Newer
Older
Marco Zimmer
committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
if (lineACrossing || lineBCrossing || lineCCrossing || lineDCrossing)
{
return true;
}
else
{
return false;
}
}
else
{
return true;
}
}
//Returns true if "point" is in a rectangle mad up of RectA to RectD. The line point is assumed to be on the same
//plane as the rectangle. If the point is not on the plane, use ProjectPointOnPlane() first.
public static bool IsPointInRectangle(Vector3 point, Vector3 rectA, Vector3 rectC, Vector3 rectB, Vector3 rectD)
{
Vector3 vector;
Vector3 linePoint;
//get the center of the rectangle
vector = rectC - rectA;
float size = -(vector.magnitude / 2f);
vector = AddVectorLength(vector, size);
Vector3 middle = rectA + vector;
Vector3 xVector = rectB - rectA;
float width = xVector.magnitude / 2f;
Vector3 yVector = rectD - rectA;
float height = yVector.magnitude / 2f;
linePoint = ProjectPointOnLine(middle, xVector.normalized, point);
vector = linePoint - point;
float yDistance = vector.magnitude;
linePoint = ProjectPointOnLine(middle, yVector.normalized, point);
vector = linePoint - point;
float xDistance = vector.magnitude;
if ((xDistance <= width) && (yDistance <= height))
{
return true;
}
else
{
return false;
}
}
//Returns true if line segment made up of pointA1 and pointA2 is crossing line segment made up of
//pointB1 and pointB2. The two lines are assumed to be in the same plane.
public static bool AreLineSegmentsCrossing(Vector3 pointA1, Vector3 pointA2, Vector3 pointB1, Vector3 pointB2)
{
Vector3 closestPointA;
Vector3 closestPointB;
int sideA;
int sideB;
Vector3 lineVecA = pointA2 - pointA1;
Vector3 lineVecB = pointB2 - pointB1;
bool valid = ClosestPointsOnTwoLines(out closestPointA, out closestPointB, pointA1, lineVecA.normalized, pointB1, lineVecB.normalized);
//lines are not parallel
if (valid)
{
sideA = PointOnWhichSideOfLineSegment(pointA1, pointA2, closestPointA);
sideB = PointOnWhichSideOfLineSegment(pointB1, pointB2, closestPointB);
if ((sideA == 0) && (sideB == 0))
{
return true;
}
else
{
return false;
}
}
//lines are parallel
else
{
return false;
}
}
//This function calculates the acceleration vector in meter/second^2.
//Input: position. If the output is used for motion simulation, the input transform
//has to be located at the seat base, not at the vehicle CG. Attach an empty GameObject
//at the correct location and use that as the input for this function.
//Gravity is not taken into account but this can be added to the output if needed.
//A low number of samples can give a jittery result due to rounding errors.
//If more samples are used, the output is more smooth but has a higher latency.
public static bool LinearAcceleration(out Vector3 vector, Vector3 position, int samples)
{
Vector3 averageSpeedChange = Vector3.zero;
vector = Vector3.zero;
Vector3 deltaDistance;
float deltaTime;
Vector3 speedA;
Vector3 speedB;
//Clamp sample amount. In order to calculate acceleration we need at least 2 changes
//in speed, so we need at least 3 position samples.
if (samples < 3)
{
samples = 3;
}
//Initialize
if (positionRegister == null)
{
positionRegister = new Vector3[samples];
posTimeRegister = new float[samples];
}
//Fill the position and time sample array and shift the location in the array to the left
//each time a new sample is taken. This way index 0 will always hold the oldest sample and the
//highest index will always hold the newest sample.
for (int i = 0; i < positionRegister.Length - 1; i++)
{
positionRegister[i] = positionRegister[i + 1];
posTimeRegister[i] = posTimeRegister[i + 1];
}
positionRegister[positionRegister.Length - 1] = position;
posTimeRegister[posTimeRegister.Length - 1] = Time.time;
positionSamplesTaken++;
//The output acceleration can only be calculated if enough samples are taken.
if (positionSamplesTaken >= samples)
{
//Calculate average speed change.
for (int i = 0; i < positionRegister.Length - 2; i++)
{
deltaDistance = positionRegister[i + 1] - positionRegister[i];
deltaTime = posTimeRegister[i + 1] - posTimeRegister[i];
//If deltaTime is 0, the output is invalid.
if (deltaTime == 0)
{
return false;
}
speedA = deltaDistance / deltaTime;
deltaDistance = positionRegister[i + 2] - positionRegister[i + 1];
deltaTime = posTimeRegister[i + 2] - posTimeRegister[i + 1];
if (deltaTime == 0)
{
return false;
}
speedB = deltaDistance / deltaTime;
//This is the accumulated speed change at this stage, not the average yet.
averageSpeedChange += speedB - speedA;
}
//Now this is the average speed change.
averageSpeedChange /= positionRegister.Length - 2;
//Get the total time difference.
float deltaTimeTotal = posTimeRegister[posTimeRegister.Length - 1] - posTimeRegister[0];
//Now calculate the acceleration, which is an average over the amount of samples taken.
vector = averageSpeedChange / deltaTimeTotal;
return true;
}
else
{
return false;
}
}
/*
//This function calculates angular acceleration in object space as deg/second^2, encoded as a vector.
