Skip to content
Snippets Groups Projects
Math3d.cs 44.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    using UnityEngine;
    using System.Collections;
    using System.Collections.Generic;
    using System;
    
    public class Math3d
    {
    	public const float vectorPrecission = 1e-5f; //For Vector comparisons
    
    	private static Transform tempChild = null;
    	private static Transform tempParent = null;
    
    	private static Vector3[] positionRegister;
    	private static float[] posTimeRegister;
    	private static int positionSamplesTaken = 0;
    
    	private static Quaternion[] rotationRegister;
    	private static float[] rotTimeRegister;
    	private static int rotationSamplesTaken = 0;
    
    	public static void Init()
    	{
    
    		tempChild = (new GameObject("Math3d_TempChild")).transform;
    		tempParent = (new GameObject("Math3d_TempParent")).transform;
    
    		tempChild.gameObject.hideFlags = HideFlags.HideAndDontSave;
    		MonoBehaviour.DontDestroyOnLoad(tempChild.gameObject);
    
    		tempParent.gameObject.hideFlags = HideFlags.HideAndDontSave;
    		MonoBehaviour.DontDestroyOnLoad(tempParent.gameObject);
    
    		//set the parent
    		tempChild.parent = tempParent;
    	}
    
    	//Get a point on a Catmull-Rom spline.
    	//The percentage is in range 0 to 1, which starts at the second control point and ends at the second last control point. 
    	//The array cPoints should contain all control points. The minimum amount of control points should be 4. 
    	//Source: https://forum.unity.com/threads/waypoints-and-constant-variable-speed-problems.32954/#post-213942
    	public static Vector2 GetPointOnSpline(float percentage, Vector2[] cPoints)
    	{
    
    		//Minimum size is 4
    		if (cPoints.Length >= 4)
    		{
    
    			//Convert the input range (0 to 1) to range (0 to numSections)
    			int numSections = cPoints.Length - 3;
    			int curPoint = Mathf.Min(Mathf.FloorToInt(percentage * (float)numSections), numSections - 1);
    			float t = percentage * (float)numSections - (float)curPoint;
    
    			//Get the 4 control points around the location to be sampled.
    			Vector2 p0 = cPoints[curPoint];
    			Vector2 p1 = cPoints[curPoint + 1];
    			Vector2 p2 = cPoints[curPoint + 2];
    			Vector2 p3 = cPoints[curPoint + 3];
    
    			//The Catmull-Rom spline can be written as:
    			// 0.5 * (2*P1 + (-P0 + P2) * t + (2*P0 - 5*P1 + 4*P2 - P3) * t^2 + (-P0 + 3*P1 - 3*P2 + P3) * t^3)
    			//Variables P0 to P3 are the control points.
    			//Variable t is the position on the spline, with a range of 0 to numSections.
    			//C# way of writing the function. Note that f means float (to force precision).
    			Vector2 result = .5f * (2f * p1 + (-p0 + p2) * t + (2f * p0 - 5f * p1 + 4f * p2 - p3) * (t * t) + (-p0 + 3f * p1 - 3f * p2 + p3) * (t * t * t));
    
    			return new Vector2(result.x, result.y);
    		}
    
    		else
    		{
    
    			return new Vector2(0, 0);
    		}
    	}
    
    	//Finds the intersection points between a straight line and a spline. Solves a Cubic polynomial equation
    	//The output is in the form of a percentage along the length of the spline (range 0 to 1).
    	//The linePoints array should contain two points which form a straight line.
    	//The cPoints array should contain all the control points of the spline.
    	//Use case: create a gauge with a non-linear scale by defining an array with needle angles vs the number it should point at. The array creates a spline.
    	//Driving the needle with a float in range 0 to 1 gives an unpredictable result. Instead, use the GetLineSplineIntersections() function to find the angle the
    	//gauge needle should have for a given number it should point at. In this case, cPoints should contain x for angle and y for scale number.
    	//Make a horizontal line at the given scale number (y) you want to find the needle angle for. The returned float is a percentage location on the spline (range 0 to 1). 
    	//Plug this value into the GetPointOnSpline() function to get the x coordinate which represents the needle angle.
    	//Source: https://medium.com/@csaba.apagyi/finding-catmull-rom-spline-and-line-intersection-part-2-mathematical-approach-dfb969019746
    	public static float[] GetLineSplineIntersections(Vector2[] linePoints, Vector2[] cPoints)
    	{
    
    		List<float> list = new List<float>();
    		float[] crossings;
    
    		int numSections = cPoints.Length - 3;
    
    		//The line spline intersection can only be calculated for one segment of a spline, meaning 4 control points,
    		//with a spline segment between the middle two control points. So check all spline segments.
    		for (int i = 0; i < numSections; i++)
    		{
    
    			//Get the 4 control points around the location to be sampled.
    			Vector2 p0 = cPoints[i];
    			Vector2 p1 = cPoints[i + 1];
    			Vector2 p2 = cPoints[i + 2];
    			Vector2 p3 = cPoints[i + 3];
    
