    	//For example, if the output vector is 0,0,-5, the angular acceleration is 5 deg/second^2 around the object Z axis, to the left. 
    	//Input: rotation (quaternion). If the output is used for motion simulation, the input transform
    	//has to be located at the seat base, not at the vehicle CG. Attach an empty GameObject
    	//at the correct location and use that as the input for this function.
    	//A low number of samples can give a jittery result due to rounding errors.
    	//If more samples are used, the output is more smooth but has a higher latency.
    	//Note: the result is only accurate if the rotational difference between two samples is less than 180 degrees.
    	//Note: a suitable way to visualize the result is:
    	Vector3 dir;
    	float scale = 2f;	
    	dir = new Vector3(vector.x, 0, 0);
    	dir = Math3d.SetVectorLength(dir, dir.magnitude * scale);
    	dir = gameObject.transform.TransformDirection(dir);
    	Debug.DrawRay(gameObject.transform.position, dir, Color.red);	
    	dir = new Vector3(0, vector.y, 0);
    	dir = Math3d.SetVectorLength(dir, dir.magnitude * scale);
    	dir = gameObject.transform.TransformDirection(dir);
    	Debug.DrawRay(gameObject.transform.position, dir, Color.green);	
    	dir = new Vector3(0, 0, vector.z);
    	dir = Math3d.SetVectorLength(dir, dir.magnitude * scale);
    	dir = gameObject.transform.TransformDirection(dir);
    	Debug.DrawRay(gameObject.transform.position, dir, Color.blue);	*/
    	public static bool AngularAcceleration(out Vector3 vector, Quaternion rotation, int samples)
    	{
    
    		Vector3 averageSpeedChange = Vector3.zero;
    		vector = Vector3.zero;
    		Quaternion deltaRotation;
    		float deltaTime;
    		Vector3 speedA;
    		Vector3 speedB;
    
    		//Clamp sample amount. In order to calculate acceleration we need at least 2 changes
    		//in speed, so we need at least 3 rotation samples.
    		if (samples < 3)
    		{
    
    			samples = 3;
    		}
    
    		//Initialize
    		if (rotationRegister == null)
    		{
    
    			rotationRegister = new Quaternion[samples];
    			rotTimeRegister = new float[samples];
    		}
    
    		//Fill the rotation and time sample array and shift the location in the array to the left
    		//each time a new sample is taken. This way index 0 will always hold the oldest sample and the
    		//highest index will always hold the newest sample. 
    		for (int i = 0; i < rotationRegister.Length - 1; i++)
    		{
    
    			rotationRegister[i] = rotationRegister[i + 1];
    			rotTimeRegister[i] = rotTimeRegister[i + 1];
    		}
    		rotationRegister[rotationRegister.Length - 1] = rotation;
    		rotTimeRegister[rotTimeRegister.Length - 1] = Time.time;
    
    		rotationSamplesTaken++;
    
    		//The output acceleration can only be calculated if enough samples are taken.
    		if (rotationSamplesTaken >= samples)
    		{
    
    			//Calculate average speed change.
    			for (int i = 0; i < rotationRegister.Length - 2; i++)
    			{
    
    				deltaRotation = SubtractRotation(rotationRegister[i + 1], rotationRegister[i]);
    				deltaTime = rotTimeRegister[i + 1] - rotTimeRegister[i];
    
    				//If deltaTime is 0, the output is invalid.
    				if (deltaTime == 0)
    				{
    
    					return false;
    				}
    
    				speedA = RotDiffToSpeedVec(deltaRotation, deltaTime);
    				deltaRotation = SubtractRotation(rotationRegister[i + 2], rotationRegister[i + 1]);
    				deltaTime = rotTimeRegister[i + 2] - rotTimeRegister[i + 1];
    
    				if (deltaTime == 0)
    				{
    
    					return false;
    				}
    
    				speedB = RotDiffToSpeedVec(deltaRotation, deltaTime);
    
    				//This is the accumulated speed change at this stage, not the average yet.
    				averageSpeedChange += speedB - speedA;
    			}
    
    			//Now this is the average speed change.
    			averageSpeedChange /= rotationRegister.Length - 2;
    
    			//Get the total time difference.
    			float deltaTimeTotal = rotTimeRegister[rotTimeRegister.Length - 1] - rotTimeRegister[0];
    
    			//Now calculate the acceleration, which is an average over the amount of samples taken.
    			vector = averageSpeedChange / deltaTimeTotal;
    
    			return true;
    		}
    
    		else
    		{
    
    			return false;
    		}
    	}
    
    	//Get y from a linear function, with x as an input. The linear function goes through points
    	//0,0 on the left ,and Qxy on the right.
    	public static float LinearFunction2DBasic(float x, float Qx, float Qy)
    	{
    
    		float y = x * (Qy / Qx);
    
    		return y;
    	}
    
    	//Get y from a linear function, with x as an input. The linear function goes through points
    	//Pxy on the left ,and Qxy on the right.
    	public static float LinearFunction2DFull(float x, float Px, float Py, float Qx, float Qy)
    	{
    
    		float y = 0f;
    
    		float A = Qy - Py;
    		float B = Qx - Px;
    		float C = A / B;
    
    		y = Py + (C * (x - Px));
    
    		return y;
    	}
    
    	//Convert a rotation difference to a speed vector.
    	//For internal use only.
    	private static Vector3 RotDiffToSpeedVec(Quaternion rotation, float deltaTime)
    	{
    
    		float x;
    		float y;
    		float z;
    
    		if (rotation.eulerAngles.x <= 180.0f)
    		{
    
    			x = rotation.eulerAngles.x;
    		}
    
    		else
    		{
    
    			x = rotation.eulerAngles.x - 360.0f;
    		}
    
    		if (rotation.eulerAngles.y <= 180.0f)
    		{
    
    			y = rotation.eulerAngles.y;
    		}
    
    		else
    		{
    
    			y = rotation.eulerAngles.y - 360.0f;
    		}
    
    		if (rotation.eulerAngles.z <= 180.0f)
    		{
    
    			z = rotation.eulerAngles.z;
    		}
    
    		else
    		{
    
    			z = rotation.eulerAngles.z - 360.0f;
    		}
    
    		return new Vector3(x / deltaTime, y / deltaTime, z / deltaTime);
    	}
    }