//For example, if the output vector is 0,0,-5, the angular acceleration is 5 deg/second^2 around the object Z axis, to the left.
//Input: rotation (quaternion). If the output is used for motion simulation, the input transform
//has to be located at the seat base, not at the vehicle CG. Attach an empty GameObject
//at the correct location and use that as the input for this function.
//A low number of samples can give a jittery result due to rounding errors.
//If more samples are used, the output is more smooth but has a higher latency.
//Note: the result is only accurate if the rotational difference between two samples is less than 180 degrees.
//Note: a suitable way to visualize the result is:
Vector3 dir;
float scale = 2f;
dir = new Vector3(vector.x, 0, 0);
dir = Math3d.SetVectorLength(dir, dir.magnitude * scale);
dir = gameObject.transform.TransformDirection(dir);
Debug.DrawRay(gameObject.transform.position, dir, Color.red);
dir = new Vector3(0, vector.y, 0);
dir = Math3d.SetVectorLength(dir, dir.magnitude * scale);
dir = gameObject.transform.TransformDirection(dir);
Debug.DrawRay(gameObject.transform.position, dir, Color.green);
dir = new Vector3(0, 0, vector.z);
dir = Math3d.SetVectorLength(dir, dir.magnitude * scale);
dir = gameObject.transform.TransformDirection(dir);
Debug.DrawRay(gameObject.transform.position, dir, Color.blue); */
public static bool AngularAcceleration(out Vector3 vector, Quaternion rotation, int samples)
{
Vector3 averageSpeedChange = Vector3.zero;
vector = Vector3.zero;
Quaternion deltaRotation;
float deltaTime;
Vector3 speedA;
Vector3 speedB;
//Clamp sample amount. In order to calculate acceleration we need at least 2 changes
//in speed, so we need at least 3 rotation samples.
if (samples < 3)
{
samples = 3;
}
//Initialize
if (rotationRegister == null)
{
rotationRegister = new Quaternion[samples];
rotTimeRegister = new float[samples];
}
//Fill the rotation and time sample array and shift the location in the array to the left
//each time a new sample is taken. This way index 0 will always hold the oldest sample and the
//highest index will always hold the newest sample.
for (int i = 0; i < rotationRegister.Length - 1; i++)
{
rotationRegister[i] = rotationRegister[i + 1];
rotTimeRegister[i] = rotTimeRegister[i + 1];
}
rotationRegister[rotationRegister.Length - 1] = rotation;
rotTimeRegister[rotTimeRegister.Length - 1] = Time.time;
rotationSamplesTaken++;
//The output acceleration can only be calculated if enough samples are taken.
if (rotationSamplesTaken >= samples)
{
//Calculate average speed change.
for (int i = 0; i < rotationRegister.Length - 2; i++)
{
deltaRotation = SubtractRotation(rotationRegister[i + 1], rotationRegister[i]);
deltaTime = rotTimeRegister[i + 1] - rotTimeRegister[i];
//If deltaTime is 0, the output is invalid.
if (deltaTime == 0)
{
return false;
}
speedA = RotDiffToSpeedVec(deltaRotation, deltaTime);
deltaRotation = SubtractRotation(rotationRegister[i + 2], rotationRegister[i + 1]);
deltaTime = rotTimeRegister[i + 2] - rotTimeRegister[i + 1];
if (deltaTime == 0)
{
return false;
}
speedB = RotDiffToSpeedVec(deltaRotation, deltaTime);
//This is the accumulated speed change at this stage, not the average yet.
averageSpeedChange += speedB - speedA;
}
//Now this is the average speed change.
averageSpeedChange /= rotationRegister.Length - 2;
//Get the total time difference.
float deltaTimeTotal = rotTimeRegister[rotTimeRegister.Length - 1] - rotTimeRegister[0];
//Now calculate the acceleration, which is an average over the amount of samples taken.
vector = averageSpeedChange / deltaTimeTotal;
return true;
}
else
{
return false;
}
}
//Get y from a linear function, with x as an input. The linear function goes through points
//0,0 on the left ,and Qxy on the right.
public static float LinearFunction2DBasic(float x, float Qx, float Qy)
{
float y = x * (Qy / Qx);
return y;
}
//Get y from a linear function, with x as an input. The linear function goes through points
//Pxy on the left ,and Qxy on the right.
public static float LinearFunction2DFull(float x, float Px, float Py, float Qx, float Qy)
{
float y = 0f;
float A = Qy - Py;
float B = Qx - Px;
float C = A / B;
y = Py + (C * (x - Px));
return y;
}
//Convert a rotation difference to a speed vector.
//For internal use only.
private static Vector3 RotDiffToSpeedVec(Quaternion rotation, float deltaTime)
{
float x;
float y;
float z;
if (rotation.eulerAngles.x <= 180.0f)
{
x = rotation.eulerAngles.x;
}
else
{
x = rotation.eulerAngles.x - 360.0f;
}
if (rotation.eulerAngles.y <= 180.0f)
{
y = rotation.eulerAngles.y;
}
else
{
y = rotation.eulerAngles.y - 360.0f;
}
if (rotation.eulerAngles.z <= 180.0f)
{
z = rotation.eulerAngles.z;
}
else
{
z = rotation.eulerAngles.z - 360.0f;
}
return new Vector3(x / deltaTime, y / deltaTime, z / deltaTime);
}
}