    			//The Catmull-Rom spline can be written as:
    			// 0.5 * (2P1 + (-P0 + P2) * t + (2P0 - 5P1 + 4P2 - P3) * t^2 + (-P0 + 3P1 - 3P2 + P3) * t^3)
    			//Variables P0 to P3 are the control points.
    			//Notation: 2P1 means 2*controlPoint1
    			//Variable t is the position on the spline, converted from a range of 0 to 1.
    			//C# way of writing the function is below. Note that f means float (to force precision).
    			//Vector2 result = .5f * (2f * p1 + (-p0 + p2) * t + (2f * p0 - 5f * p1 + 4f * p2 - p3) * (t * t) + (-p0 + 3f * p1 - 3f * p2 + p3) * (t * t * t));
    
    			//The variable t is the only unknown, so the rest can be substituted:
    			//a = 0.5 * (-p0 + 3*p1 - 3*p2 + p3)
    			//b = 0.5 * (2*p0 - 5*p1 + 4*p2 - p3) 
    			//c = 0.5 * (-p0 + p2)
    			//d = 0.5 * (2*p1)
    
    			//This gives rise to the following Cubic equation:
    			//a * t^3 + b * t^2 + c * t + d = 0
    
    			//The spline control points (p0-3) consist of two variables: the x and y coordinates. They are independent so we can handle them separately.
    			//Below, a1 is substitution a where the x coordinate of each point is used, like so:  a1 = 0.5 * (-p0.x + 3*p1.x - 3*p2.x + p3.x)
    			//Below, a2 is substitution a where the y coordinate of each point is used, like so:  a2 = 0.5 * (-p0.y + 3*p1.y - 3*p2.y + p3.y)
    			//The same logic applies for substitutions b, c, and d.
    
    			float a1 = 0.5f * (-p0.x + 3f * p1.x - 3f * p2.x + p3.x);
    			float a2 = 0.5f * (-p0.y + 3f * p1.y - 3f * p2.y + p3.y);
    			float b1 = 0.5f * (2f * p0.x - 5f * p1.x + 4f * p2.x - p3.x);
    			float b2 = 0.5f * (2f * p0.y - 5f * p1.y + 4f * p2.y - p3.y);
    			float c1 = 0.5f * (-p0.x + p2.x);
    			float c2 = 0.5f * (-p0.y + p2.y);
    			float d1 = 0.5f * (2f * p1.x);
    			float d2 = 0.5f * (2f * p1.y);
    
    			//We now have two Cubic functions. One for x and one for y.
    			//Note that a, b, c, and d are not vector variables itself but substituted functions.
    			//x = a1 * t^3 + b1 * t^2 + c1 * t + d1
    			//y = a2 * t^3 + b2 * t^2 + c2 * t + d2
    
    			//Line formula, standard form:
    			//Ax + By + C = 0
    			float A = linePoints[0].y - linePoints[1].y;
    			float B = linePoints[1].x - linePoints[0].x;
    			float C = (linePoints[0].x - linePoints[1].x) * linePoints[0].y + (linePoints[1].y - linePoints[0].y) * linePoints[0].x;
    
    			//Substituting the values of x and y from the separated Spline formula into the Line formula, we get:
    			//A * (a1 * t^3 + b1 * t^2 + c1 * t + d1) + B * (a2 * t^3 + b2 * t^2 + c2 * t + d2) + C = 0
    
    			//Rearranged version:		
    			//(A * a1 + B * a2) * t^3 + (A * b1 + B * b2) * t^2 + (A * c1 + B * c2) * t + (A * d1 + B * d2 + C) = 0
    
    			//Substituting gives rise to a Cubic function:
    			//a * t^3 + b * t^2 + c * t + d = 0
    			float a = A * a1 + B * a2;
    			float b = A * b1 + B * b2;
    			float c = A * c1 + B * c2;
    			float d = A * d1 + B * d2 + C;
    
    
    			//This is again a Cubic equation, combined from the Line and the Spline equation. If you solve this you can get up to 3 line-spline cross points.
    			//How to solve a Cubic equation is described here: 
    			//https://www.cs.rit.edu/~ark/pj/lib/edu/rit/numeric/Cubic.shtml
    			//https://www.codeproject.com/Articles/798474/To-Solve-a-Cubic-Equation
    
    			int crossAmount;
    			float cross1;
    			float cross2;
    			float cross3;
    			float crossCorrected;
    
    			//Two different implementations of solving a Cubic equation.
    			//	SolveCubic2(out crossAmount, out cross1, out cross2, out cross3, a, b, c, d);
    			SolveCubic(out crossAmount, out cross1, out cross2, out cross3, a, b, c, d);
    
    			//Get the highest and lowest value (in range 0 to 1) of the current section and calculate the difference.
    			float currentSectionLowest = (float)i / (float)numSections;
    			float currentSectionHighest = ((float)i + 1f) / (float)numSections;
    			float diff = currentSectionHighest - currentSectionLowest;
    
    			//Only use the result if it is within range 0 to 1.
    			//The range 0 to 1 is within the current segment. It has to be converted to the range of the entire spline,
    			//which still uses a range of 0 to 1.
    			if (cross1 >= 0 && cross1 <= 1)
    			{
    
