Skip to content
Snippets Groups Projects
slides-xxx-conclusion.tex 1.47 KiB
Newer Older
  • Learn to ignore specific revisions
  • % !TeX root = slides.tex
    \section{Conclusion}
    
    \begin{frame}{Overall Summary}
    	\structure{Logical Relations:}
    	\begin{itemize}
    		\item many type theories admit this proof technique:\begin{enumerate}
    			\item map every type $\tpName$ to an $n$-ary relation $C_{\tpName}(-)$
    			\item prove that every constructor $f\colon\tpName_1\to\ldots\to\tpName_n\to\tpName$ preserves the relation $C_{\tpName}(-)$
    		\end{enumerate}
    		\item ``the basic lemma'': if $t\colon\tpName$, then $C_{\tpName}(t)$
    	\end{itemize}
    	\medskip
    
    	\structure{Concretely in \mmt/LF:} for morphisms $\mu_1,\ldots,\mu_n\colon S \to T$
    	\[
    		\logrel{r}{\mu_1 \times \cdots \times \mu_n}{S}{T}
    	\]
    	\vspace{-1.5em}
    	\begin{itemize}
    		\item special case for morphisms being identities: \begin{itemize}
    			\item $\nakedLogRel{\TND}{\id{PL}}{\PL}{\PL}$: unary congruence proving $p\colon\prop \Longrightarrow\;\vtnd{p}$
    			\item $\nakedLogRel{\LRA}{\id{PL}\times\id{\PL}}{\PL}{\PL}$: (binary) congruence whose well-typedness shows $\Leftrightarrow$ being a congruence
    		\end{itemize}
    		%
    		\item special case
    		\vspace{-0.5em} \[
    			\logrel{\TypePres}{\TypeEras}{\ChurchProd}{\CurryProd}
    		\]
    		\vspace*{-1em}
    		\begin{itemize}
    			\item complements lossy translation $\TypeEras$
    			\item $\vdash_{\ChurchProd} t \colon \ttm{A} \;\;\Longrightarrow\;\;\vdash_{\CurryProd} \wit\colon\ofType{\TypeEras(t)}{\TypeEras(A)}$
    		\end{itemize}
    	\end{itemize}
    \end{frame}
    \begin{frame}{Future Work}
    	\ldots
    \end{frame}