    				//Map an intermediate range (0 to 1) to the lowest and highest section values.
    				crossCorrected = (cross1 * diff) + currentSectionLowest;
    
    				//Add the result to the list.
    				list.Add(crossCorrected);
    			}
    
    			if (cross2 >= 0 && cross2 <= 1)
    			{
    
    				//Map an intermediate range (0 to 1) to the lowest and highest section values.
    				crossCorrected = (cross2 * diff) + currentSectionLowest;
    
    				//Add the result to the list.
    				list.Add(crossCorrected);
    			}
    
    			if (cross3 >= 0 && cross3 <= 1)
    			{
    
    				//Map an intermediate range (0 to 1) to the lowest and highest section values.
    				crossCorrected = (cross3 * diff) + currentSectionLowest;
    
    				//Add the result to the list.
    				list.Add(crossCorrected);
    			}
    		}
    
    		//Convert the list to an array.
    		crossings = list.ToArray();
    
    		return crossings;
    	}
    
    	//Solve cubic equation according to Cardano. 
    	//Source: https://www.cs.rit.edu/~ark/pj/lib/edu/rit/numeric/Cubic.shtml
    	private static void SolveCubic(out int nRoots, out float x1, out float x2, out float x3, float a, float b, float c, float d)
    	{
    
    		float TWO_PI = 2f * Mathf.PI;
    		float FOUR_PI = 4f * Mathf.PI;
    
    		// Normalize coefficients.
    		float denom = a;
    		a = b / denom;
    		b = c / denom;
    		c = d / denom;
    
    		// Commence solution.
    		float a_over_3 = a / 3f;
    		float Q = (3f * b - a * a) / 9f;
    		float Q_CUBE = Q * Q * Q;
    		float R = (9f * a * b - 27f * c - 2f * a * a * a) / 54f;
    		float R_SQR = R * R;
    		float D = Q_CUBE + R_SQR;
    
    		if (D < 0.0f)
    		{
    
    			// Three unequal real roots.
    			nRoots = 3;
    			float theta = Mathf.Acos(R / Mathf.Sqrt(-Q_CUBE));
    			float SQRT_Q = Mathf.Sqrt(-Q);
    			x1 = 2f * SQRT_Q * Mathf.Cos(theta / 3f) - a_over_3;
    			x2 = 2f * SQRT_Q * Mathf.Cos((theta + TWO_PI) / 3f) - a_over_3;
    			x3 = 2f * SQRT_Q * Mathf.Cos((theta + FOUR_PI) / 3f) - a_over_3;
    		}
    
    		else if (D > 0.0f)
    		{
    
    			// One real root.
    			nRoots = 1;
    			float SQRT_D = Mathf.Sqrt(D);
    			float S = CubeRoot(R + SQRT_D);
    			float T = CubeRoot(R - SQRT_D);
    			x1 = (S + T) - a_over_3;
    			x2 = float.NaN;
    			x3 = float.NaN;
    		}
    
    		else
    		{
    
    			// Three real roots, at least two equal.
    			nRoots = 3;
    			float CBRT_R = CubeRoot(R);
    			x1 = 2 * CBRT_R - a_over_3;
    			x2 = CBRT_R - a_over_3;
    			x3 = x2;
    		}
    	}
    
    	//Mathf.Pow is used as an alternative for cube root (Math.cbrt) here.
    	private static float CubeRoot(float d)
    	{
    
    		if (d < 0.0f)
    		{
    
    			return -Mathf.Pow(-d, 1f / 3f);
    		}
    
    		else
    		{
    
    			return Mathf.Pow(d, 1f / 3f);
    		}
    	}
    
    
    	//increase or decrease the length of vector by size
    	public static Vector3 AddVectorLength(Vector3 vector, float size)
    	{
    
    		//get the vector length
    		float magnitude = Vector3.Magnitude(vector);
    
    		//calculate new vector length
    		float newMagnitude = magnitude + size;
    
    		//calculate the ratio of the new length to the old length
    		float scale = newMagnitude / magnitude;
    
    		//scale the vector
    		return vector * scale;
    	}
    
    	//create a vector of direction "vector" with length "size"
    	public static Vector3 SetVectorLength(Vector3 vector, float size)
    	{
    
    		//normalize the vector
    		Vector3 vectorNormalized = Vector3.Normalize(vector);
    
    		//scale the vector
    		return vectorNormalized *= size;
    	}
    
    
    	//caclulate the rotational difference from A to B
    	public static Quaternion SubtractRotation(Quaternion B, Quaternion A)
    	{
    
    		Quaternion C = Quaternion.Inverse(A) * B;
    		return C;
    	}
    
    	//Add rotation B to rotation A.
    	public static Quaternion AddRotation(Quaternion A, Quaternion B)
    	{
    
    		Quaternion C = A * B;
    		return C;
    	}
    
    	//Same as the build in TransformDirection(), but using a rotation instead of a transform.
    	public static Vector3 TransformDirectionMath(Quaternion rotation, Vector3 vector)
    	{
    
    		Vector3 output = rotation * vector;
    		return output;
    	}
    
    	//Same as the build in InverseTransformDirection(), but using a rotation instead of a transform.
    	public static Vector3 InverseTransformDirectionMath(Quaternion rotation, Vector3 vector)
    	{
    
    		Vector3 output = Quaternion.Inverse(rotation) * vector;
    		return output;
    	}
    
    	//Rotate a vector as if it is attached to an object with rotation "from", which is then rotated to rotation "to".
    	//Similar to TransformWithParent(), but rotating a vector instead of a transform.
    	public static Vector3 RotateVectorFromTo(Quaternion from, Quaternion to, Vector3 vector)
    	{
    		//Note: comments are in case all inputs are in World Space.
    		Quaternion Q = SubtractRotation(to, from);              //Output is in object space.
    		Vector3 A = InverseTransformDirectionMath(from, vector);//Output is in object space.
    		Vector3 B = Q * A;                                      //Output is in local space.
    		Vector3 C = TransformDirectionMath(from, B);            //Output is in world space.
    		return C;
    	}
    
    	//Find the line of intersection between two planes.	The planes are defined by a normal and a point on that plane.
    	//The outputs are a point on the line and a vector which indicates it's direction. If the planes are not parallel, 
    	//the function outputs true, otherwise false.
    	public static bool PlanePlaneIntersection(out Vector3 linePoint, out Vector3 lineVec, Vector3 plane1Normal, Vector3 plane1Position, Vector3 plane2Normal, Vector3 plane2Position)
    	{
    
    		linePoint = Vector3.zero;
    		lineVec = Vector3.zero;
    
    		//We can get the direction of the line of intersection of the two planes by calculating the 
    		//cross product of the normals of the two planes. Note that this is just a direction and the line
    		//is not fixed in space yet. We need a point for that to go with the line vector.
    		lineVec = Vector3.Cross(plane1Normal, plane2Normal);
    
    		//Next is to calculate a point on the line to fix it's position in space. This is done by finding a vector from
    		//the plane2 location, moving parallel to it's plane, and intersecting plane1. To prevent rounding
    		//errors, this vector also has to be perpendicular to lineDirection. To get this vector, calculate
    		//the cross product of the normal of plane2 and the lineDirection.		
    		Vector3 ldir = Vector3.Cross(plane2Normal, lineVec);
    
    		float denominator = Vector3.Dot(plane1Normal, ldir);
    
    		//Prevent divide by zero and rounding errors by requiring about 5 degrees angle between the planes.
    		if (Mathf.Abs(denominator) > 0.006f)
    		{
    
    			Vector3 plane1ToPlane2 = plane1Position - plane2Position;
    			float t = Vector3.Dot(plane1Normal, plane1ToPlane2) / denominator;
    			linePoint = plane2Position + t * ldir;
    
    			return true;
    		}
    
    		//output not valid
    		else
    		{
    			return false;
    		}
    	}
    
    	//Get the intersection between a line and a plane. 
    	//If the line and plane are not parallel, the function outputs true, otherwise false.
    	public static bool LinePlaneIntersection(out Vector3 intersection, Vector3 linePoint, Vector3 lineVec, Vector3 planeNormal, Vector3 planePoint)
    	{
    
    		float length;
    		float dotNumerator;
    		float dotDenominator;
    		Vector3 vector;
    		intersection = Vector3.zero;
    
    		//calculate the distance between the linePoint and the line-plane intersection point
    		dotNumerator = Vector3.Dot((planePoint - linePoint), planeNormal);
    		dotDenominator = Vector3.Dot(lineVec, planeNormal);
    
    		//line and plane are not parallel
    		if (dotDenominator != 0.0f)
    		{
    			length = dotNumerator / dotDenominator;
    
    			//create a vector from the linePoint to the intersection point
    			vector = SetVectorLength(lineVec, length);
    
    			//get the coordinates of the line-plane intersection point
    			intersection = linePoint + vector;
    
    			return true;
    		}
    
    		//output not valid
    		else
    		{
    			return false;
    		}
    	}
    
    	//Calculate the intersection point of two lines. Returns true if lines intersect, otherwise false.
    	//Note that in 3d, two lines do not intersect most of the time. So if the two lines are not in the 
    	//same plane, use ClosestPointsOnTwoLines() instead.
    	public static bool LineLineIntersection(out Vector3 intersection, Vector3 linePoint1, Vector3 lineVec1, Vector3 linePoint2, Vector3 lineVec2)
    	{
    
    		Vector3 lineVec3 = linePoint2 - linePoint1;
    		Vector3 crossVec1and2 = Vector3.Cross(lineVec1, lineVec2);
    		Vector3 crossVec3and2 = Vector3.Cross(lineVec3, lineVec2);
    
    		float planarFactor = Vector3.Dot(lineVec3, crossVec1and2);
    
    		//is coplanar, and not parrallel
    		if (Mathf.Abs(planarFactor) < 0.0001f && crossVec1and2.sqrMagnitude > 0.0001f)
    		{
    			float s = Vector3.Dot(crossVec3and2, crossVec1and2) / crossVec1and2.sqrMagnitude;
    			intersection = linePoint1 + (lineVec1 * s);
    			return true;
    		}
    		else
    		{
    			intersection = Vector3.zero;
    			return false;
    		}
    	}
    
    	//Two non-parallel lines which may or may not touch each other have a point on each line which are closest
    	//to each other. This function finds those two points. If the lines are not parallel, the function 
    	//outputs true, otherwise false.
    	public static bool ClosestPointsOnTwoLines(out Vector3 closestPointLine1, out Vector3 closestPointLine2, Vector3 linePoint1, Vector3 lineVec1, Vector3 linePoint2, Vector3 lineVec2)
    	{
    
    		closestPointLine1 = Vector3.zero;
    		closestPointLine2 = Vector3.zero;
    
    		float a = Vector3.Dot(lineVec1, lineVec1);
    		float b = Vector3.Dot(lineVec1, lineVec2);
    		float e = Vector3.Dot(lineVec2, lineVec2);
    
    		float d = a * e - b * b;
    
    		//lines are not parallel
    		if (d != 0.0f)
    		{
    
    			Vector3 r = linePoint1 - linePoint2;
    			float c = Vector3.Dot(lineVec1, r);
    			float f = Vector3.Dot(lineVec2, r);
    
    			float s = (b * f - c * e) / d;
    			float t = (a * f - c * b) / d;
    
    			closestPointLine1 = linePoint1 + lineVec1 * s;
    			closestPointLine2 = linePoint2 + lineVec2 * t;
    
    			return true;
    		}
    
    		else
    		{
    			return false;
    		}
    	}
    
    	//This function returns a point which is a projection from a point to a line.
    	//The line is regarded infinite. If the line is finite, use ProjectPointOnLineSegment() instead.
    	public static Vector3 ProjectPointOnLine(Vector3 linePoint, Vector3 lineVec, Vector3 point)
    	{
    
    		//get vector from point on line to point in space
    		Vector3 linePointToPoint = point - linePoint;
    
    		float t = Vector3.Dot(linePointToPoint, lineVec);
    
    		return linePoint + lineVec * t;
    	}
    
    	//This function returns true if a point is on a line.
    	//The line is regarded infinite.
    	public static bool IsPointOnLine(Vector3 linePoint, Vector3 lineVec, Vector3 point)
    	{
    
    		//get vector from point on line to point in space
    		Vector3 linePointToPoint = point - linePoint;
    
    		float t = Vector3.Dot(linePointToPoint, lineVec);
    
    		return t == 0;
    	}
    
    	//This function returns true if a point is approximately on a line.
    	//The line is regarded infinite.
    	public static bool IsPointApproximatelyOnLine(Vector3 linePoint, Vector3 lineVec, Vector3 point, float precission = Math3d.vectorPrecission)
    	{
    
    		//get vector from point on line to point in space
    		Vector3 linePointToPoint = point - linePoint;
    
    		float t = Vector3.Dot(linePointToPoint, lineVec);
    
    		return t < precission;
    	}
    
    	//This function returns a point which is a projection from a point to a line segment.
    	//If the projected point lies outside of the line segment, the projected point will 
    	//be clamped to the appropriate line edge.
    	//If the line is infinite instead of a segment, use ProjectPointOnLine() instead.
    	public static Vector3 ProjectPointOnLineSegment(Vector3 linePoint1, Vector3 linePoint2, Vector3 point)
    	{
    
    		Vector3 vector = linePoint2 - linePoint1;
    
    		Vector3 projectedPoint = ProjectPointOnLine(linePoint1, vector.normalized, point);
    
    		int side = PointOnWhichSideOfLineSegment(linePoint1, linePoint2, projectedPoint);
    
    		//The projected point is on the line segment
    		if (side == 0)
    		{
    
    			return projectedPoint;
    		}
    
    		if (side == 1)
    		{
    
    			return linePoint1;
    		}
    
    		if (side == 2)
    		{
    
    			return linePoint2;
    		}
    
    		//output is invalid
    		return Vector3.zero;
    	}
    
    	//This function returns a point which is a projection from a point to a plane.
    	public static Vector3 ProjectPointOnPlane(Vector3 planeNormal, Vector3 planePoint, Vector3 point)
    	{
    
    		float distance;
    		Vector3 translationVector;
    
    		//First calculate the distance from the point to the plane:
    		distance = SignedDistancePlanePoint(planeNormal, planePoint, point);
    
    		//Reverse the sign of the distance
    		distance *= -1;
    
    		//Get a translation vector
    		translationVector = SetVectorLength(planeNormal, distance);
    
    		//Translate the point to form a projection
    		return point + translationVector;
    	}
    
    	//Projects a vector onto a plane. The output is not normalized.
    	public static Vector3 ProjectVectorOnPlane(Vector3 planeNormal, Vector3 vector)
    	{
    
    		return vector - (Vector3.Dot(vector, planeNormal) * planeNormal);
    	}
    
    	//Get the shortest distance between a point and a plane. The output is signed so it holds information
    	//as to which side of the plane normal the point is.
    	public static float SignedDistancePlanePoint(Vector3 planeNormal, Vector3 planePoint, Vector3 point)
    	{
    
    		return Vector3.Dot(planeNormal, (point - planePoint));
    	}
    
    	//This function calculates a signed (+ or - sign instead of being ambiguous) dot product. It is basically used
    	//to figure out whether a vector is positioned to the left or right of another vector. The way this is done is
    	//by calculating a vector perpendicular to one of the vectors and using that as a reference. This is because
    	//the result of a dot product only has signed information when an angle is transitioning between more or less
    	//than 90 degrees.
    	public static float SignedDotProduct(Vector3 vectorA, Vector3 vectorB, Vector3 normal)
    	{
    
    		Vector3 perpVector;
    		float dot;
    
    		//Use the geometry object normal and one of the input vectors to calculate the perpendicular vector
    		perpVector = Vector3.Cross(normal, vectorA);
    
    		//Now calculate the dot product between the perpendicular vector (perpVector) and the other input vector
    		dot = Vector3.Dot(perpVector, vectorB);
    
    		return dot;
    	}
    
    	public static float SignedVectorAngle(Vector3 referenceVector, Vector3 otherVector, Vector3 normal)
    	{
    		Vector3 perpVector;
    		float angle;
    
    		//Use the geometry object normal and one of the input vectors to calculate the perpendicular vector
    		perpVector = Vector3.Cross(normal, referenceVector);
    
    		//Now calculate the dot product between the perpendicular vector (perpVector) and the other input vector
    		angle = Vector3.Angle(referenceVector, otherVector);
    		angle *= Mathf.Sign(Vector3.Dot(perpVector, otherVector));
    
    		return angle;
    	}
    
    	//Calculate the angle between a vector and a plane. The plane is made by a normal vector.
    	//Output is in radians.
    	public static float AngleVectorPlane(Vector3 vector, Vector3 normal)
    	{
    
    		float dot;
    		float angle;
    
    		//calculate the the dot product between the two input vectors. This gives the cosine between the two vectors
    		dot = Vector3.Dot(vector, normal);
    
    		//this is in radians
    		angle = (float)Math.Acos(dot);
    
    		return 1.570796326794897f - angle; //90 degrees - angle
    	}
    
    	//Calculate the dot product as an angle
    	public static float DotProductAngle(Vector3 vec1, Vector3 vec2)
    	{
    
    		double dot;
    		double angle;
    
    		//get the dot product
    		dot = Vector3.Dot(vec1, vec2);
    
    		//Clamp to prevent NaN error. Shouldn't need this in the first place, but there could be a rounding error issue.
    		if (dot < -1.0f)
    		{
    			dot = -1.0f;
    		}
    		if (dot > 1.0f)
    		{
    			dot = 1.0f;
    		}
    
    		//Calculate the angle. The output is in radians
    		//This step can be skipped for optimization...
    		angle = Math.Acos(dot);
    
    		return (float)angle;
    	}
    
    	//Convert a plane defined by 3 points to a plane defined by a vector and a point. 
    	//The plane point is the middle of the triangle defined by the 3 points.
    	public static void PlaneFrom3Points(out Vector3 planeNormal, out Vector3 planePoint, Vector3 pointA, Vector3 pointB, Vector3 pointC)
    	{
    
    		planeNormal = Vector3.zero;
    		planePoint = Vector3.zero;
    
    		//Make two vectors from the 3 input points, originating from point A
    		Vector3 AB = pointB - pointA;
    		Vector3 AC = pointC - pointA;
    
    		//Calculate the normal
    		planeNormal = Vector3.Normalize(Vector3.Cross(AB, AC));
    
    		//Get the points in the middle AB and AC
    		Vector3 middleAB = pointA + (AB / 2.0f);
    		Vector3 middleAC = pointA + (AC / 2.0f);
    
    		//Get vectors from the middle of AB and AC to the point which is not on that line.
    		Vector3 middleABtoC = pointC - middleAB;
    		Vector3 middleACtoB = pointB - middleAC;
    
    		//Calculate the intersection between the two lines. This will be the center 
    		//of the triangle defined by the 3 points.
    		//We could use LineLineIntersection instead of ClosestPointsOnTwoLines but due to rounding errors 
    		//this sometimes doesn't work.
    		Vector3 temp;
    		ClosestPointsOnTwoLines(out planePoint, out temp, middleAB, middleABtoC, middleAC, middleACtoB);
    	}
    
    	//Returns the forward vector of a quaternion
    	public static Vector3 GetForwardVector(Quaternion q)
    	{
    
    		return q * Vector3.forward;
    	}
    
    	//Returns the up vector of a quaternion
    	public static Vector3 GetUpVector(Quaternion q)
    	{
    
    		return q * Vector3.up;
    	}
    
    	//Returns the right vector of a quaternion
    	public static Vector3 GetRightVector(Quaternion q)
    	{
    
    		return q * Vector3.right;
    	}
    
    	//Gets a quaternion from a matrix
    	public static Quaternion QuaternionFromMatrix(Matrix4x4 m)
    	{
    
    		return Quaternion.LookRotation(m.GetColumn(2), m.GetColumn(1));
    	}
    
    	//Gets a position from a matrix
    	public static Vector3 PositionFromMatrix(Matrix4x4 m)
    	{
    
    		Vector4 vector4Position = m.GetColumn(3);
    		return new Vector3(vector4Position.x, vector4Position.y, vector4Position.z);
    	}
    
    	//This is an alternative for Quaternion.LookRotation. Instead of aligning the forward and up vector of the game 
    	//object with the input vectors, a custom direction can be used instead of the fixed forward and up vectors.
    	//alignWithVector and alignWithNormal are in world space.
    	//customForward and customUp are in object space.
    	//Usage: use alignWithVector and alignWithNormal as if you are using the default LookRotation function.
    	//Set customForward and customUp to the vectors you wish to use instead of the default forward and up vectors.
    	public static void LookRotationExtended(ref GameObject gameObjectInOut, Vector3 alignWithVector, Vector3 alignWithNormal, Vector3 customForward, Vector3 customUp)
    	{
    
    		//Set the rotation of the destination
    		Quaternion rotationA = Quaternion.LookRotation(alignWithVector, alignWithNormal);
    
    		//Set the rotation of the custom normal and up vectors. 
    		//When using the default LookRotation function, this would be hard coded to the forward and up vector.
    		Quaternion rotationB = Quaternion.LookRotation(customForward, customUp);
    
    		//Calculate the rotation
    		gameObjectInOut.transform.rotation = rotationA * Quaternion.Inverse(rotationB);
    	}
    
    	//This function transforms one object as if it was parented to the other.
    	//Before using this function, the Init() function must be called
    	//Input: parentRotation and parentPosition: the current parent transform.
    	//Input: startParentRotation and startParentPosition: the transform of the parent object at the time the objects are parented.
    	//Input: startChildRotation and startChildPosition: the transform of the child object at the time the objects are parented.
    	//Output: childRotation and childPosition.
    	//All transforms are in world space.
    	public static void TransformWithParent(out Quaternion childRotation, out Vector3 childPosition, Quaternion parentRotation, Vector3 parentPosition, Quaternion startParentRotation, Vector3 startParentPosition, Quaternion startChildRotation, Vector3 startChildPosition)
    	{
    
    		childRotation = Quaternion.identity;
    		childPosition = Vector3.zero;
    
    		//set the parent start transform
    		tempParent.rotation = startParentRotation;
    		tempParent.position = startParentPosition;
    		tempParent.localScale = Vector3.one; //to prevent scale wandering
    
    		//set the child start transform
    		tempChild.rotation = startChildRotation;
    		tempChild.position = startChildPosition;
    		tempChild.localScale = Vector3.one; //to prevent scale wandering
    
    		//translate and rotate the child by moving the parent
    		tempParent.rotation = parentRotation;
    		tempParent.position = parentPosition;
    
    		//get the child transform
    		childRotation = tempChild.rotation;
    		childPosition = tempChild.position;
    	}
    
    	//With this function you can align a triangle of an object with any transform.
    	//Usage: gameObjectInOut is the game object you want to transform.
    	//alignWithVector, alignWithNormal, and alignWithPosition is the transform with which the triangle of the object should be aligned with.
    	//triangleForward, triangleNormal, and trianglePosition is the transform of the triangle from the object.
    	//alignWithVector, alignWithNormal, and alignWithPosition are in world space.
    	//triangleForward, triangleNormal, and trianglePosition are in object space.
    	//trianglePosition is the mesh position of the triangle. The effect of the scale of the object is handled automatically.
    	//trianglePosition can be set at any position, it does not have to be at a vertex or in the middle of the triangle.
    	public static void PreciseAlign(ref GameObject gameObjectInOut, Vector3 alignWithVector, Vector3 alignWithNormal, Vector3 alignWithPosition, Vector3 triangleForward, Vector3 triangleNormal, Vector3 trianglePosition)
    	{
    
    		//Set the rotation.
    		LookRotationExtended(ref gameObjectInOut, alignWithVector, alignWithNormal, triangleForward, triangleNormal);
    
    		//Get the world space position of trianglePosition
    		Vector3 trianglePositionWorld = gameObjectInOut.transform.TransformPoint(trianglePosition);
    
    		//Get a vector from trianglePosition to alignWithPosition
    		Vector3 translateVector = alignWithPosition - trianglePositionWorld;
    
    		//Now transform the object so the triangle lines up correctly.
    		gameObjectInOut.transform.Translate(translateVector, Space.World);
    	}
    
    
    	//Convert a position, direction, and normal vector to a transform
    	public static void VectorsToTransform(ref GameObject gameObjectInOut, Vector3 positionVector, Vector3 directionVector, Vector3 normalVector)
    	{
    
    		gameObjectInOut.transform.position = positionVector;
    		gameObjectInOut.transform.rotation = Quaternion.LookRotation(directionVector, normalVector);
    	}
    
    	//This function finds out on which side of a line segment the point is located.
    	//The point is assumed to be on a line created by linePoint1 and linePoint2. If the point is not on
    	//the line segment, project it on the line using ProjectPointOnLine() first.
    	//Returns 0 if point is on the line segment.
    	//Returns 1 if point is outside of the line segment and located on the side of linePoint1.
    	//Returns 2 if point is outside of the line segment and located on the side of linePoint2.
    	public static int PointOnWhichSideOfLineSegment(Vector3 linePoint1, Vector3 linePoint2, Vector3 point)
    	{
    
    		Vector3 lineVec = linePoint2 - linePoint1;
    		Vector3 pointVec = point - linePoint1;
    
    		float dot = Vector3.Dot(pointVec, lineVec);
    
    		//point is on side of linePoint2, compared to linePoint1
    		if (dot > 0)
    		{
    
    			//point is on the line segment
    			if (pointVec.magnitude <= lineVec.magnitude)
    			{
    
    				return 0;
    			}
    
    			//point is not on the line segment and it is on the side of linePoint2
    			else
    			{
    
    				return 2;
    			}
    		}
    
    		//Point is not on side of linePoint2, compared to linePoint1.
    		//Point is not on the line segment and it is on the side of linePoint1.
    		else
    		{
    
    			return 1;
    		}
    	}
    
    
    	//Returns the pixel distance from the mouse pointer to a line.
    	//Alternative for HandleUtility.DistanceToLine(). Works both in Editor mode and Play mode.
    	//Do not call this function from OnGUI() as the mouse position will be wrong.
    	public static float MouseDistanceToLine(Vector3 linePoint1, Vector3 linePoint2)
    	{
    
    		Camera currentCamera;
    		Vector3 mousePosition;
    
    #if UNITY_EDITOR
    		if(Camera.current != null){
     
    			currentCamera = Camera.current;
    		}
     
    		else{
     
    			currentCamera = Camera.main;
    		}
     
    		//convert format because y is flipped
    		mousePosition = new Vector3(Event.current.mousePosition.x, currentCamera.pixelHeight - Event.current.mousePosition.y, 0f);
     
    #else
    		currentCamera = Camera.main;
    		mousePosition = Input.mousePosition;
    #endif
    
    		Vector3 screenPos1 = currentCamera.WorldToScreenPoint(linePoint1);
    		Vector3 screenPos2 = currentCamera.WorldToScreenPoint(linePoint2);
    		Vector3 projectedPoint = ProjectPointOnLineSegment(screenPos1, screenPos2, mousePosition);
    
    		//set z to zero
    		projectedPoint = new Vector3(projectedPoint.x, projectedPoint.y, 0f);
    
    		Vector3 vector = projectedPoint - mousePosition;
    		return vector.magnitude;
    	}
    
    
    	//Returns the pixel distance from the mouse pointer to a camera facing circle.
    	//Alternative for HandleUtility.DistanceToCircle(). Works both in Editor mode and Play mode.
    	//Do not call this function from OnGUI() as the mouse position will be wrong.
    	//If you want the distance to a point instead of a circle, set the radius to 0.
    	public static float MouseDistanceToCircle(Vector3 point, float radius)
    	{
    
    		Camera currentCamera;
    		Vector3 mousePosition;
    
    #if UNITY_EDITOR
    		if(Camera.current != null){
     
    			currentCamera = Camera.current;
    		}
     
    		else{
     
    			currentCamera = Camera.main;
    		}
     
    		//convert format because y is flipped
    		mousePosition = new Vector3(Event.current.mousePosition.x, currentCamera.pixelHeight - Event.current.mousePosition.y, 0f);
    #else
    		currentCamera = Camera.main;
    		mousePosition = Input.mousePosition;
    #endif
    
    		Vector3 screenPos = currentCamera.WorldToScreenPoint(point);
    
    		//set z to zero
    		screenPos = new Vector3(screenPos.x, screenPos.y, 0f);
    
    		Vector3 vector = screenPos - mousePosition;
    		float fullDistance = vector.magnitude;
    		float circleDistance = fullDistance - radius;
    
    		return circleDistance;
    	}
    
    	//Returns true if a line segment (made up of linePoint1 and linePoint2) is fully or partially in a rectangle
    	//made up of RectA to RectD. The line segment is assumed to be on the same plane as the rectangle. If the line is 
    	//not on the plane, use ProjectPointOnPlane() on linePoint1 and linePoint2 first.
    	public static bool IsLineInRectangle(Vector3 linePoint1, Vector3 linePoint2, Vector3 rectA, Vector3 rectB, Vector3 rectC, Vector3 rectD)
    	{
    
    		bool pointAInside = false;
    		bool pointBInside = false;
    
    		pointAInside = IsPointInRectangle(linePoint1, rectA, rectC, rectB, rectD);
    
    		if (!pointAInside)
    		{
    
    			pointBInside = IsPointInRectangle(linePoint2, rectA, rectC, rectB, rectD);
    		}
    
    		//none of the points are inside, so check if a line is crossing
    		if (!pointAInside && !pointBInside)
    		{
    
    			bool lineACrossing = AreLineSegmentsCrossing(linePoint1, linePoint2, rectA, rectB);
    			bool lineBCrossing = AreLineSegmentsCrossing(linePoint1, linePoint2, rectB, rectC);
    			bool lineCCrossing = AreLineSegmentsCrossing(linePoint1, linePoint2, rectC, rectD);
    			bool lineDCrossing = AreLineSegmentsCrossing(linePoint1, linePoint2, rectD, rectA);